
Data Perturbation for Escaping Local Maxima in Learning

Gal Elidan and Matan Ninio and Nir Friedman
Hebrew University

fgalel,ninio,nirg@cs.huji.ac.il

Dale Schuurmans
University of Waterloo
dale@cs.uwaterloo.ca

Abstract

Almost all machine learning algorithms—be they for regres-
sion, classification or density estimation—seek hypotheses
that optimize a score on training data. In most interesting
cases, however, full global optimization is not feasible and
local search techniques are used to discover reasonable solu-
tions. Unfortunately, the quality of the local maxima reached
depends on initialization and is often weaker than the global
maximum. In this paper, we present a simple approach for
combining global search with local optimization to discover
improved hypotheses in general machine learning problems.
The main idea is to escape local maxima by perturbing the
training data to create plausible new ascent directions, rather
than perturbing hypotheses directly. Specifically, we consider
example-reweighting strategies that are reminiscent of boost-
ing and other ensemble learning methods, but applied in a
different way with a different goal: to produce asingle hy-
pothesis that achieves a good score on training and test data.
To evaluate the performance of our algorithms we consider a
number of problems in learning Bayesian networks from data,
including discrete training problems (structure search), con-
tinuous training problems (parametric EM, non-linear logistic
regression), and mixed training problems (Structural EM)—
on both synthetic and real-world data. In each case, we obtain
state of the art performance on both training and test data.

Introduction
Training algorithms in machine learning are almost always
optimization algorithms: that is, they search for a hypothe-
sis that maximizes a score on the training data. This is true
for regression, classification and density estimation, as well
as most other machine learning problems. The most com-
mon scores used in machine learning areadditive on train-
ing data, which means that the score of a hypothesish on
dataD � fx���� ���� x�M �g is a sum of local scores on each
individual example, plus an optional regularization penalty

Score�h�D� �
X
m

score�h� x�m��� penalty�h�

Such scores arise naturally in regression or classification
problems, where the local score is typically negated predic-
tion error, and in density estimation, where the local score is
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typically log likelihood. Although we will apply our tech-
niques to more general non-additive scores below, it will be
useful to keep additive scores as a simple example.

Even for simple optimization objectives, in interesting
hypothesis spaces like decision trees, neural networks, and
graphical models, the problem of finding a globally optimal
hypothesis is usually intractable. This is true whether one is
searching for an optimal combination of hypothesis structure
and parameters (e.g., decision tree learning), or just optimiz-
ing the parameters for a given structure (e.g., neural network
training). Therefore, most training algorithms employ local
search techniques such as gradient descent or discrete hill
climbing to find locally optimal hypotheses (Bishop 1995).
The drawback is that local maxima are common and local
search often yields poor results.

A variety of techniques have been developed for escap-
ing poor local maxima in general search, including random
restarts, TABU search (Glover & Laguna 1993) and simu-
lated annealing (Kirpatrick, Gelatt, & Vecchi 1994). How-
ever, these techniques do not exploit the particular nature of
the training problem encountered in machine learning. In-
stead, they alter hypotheses in an oblivious fashion until this
happens to provide an escape from a local basin of attrac-
tion.

In this paper, we consider strategies for escaping local
maxima that perturb thetraining data instead of perturbing
the hypotheses directly. In particular, we consider simple
strategies forreweighting training examples to create useful
ascent directions in hypothesis space. To do this we augment
the score so that it considers a probability distributionw on
the training examples, thus yielding

Score�h�D�w� �
X
m

M � wmscore�h� x�m��� penalty�h�

An intuition for why example reweighting is effective for es-
caping local maxima is that it can cause “informed” changes
to be made to the current hypothesis, rather than arbitrarily
damage it: When a local maximum is reached, each training
example contributes differently to the score. If the hypoth-
esis is poor, then some training examples which contribute
strongly to the score are likely to be outliers that should be
down-weighted, whereas other examples that do not con-
tribute strongly should be up-weighted to reflect their true
importance in the underlying distribution. That is, a poor



procedurePerturbedSearch�D�w�� h�� ��� ��nal�
t� �
while � t � ��nal do

wt�� � reweight�Score�wt� � t� ht� D�
ht�� � optimize�Score�wt��� ht� D�
� t�� � reduce�� t� t�
t� t� �

returnht

Figure 1: Outline of the generic search procedure.

hypothesis will tend to fit outliers but under-represent ex-
amples that are actually important. Understanding how the
score is influenced by training examples can therefore sug-
gest plausible perturbations to the data which favor superior
hypotheses.

Below, we consider two basic techniques for perturbing
example weights to escape local maxima:random reweight-
ing, which randomly samples weight profiles on the training
data, andadversarial reweighting, which updates the weight
profile to explicitly punish the current hypothesis, with the
intent of moving the search quickly to a nearby basin of at-
traction. In both cases the weight profile is annealed toward
uniform weights over time to ensure that the search even-
tually focuses on producing good solutions for the original
distribution of training data.

Our basic approach has several benefits. First, these
perturbation schemes are general and can be applied to a
large variety of hypothesis spaces, either continuous or dis-
crete. Second, our approach uses standard search proce-
dures to find hypotheses, rather than employ the often waste-
ful “propose, evaluate, reject” cycle of simulated annealing
approaches. Third, because a perturbation of the training
data can generate a long chain of search steps in hypothesis
space, a single reweighting step can result in a hypothesis
that is very different from the one considered at the outset
(although its score might not be that different). Finally, in
the adversarial variant, the perturbations to the score are not
arbitrary. Instead, they force the score to be more attentive
to a subset of the training instances. Our experimental re-
sults show that substantial improvements are achieved in a
variety of training scenarios.

Weight Perturbation for Escaping Maxima

Generic Search Procedure Our goal is to perturb the train-
ing data to allow local search to escape poor local maxima,
under the constraint that we ultimately find a hypothesis that
scores well on the original training distribution. Therefore,
the perturbations should not move the training data too far
from their original state, and eventually the data must be
restored to its original form to ensure that the final hypoth-
esis is optimized on the correct distribution. This suggests
that we follow an annealing approach where we allow the
weights to change freely early in the search, but then even-
tually “cool” the weights toward the original distribution.

Figure 1 outlines the generic search procedure we ex-
amine. The free parameters in this procedure are the an-

nealing schedule (reduce��� t�), the local search method
(optimize�Score�w� h�D�), and the example reweighting
scheme (reweight�Score�w� �� h�D�), each of which we
instantiate below. For the annealing schedule, we follow
a standard initialization with standard decay, starting with
temperature� � and setting� t�� � �� t, with � � ���	 in
most runs. For local optimization, one issue is to note that
local search can be interleaved with the example reweight-
ing in many ways. For example, one could perform full lo-
cal optimization between each reweighting step, or perform
only a partial optimization between reweights. We apply
both of these interleaving strategies in specific cases below,
depending on what appears to be most advantageous for the
problem at hand. The final component of our search proce-
dure is the reweighting method, for which we propose the
following two main strategies.

Random Reweighting The first approach we consider is
a randomized method motivated byiterative local search
methods in combinatorial optimization (Codenottiet al.
1996) and phylogenetic reconstruction (Nixon 1999). In-
stead of performing random steps in the hypothesis space,
we perturb the score by randomly reweighting each training
example around its original weight. Candidate hypotheses
are then evaluated with respect to the reweighted training
set and we perform standard optimization on the perturbed
score. After each iteration is complete, we repeat the pro-
cess by independently sampling new example weights, re-
optimizing the hypothesis, etc., until the magnitude of the
weight perturbation approaches zero.

For convenience, we require the weights to be a probabil-
ity distribution over theM data instances. Thus, we sam-
ple with a Dirichlet distribution with parameter�, so that
P �W � w� �

Q
m w���

m for legal probability vectors (see,
for example (DeGroot 1989)). When� grows larger, this
distribution peaks around the uniform distribution. Thus, if
we use� � ��� t the randomly chosen distributions will an-
neal toward the uniform distribution, since the temperature
� t decreases with the number of iterationst. We refer to this
random perturbation approach asRandom.

Adversarial Reweighting The second approach we con-
sider is to update weights to directly challenge the current
hypothesis. This approach is motivated by the exponential
gradient search of (Schuurmans, Southey, & Holte 2001)
for constrained optimization problems. Here, we combine
their technique with an annealing process and modify it for
a machine learning context. Intuitively, one can challenge a
local maxima by calculating the gradient of the score with
respect to the weights and then updating the weights tode-
crease the hypothesis’ score. For example, on a training
item x�m� one could consider the adversarial weight update
wt��
m � wt

m�� �Score
�wm

which would explicitly make the cur-
rent hypothesis appear less favorable and hence less likely
to remain a local maximum. In this way, Score�h�D�w�
behaves somewhat like a Lagrangian, in the sense that the
local search attempts to maximize the score overh whereas
the weight update attempts tominimize the score over w, in
an adversarial min-max fashion.

This general approach still has to be adapted to our needs.



First, for reasons outlined above, we need to anneal the
weight vector toward a uniform distribution. Therefore we
add a penalty for divergence between wt�� and uniform
weights w�. We use the Kullback-Leibler measure (Kull-
back & Leibler 1951) to evaluate the divergence between
the distribution of the weights with respect to the original
weights. We heighten the importance of this term as time
progresses and the temperature is cooled down by evaluating
� KL�wt��kw�� where� � ��� t��. Second, to maintain
positive weight values we follow an exponential gradient
strategy and derive a multiplicative update rule in the man-
ner of (Kivinen & Warmuth 1997) where a penalty term for
the for the KL-divergence between successive weight vec-
tors wt�� and wt is added. All of these adaptations to our
general schema lead us to use the following penalized score
to guide our weight updates

L�h�wt��� � Score�h�D�wt���


 � KL�wt��kw��


 � KL�wt��kwt�

where ��� and ��� are proportional to the temperature
and enforce proximity to uniform weights and the previous
weights respectively.

There are two ways to use this function to derive weight
updates. The first is to explicitly minimize the penalized
score by solving for wt�� in rwt��L�h�wt��� � �. If the
score function is convex in w (as it often is) the solution
can be quickly determined by iteration. A second, a more
expedient approach is suggested by Kivinen and Warmuth
(1997): Instead of doing full optimization, we heuristically
fix the score gradient inrwL to its value at wt andanalyti-
cally solve for the minimum of the resulting approximation,
up to a step size parameter�. This is tantamount to approx-
imating the optimal update by taking a fixed step of size�
in the exponential gradient direction from the current weight
vector wt. Omitting the details, we recover the multiplica-
tive update formula

wt��
m � 	t���w�

m�
�

��� �wt
m�

�
��� e

� �
���

�
�Score
�wm

j
wtm

�
where	t�� is just a normalization constant. We refer to this
approach as theAdversary strategy.

In sum, our second basic reweighting approach is to make
adversarial weight updates by following the negative gradi-
ent in a well motivated function. This approach can be ap-
plied whenever the original weighted score is differentiable
with respect to the weights, for any fixed hypothesis. Note
this is a very weak requirement that is typically satisfied in
machine learning scenarios. In particular, differentiability
with respect to the weights has nothing to do with the dis-
creteness or continuity of the hypotheses—it is a property
of how the instance weights affect the score of a fixed hy-
pothesis. Thus one could apply the adversarial reweighting
approach to standard decision tree and neural network train-
ing problems without modification.

Although the adversarial strategy has many similar advan-
tages to the randomized approach, one distinction is note-
worthy: randomness is replaced by a guided methodology

where weights are perturbed to minimize an intuitive func-
tion. This loses some of the flexibility of a random ap-
proach, which may reach the optimal solution by chance,
but promises a far better average solution since it benefits
from superior guidance.

Relation to ensemble reweighting There are interesting re-
lationships between these reweighting techniques and en-
semble learning methods like boosting (Schapire & Singer
1999). However, our techniques are not attempting to build
an ensemble, and although they are similar to boosting on
the surface, there are some fundamental differences. On
an intuitive level, one difference is that boosting attempts
to build a weighted ensemble of hypotheses that achieves
a good score, whereas we are deliberately seeking a single
hypothesis that attains this. On a technical level, boosting
derives its weight updates by differentiating the loss of an
entire ensemble (Masonet al. 2000), whereas our weight
updates are derived by taking only the derivative of the score
of the most recent hypothesis. Interestingly, although we do
not exploit a large ensemble, we find that our methods still
produce hypotheses that generalize well to unseentest data.
Although surprising initially, this phenomenon is explained
by the fact that example reweighting discovers hypotheses
that obtain good scores while simultaneously being robust
against perturbations of the training data, which confers ob-
vious generalization benefits.

Learning Bayesian Networks from Data
To illustrate our approach on a general density estima-
tion learning task we consider several problems in learn-
ing Bayesian networks from data: learning Bayesian net-
work structure from complete data (structure search), opti-
mizing Bayesian network parameters from incomplete data
but given a fixed structure (parametric EM), and learning
Bayesian network structure from incomplete data (Structural
EM). Although the scores we encounter in these cases are
not all additive, they are still differentiable and we can apply
our methodology without modification.

Consider a finite setX � fX�� � � � � Xng of random vari-
ables. ABayesian network is an annotated directed acyclic
graph that encodes a joint probability distribution overX .
The nodes of the graph correspond to the random variables
X�� � � � � Xn. Each node is annotated with aconditional
probability distribution (CPD) that representsP �Xi j U i�,
whereU i denotes the parents ofXi in G. A Bayesian net-
workB specifies a unique joint probability distribution over
X given by:P �X�� � � � � Xn� �

Qn
i�� P �XijU i�.

Given atraining set D � fx���� � � � � x�M �g we want to
learn a Bayesian networkB that best matches D, for each
of the above scenarios. (See (Heckerman 1998) for a com-
prehensive overview of Bayesian network learning.) We ex-
plore each of the problems noted above in more detail in the
subsequent sections.

Perturbing Structure Search

Structure Scores In this scenario, we search for a network
structureB that best matches ourtraining set D. In order to
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Figure 2: The progress of test set likelihood (log-loss/instance)
during iterations while learning structure for theAlarm network.
Compared are the golden model with parameters trained (Silver
model), the best of random restarts search, theRandom perturba-
tion method and theAdversary method.

guide the search procedure, a scoring function for evaluat-
ing Bayesian network structures is used. A commonly used
scoring function is theBDe score (Heckerman, Geiger, &
Chickering 1995). A crucial property of theBDe (as well
as other commonly used scores) is that it is a function of
simplesufficient statistics of the data. For models in the ex-
ponential family, these sufficient statistics have a canonical
form as a sum of functions applied to particular instances.
Thus, ifS is a sufficient statistic of interest, then

S�D� �
X
m

s�x�m��

wheres�� is a function of a particular training instance. For
example, ifS�D� counts the number of times an event oc-
curred in the data, thens�x� is an indicator function that
returns� if x satisfies the event, and� otherwise. When we
perturb the score, we simply need to reweight the contribu-
tion of each instance. Thus, the perturbed statistic is

S�D�w� �
X
m

M � wm � s�x�m��

Although the BDe score itself is not additive, it is neverthe-
less defined by sufficient statistics of the data and can there-
fore be easily adapted to the weighted case. (Details of the
BDe score are given in the appendix.)

Once we specify the scoring function, the structure learn-
ing task reduces to a problem of searching over the combina-
torial space of structures (i.e., DAGs) for the structure that
maximizes the score. Since there are a super-exponential
number of structures, an exhaustive search is infeasible. One
common approach is to greedily follow local steps (add, re-
move or reverse an edge) using some search strategy (e.g.
greedy hill-climbing) and incorporate a change into the cur-
rent structure if it improves the score. Local search usually
continues until convergence to a local maximum.

Note that the derivative of theBDe score with respect to
wm is straightforward (see appendix), and therefore both
perturbation methods proposed above can be applied to this
problem without change.

Experimental Evaluation We start by evaluating methods
on the syntheticAlarm network (Beinlichet al. 1989) where

we can compare our results to the “golden” model that has
the additional prior knowledge of the true structure. We
compare our methods to a greedy hill-climbing procedure
that is augmented with a TABU-search mechanism and per-
forms several random restarts to try to improve the quality of
the results.1 We apply our perturbation methods following
the outline specified in Figure 1 and allow the search proce-
dure to fully optimize with respect to the perturbed weights
at each iteration.

It is possible to evaluate the results both in terms of scores
on training data and generalization performance on test data
(average log-loss per instance). In all of our experiments the
two measures correlate closely, and therefore due to lack of
space we report only test set performance. Figure 2 shows
the progress of the likelihood during iterations of the per-
turbed runs. Shown are the average performance of 100 runs
of theRandom perturbation method (with the 20/80% mar-
gin in gray) and theAdversary method, compared to the
best of random re-starts with similar running times. Sev-
eral conclusions are notable. First, both perturbation meth-
ods solidly outperform the random re-starts method. In fact,
both methods are able to outperform the golden model with
parameters retrained on the training set (Silver model). Sec-
ond, the best model overall is found byRandom. However,
Adversary is significantly better thanRandom’s average
performance. This allows one to either invest a lot of time
and achieve a superior model by performing many random
perturbation runs or obtain a near optimal structure with a
singleAdversary run.

To emphasize this point, Figure 3(a) shows the cumula-
tive performance ofRandom for different temperatures and
cooling factors. The less favorable line has a similar run-
ning time toAdversary while the superiorRandom takes
an order of magnitude longer for each run. These runs often
reach what appears to be the achievable global maximum.

We also evaluated the performance of our methods for
structure search on a real-life data set.Stock Data (Boyen,
Friedman, & Koller 1999) is a dataset that traces the daily
change of 20 major US technology stocks for several years
(1516 trading days). As shown in Table 1, a significant im-
provement in the models learned by the perturbed method.

Perturbing Parametric EM

Learning with Incomplete Data In many real life datasets
learning is complicated by the fact that some of the variables
are not always observed. In such cases we say that there are
missing values in the data. An even more difficult situation
is when certain variables are never observed, we call such
variableshidden or latent variables. In these scenarios, the
m’th training instance is not a complete instancex�m�, but
only a partial instance, which we denote byo�m�.

1We also tried standard simulated annealing, as described by
Heckermanet al. (1995). However, using the parameters proposed
by Heckermanet al. we get worse results then the baseline search
method. This is consistent with Chickering (1996), who showed
that using multiple re-starts greedy hill-climbing is more effective
than simulated annealing for this task.
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Figure 3: Cumulative performance on test data of theAlarm network. Thex-axis shows test-set likelihood (log loss/instance), they-axis
shows percent of runs that achieve that likelihood or higher. Compared are 100 runs each of baseline learning method, computationally
intensiveRandom perturbations andAdversary. (a) Shows results for structure search with complete data. (b) Shows results for parameter
estimation for data set with 4 central variables hidden, where the structure is fixed to the true structure. (c) Shows results for estimation of the
parameters as well as the structure from the same dataset.

Since we do not have complete instances, we cannot esti-
mate sufficient statistics and learning becomes more compli-
cated. A common method to cope with such situations is to
use theexpectation-maximization (EM) algorithm (Demp-
ster, Laird, & Rubin 1977). In this method, in each iteration,
we use the previously found modelP��X�� � � � � Xn� to com-
pute theexpected sufficient statistics

E�S�D� j P�� �
X
m

X
x�m�

s�x�m��P��x�m� j o�m��

whereP��x�m� j o�m�� is the probability, according to the
model P�, of the complete instancex�m� given the par-
tial observationo�m�. Once we have computed these ex-
pected sufficient statistics, we can evaluate the score with
respect to them. This score is referred to as theexpected
score. The main EM theorem shows that the improvement
of the expected score betweenP� and the new model is a
lower bound on the improvement between the (true) scores
of the two models.2 The simplest application of EM in
graphical models is for parameter learning (Lauritzen 1995;
Heckerman 1998). In this case our maximization objective
is just the likelihood of the model on the training data. To do
this we maximize the expected likelihood at each iteration
of the EM algorithm.

Escaping Local Maxima One of the additional benefits of
the ideas for perturbing the weights suggested above is that
they are readily applicable for this problem as well. In-
stead of using expected sufficient statistics, we compute
reweighted expected sufficient statistics using our current
weight vector

E�S�D�w� j P�� �
X
m

M �wm
X
x�m�

s�x�m��P��x�m� j o�m��

It is clear that the maximum point of the expected score
is not the maximum point of the true score (for otherwise

2This statement of course depends on the score. It is true for
the likelihood score (Dempster, Laird, & Rubin 1977; Lauritzen
1995) and for the MDL/BIC scores (Friedman 1997), and holds
approximately for Bayesian structure scores (Friedman 1998).

one iteration suffices to get to the global maximum). Thus,
the expected score is biased. In general, this bias is toward
models that are in some sense similar to the one with which
we computed the expected sufficient statistics. This sug-
gests that we do not necessarily want to find the optimum
of the expected score within EM iterations. Instead, we ap-
ply a limited number of EM iterations (i.e., one) within each
optimize step of thePerturbedSearch procedure (Figure 1)
and then reweight the instances. The general perturbation
scheme is otherwise unchanged.

Experimental Evaluation We start by evaluating methods
on the syntheticAlarm network. Figure 3(b) compares 100
runs of standard parametric EM, computationally intensive
Random perturbation, and anAdversary run. Because of
the limited number of EM iterations,Adversary takes only
about 15 times longer than a single parametric EM run and
Random takes around 50 times longer. We can clearly see
the advantage of theAdversary method, which achieves
what appears to be the global maximum. This maximum
is reached by only a few of the random re-starts andRan-
dom perturbation runs, and is not far from the golden model
that generated the test data.

Perturbing Structural EM
A more complex application of EM is theStructural EM
(SEM) procedure for learning structures (Friedman 1997;
1998). Our problem is now two-fold: at each iteration we
need to find an optimal structure and then optimize the pa-
rameters with respect to that structure. In order to do this,
at each stage we compute the expected sufficient statistics
for different structures, and use the structure score to com-
pare them. By performing structure searchwithin the EM
iteration, the procedure attempts to optimize (or at least to
improve) the expected score. Like standard EM, this proce-
dure is guaranteed to improve at each iteration and typically
converges to a local maxima. However, in practice the op-
timization problem now is much more complex with many
local maxima, especially whenhidden variables abound.



Experimental Evaluation The setting is identical to the one
used in the EM runs, but we also attempt to learn the topol-
ogy of the network. The starting point of the search is a
structure where all the hidden variables are parents of all the
observables. Figure 3(c) shows cumulative results 100 runs
for the syntheticAlarm example. The standard structural
EM (SEM) runs have a very low variance and are worse
than over 90% of theRandom perturbation runs. As with
parametric EM, but more markedly, theAdversary method
dominates random reweighting. Note that it halves the dis-
tance from the baseline performance to the golden model
performance.

Experiments with real-life data Finally, we applied our
perturbation methods to several real-life datasets: From
the UCI machine learning repository, we used theSoy-
bean (Michalski & Chilausky 1980) disease database that
contains 35 variables relevant for the diagnosis of 19 pos-
sible plant diseases, and theAudiology data set (Bareiss
& Porter 1987) which explores illnesses relating to audiol-
ogy dysfunctions. Both data sets have many missing values
and comparatively few examples. We also used data from
Rosetta’s compendium (Hugheset al. 2000), using the pre-
processing of (Pe’eret al. 2001), consisting of 300 exam-
ples over 6000Saccharomyces cerevisiae genes. We chose
37 genes which participate in thestationary phase stress re-
sponse.

For each data set we performed 5-fold cross validation
and compared the log-loss performance on independent test
data. Table 1 summarizes the results. Shown are results
for best of multiple random restarts SEM, average and 80%
values ofRandom perturbation runs, and theAdversary
method. We can see that, as for the syntheticAlarm data,
both perturbation methods achieve superior results to stan-
dard random restarts SEM. Similar to what was observed in
structure search, it is sometimes possible to reach a superior
model toAdversary by performing manyRandom pertur-
bation runs.

As we see, in all domains, the perturbation methods im-
prove over the baseline. Although the improvement per in-
stances seems small, we stress that as one gets closer to the
optimum, achieving additional improvements becomes more
difficult. The results on synthetic data suggest that our meth-
ods are often very close to the global maximum achievable
on the given training data.

Learning Sequence Motifs
All of our case studies so far have addressed unsupervised
density estimation problems. We now examine a different
learning situation where we consider discriminative learn-
ing. The problem here is to perform a non-linear logistic
regression to findregulatory motifs in DNA promoter se-
quences;i.e., short subsequences that regulate the expres-
sion of genes. In particular, a motif is defined as a relatively
short signature of about 8-20 nucleotides (DNA letters) that
appears somewhere in the DNA sequence—the exact loca-
tion of which is unknown and can vary from sequence to
sequence. An example of a motif might be the sequence

Table 1: Summary of results on independent test data for sev-
eral data sets for the structure search and structural EM problems.
Shown are log-loss/instance of improvement in performance with
respect to theBest of random restarts baseline. Compared are the
mean of theRandom perturbation method (along with the80%
mark) and theAdversary method.

Domain Random 80% Adv
Search Stock -0.02 +0.01 +0.03

Alarm +0.15 +0.18 +0.17
SEM Rosetta -0.05 +0.27 +0.09

Audio 0 +0.39 +0.23
Soybean +0.19 +0.32 +0.19
Alarm +0.254 +0.31 +0.33

ACGCGT for instance. Unfortunately, most known motifs
are not preserved perfectly in DNA, and one generally has to
allow for substitutions in one or several positions. Accord-
ingly, the common representation of a motif is as aweight
matrix (Durbin et al. 1998) which describes the weight
of each of the four possible DNA letters for each position
within the motif. Intuitively, a subsequence that has a large
sum of letter weights is said to match the motif. We use the
notationwi�x� to denote the weight of the letterx in thei’th
position.

Following (Barash, Bejerano, & Friedman 2001; Segalet
al. 2002) we define the basic training problem in discrimina-
tive terms. GivenN promoter sequencess�� � � � � sN , where
then’th sequence consists ofK letterssn�� � � � � sn�K , and
a set of of training labelsl�� � � � � lN , whereli is 1 if the se-
quence is regulated by the motif and� if it is not (these labels
can be obtained from different biological experiments), we
wish to maximize the log-loss

P
i P �ln j sn� where

P �ln � � j Sn��� � � � � Sn�K�

� logistic

�
�log

�
� v

K

X
j

expf
X
i

wi�Sn�i�j �g

�
A
�
A

andlogistic�x� � �
��e�x is the logistic function andv is a

threshold parameter; see Segalet al (2002) for more details.
Segalet al. (2002) address this problem in two stage.

First, they search for high scoring seeds by considering
all short words of length 6 using methods of Barashet
al (2001). Then, for each seed they constructed a weight
matrix of 20 positions that embodies the seed consensus se-
quence in the middle positions (the weights in flanking posi-
tions were initialized to 0), and then using conjugate gradi-
ent ascent (Price 1992) to maximize the log-likelihood score.

We adopt the same procedure augmented with our weight
perturbation methods. After each weight perturbation, we
perform a line search (Price 1992) in the direction of the gra-
dient of the likelihood with respect to the reweighted sam-
ples. After the end of cooling schedule, we apply a final
conjugate gradient ascent to find the local maxima in the
vicinity of the final point of the search.

We applied this procedure to the 9 training sets generated
during the analysis that Segalet al. performed on DNA-
binding experiments of Simonet al. (2001). We report the
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Figure 4: Performance of different methods in the motif
finding task for 9 data sets. Thex-axis corresponds to
the different datasets, and they-axis reports training log-
likelihood per instance. We report the performance of the
baseline conjugate ascent method, Adversarial reweighting,
and Random reweighting. The box plot show the range be-
tween 20% to the 80% of 50 Random reweighting runs, and
the narrow lines on top of the box show the best result of
these 50 runs.

results in Figure 4. As one can see, both Random and Adver-
sarial reweighting are consistently better than the baseline
approach. In some cases (ACE2, SWI4, SWI5) the Adver-
sarial reweighting achieves scores better than all the random
runs, in others (FKH1, NDD1) it is better than at least 80%
of the random runs, and only in two (FKH2, MBP1) it is
worse than 80% of the random runs.

Discussion and Future Work
In this paper we proposed an annealing like method for es-
caping local maxima. The essence of our approach is to per-
turb the problem rather than the solution, and look for opti-
mal solutions in the perturbed problems. As we show, such
perturbations allow one to overcome local maxima in sev-
eral learning scenarios. On both synthetic and real-life data,
this approach seems to lead to significantly improved mod-
els in learning structure with complete data, learning param-
eters with hidden variables, and learning both parameters
and structure with incomplete data. The improvements are
particularly impressive for the complex problem of learn-
ing both structure and parameters from missing data. The
Random reweighting approach we introduce here has been
applied in Friedmanet al. (2002) and Barash and Fried-
man (2002) for learning phylogenetic trees and context-
specific clustering models, respectively. Both papers report
dramatic improvements with this approach.

The perturbation of instance weights is particularly attrac-
tive for learning problems. It is easy to find reweighted
versions of standard learning scores. Moreover, example
weights are easily incorporated into non-trivial learning pro-
cedures such as EM. First, one can exploit the expected suf-
ficient statistics for efficient search, and second, randomize
the expected score to often find better scoring models.

In this paper, we compared two strategies for generating
the sequences of weights during the annealing:random-

ized reweighting andadversarial reweighting. Our results
show that both approaches dominate the straw-man of mul-
tiple restart search. Randomized reweighting can sometimes
achieve better performance, but this might require perform-
ing several annealing runs. The deterministic adversarial
strategy has the advantage of achieving similar performance
in a single run.

One class of approaches that might be related to the ones
we describe here are thedeterministic annealing methods
(Rose 1998). These methods are similar in that they change
the score by adding a “free energy” component. This com-
ponent serves to smooth out the score landscape. Determin-
istic annealing proceeds by finding the (local) maxima at
each iteration and then moves to a “colder” score that re-
covers more of the structure of the score of interest. Local
ascent is then used to trace the maxima starting from the hy-
pothesis of the previous iteration. At the outset the rationale
for the scores used in deterministic annealing is quite differ-
ent then our weight perturbation. It is unclear if there are
deeper connections between the two methods.

One avenue that we did not explore in this paper is the
combination of a randomized element within the adversar-
ial strategy. It is also clear that for realistic applications, we
need to tune the implementation to reduce the number of
iterations. This can be done by incorporating more sophisti-
cated cooling strategies from the simulated annealing litera-
ture (see (Laarhoven & Aarts 1987) for a review). It is also
worth exploring improved ways to interleave the maximiza-
tion and the reweighting steps. Finally, the empirical success
of these methods raises the challenge of providing a better
theoretical understanding of their effectiveness. This is par-
ticularly intriguing for the adversarial reweighting strategy.
Although this strategy has similarities to boosting and mul-
tiplicative update strategies, the analysis of these methods
does not seem to directly apply to our setting.
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Appendix: Gradient of the Lagrangian
The Lagrangian used in the section forAdversarial
Reweighting is of the form

L�h�wt��� � Score�h�D�wt���


 � KL�wt��kw��


 � KL�wt��kwt�

The method suggested in that section requires the calcula-
tion of the derivative of the Lagrangian with respect to each
instance weight.

The derivative ofKL�wt��kw�� is simply



P

m wt��
m log

wt��m

w�m


wt��
m

� log
wt��
m

w�
m


 �



and similarly for the derivative ofKL�w t��kwt�.
For Bayesian network structure learning, we use the BDe

Score (Heckerman, Geiger, & Chickering 1995). This re-
quire defining a prior distributionP � over the domain, and
a prior strength parameterN �. For each eventx, we define
	�x� � N� �P ��x�, and	��x� � 	�x�
N�x�, whereN�x�
is the number of occurrences ofX � x in the training data.
The BDE score is defined as

ScoreBDe �X
i

X
pai

�
log

��	�pai��

��	��pai��


X
xi

log
��	��xi� pai��

��	�xi� pai��

�

wherexi is an assignment to the i’th variable,pai is an as-
signment to the parents of the i’th variable, and��x� is the
gamma function.

The only expressions that depend on the weights are
N�pai� �

P
m wm � P �Pai � pai j em� andN�xi� pai�,

where em is the evidence of the m’th instance. Using
the digamma function ��x� � ���x	

��x	 (DeGroot 1989), the
derivative of ScoreBDe (for a specific value ofpai) with re-
spect to a specific weightwm is given by


ScoreBDe


wm
�X

i

X
pai

X
xi

���	��xi� pai�����	��pai���P �xi� pai j em�

which can readily be evaluated using a numerical approxi-
mation to the digamma function.
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