
Fully Polynomial Time Approximation Schemes for
Stochastic Dynamic Programs

Nir Halman∗† Diego Klabjan*‡ Chung-Lun Li§ James Orlin¶†

David Simchi-Levi*†

E-mail: {halman,jorlin,dslevi}@mit.edu, d-klabjan@northwestern.edu, lgtclli@polyu.edu.hk

Abstract
We develop a framework for obtaining (deterministic) Fully
Polynomial Time Approximation Schemes (FPTASs) for
stochastic univariate dynamic programs with either convex or
monotone single-period cost functions. Using our framework, we
give the first FPTASs for several NP-hard problems in various
fields of research such as knapsack-related problems, logistics,
operations management, economics, and mathematical finance.

1 Introduction

Dynamic Programming (DP). Dynamic Program-
ming is an algorithmic technique used for solving sequen-
tial, or multi-stage, decision problems and is a fundamen-
tal tool in combinatorial optimization (e.g., [17], Section
2.5 in [3], and Chapter 8 in [30]). A discrete time finite
time horizon dynamic program is to find an optimal policy
over a finite time horizon that minimizes the average cost.
At the beginning of a time period, the state of the system
is observed and an action is taken. Based on exogenous
stochastic information, the state, and the action, the sys-
tem incurs a single-period cost and transitions into a new
state. The goal is to find a policy that realizes the minimal
total expected cost over the entire time horizon.

We can formally model this by means of Bellman’s
optimality equation. Let zt(It) be the cost-to-go (also
known as the value function). The value zt(It) is simply
the cost of an optimal policy from time period t to the end
of the time horizon, given that at the beginning of time
period t the state is It. The equation reads
(1.1)
zt(It) = min

xt∈At(It)
EDt{gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))}.

Here xt is the action, At(It) is the action set, and Dt is a
random variable corresponding to the stochastic exogenous
information flow. The random variables are assumed
to be independent, and are not necessarily identically
distributed. The system dynamics are denoted by function
ft, and the incurred cost is gt. In our context It and xt are
one-dimensional and Dt is a fixed-dimensional vector.

∗Research supported in part by NSF Contracts DMI-0085683 and
DMI-0245352, and by NASA interplanetary supply chain manage-
ment and logistics architecture.

†Massachusetts Institute of Technology, Cambridge, MA
‡Northwestern University, Evanston, IL
§The Hong Kong Polytechnic University
¶Research supported in part by ONR grant N00014-05-1-0165.

Convex/Monotone DP. We study three special
cases of such dynamic programs. In the first case the sys-
tem dynamics are linear in the state It and the action xt,
and the cost function gt is convex, for every t. Under these
assumptions, we show that zt is a convex function for ev-
ery t. We call this the convex case. In the second case we
require that gt is nonincreasing in It and can be expressed
as the sum of two functions monotone in xt. We also re-
quire that ft is nondecreasing in It and monotone in xt,
and ∀I ′ ≤ I, At(I ′) ⊆ At(I), for every time period t. In
this case, the value function is nonincreasing, and we call it
the nonincreasing case. The third case, whose conditions
are analogous to the nonincreasing case, is called the non-
decreasing case. We refer to the second and third cases as
the monotone cases.

Fully Polynomial Time Approximation Schemes
(FPTASs). Among algorithms with performance guaran-
tees on the maximum amount of relative error, FPTASs are
by far the strongest results. For any given tolerance ε, an
FPTAS generates a solution with a relative error guaran-
teed to be no more than ε, while the running time of the
algorithm is polynomial in 1/ε and in the size of the prob-
lem. The essence of FPTASs is to use a discrete approx-
imation in which the number of bits of precision used for
the cost functions is at most logarithmic in the data and in
1/ε (so that the algorithm will be polynomial time), and so
that no other data is approximated. It is critical to design
the algorithms and the approximations so that small errors
at one stage do not turn into large errors at subsequent
stages. Early work on FPTASs was pioneered by Horowitz
and Sahni [18], Ibarra and Kim [19], and Sahni [28], and
since then, the most common techniques for constructing
FPTASs are dominance (i.e., omitting states of the DP and
actions which are dominated, or approximately dominated,
by another state or action) and scaling and rounding the
data (see, for example, Section 2.5 in [3] and [17]). Woeg-
inger [32] made a key observation that many FPTASs were
designed by modifying DPs, and he designed a framework
for deriving FPTASs for deterministic dynamic programs
satisfying certain regularity conditions. His framework en-
compassed results from a dozen of optimization problems,
including the knapsack problem, for which the first FP-
TAS was developed in the seminal work of Ibarra and Kim
[19]. At the same time, [32] did not address a number of
deterministic problems that were known to have FPTASs,

including treelike variants of the knapsack problem, prob-
lems involving convex or monotone functions, and stochas-
tic optimization problems. Many FPTASs are easily con-
structed once the key ideas from [19, 28] are understood.
But other FPTASs require great care in the algorithm de-
sign and analysis. We note that if FPTASs were easily
developed whenever they exist, there would have been FP-
TASs for stochastic optimization prior to our result in 2006
[14].

Our results. In this paper, we introduce a general
framework for obtaining FPTASs for stochastic dynamic
programs, and show that by making use of this framework,
we can construct FPTASs for a number of difficult stochas-
tic and deterministic optimization problems. These prob-
lems are all NP-hard; they have no known FPTASs; and
they cover a broad range of applications. Our main result
is the development of an initial sufficient set of conditions
that guarantee the existence of an FPTAS, and the con-
struction of such an FPTAS. In this way we get a frame-
work for obtaining an FPTAS to any stochastic univariate
convex or monotone dynamic program (with independent
random variables). We show that our framework can han-
dle several well-studied cases of non-independent random
variables. We show that it is not possible to extend our
framework for general non-independent random variables,
unless P = NP .

Our approach. The standard dynamic programming
approach by means of optimality equation (1.1) gives only
a pseudo-polynomial time algorithm. The running time
of this algorithm is linear in the cardinality of the state
and action spaces, which may be exponential in the input
size. The main difficulty with dynamic programming
is in the fact that all possible states are needed to be
considered, which are too many. Over the past 35 years,
many problems that can be optimally solved in pseudo-
polynomial time via a DP formulation were shown to admit
FPTASs using dominance and/or scaling. Our current
work uses a different technique, one that is very similar to
dominance, but which we feel is better suited for FPTAS
development.

In a previous work [14], we have studied a single-
item stochastic inventory control problem. In our study,
we introduce the notions of K-approximation sets and K-
approximation functions. In [14] we “tailor” the approxi-
mation sets to the specific functions involved in a certain
formulation of the inventory control problem, and provide
for it an ad-hoc FPTAS. Our current work makes use of
the notion of K-approximation sets and functions as well,
but we target at the development of a general framework
for FPTAS construction. For this sake we provide a set of
general computational rules of K-approximation functions,
which we call “Calculus of K-approximation func-
tions” (Proposition 4.1). The calculus appears a stronger
framework than either scaling or dominance, although we
cannot prove this formally.

Applications. Our newly developed framework has
numerous applications. We now present eight application
problems for which no known FPTAS has been reported

in the literature. The first seven fall under the monotone
case, while the eighth fall under the convex case. The first
three problems are variants of the classical 0/1 knapsack
problem:
1. Stochastic ordered adaptive knapsack [9]: The
input consists of the knapsack volume B, and a description
of n items. The items arrive in a predefined order. Item
i has deterministic profit πi and a stochastic volume vi,
whose distribution is known in advance. The task is to
maximize the expected total profit from items successfully
placed in the knapsack (i.e., whose total volume does not
exceed the knapsack volume). The actual volume of an item
is unknown until we instantiate it by attempting to place
it in the knapsack. The problem is called adaptive since
the decision about item i is made only after knowing the
actual volumes of the previous items which were selected.
2. Nonlinear knapsack [16, 27]: The problem is
similar to the classical integer knapsack problem. Instead
of fixed volumes and profits per item, we are given general
nondecreasing volume and profit functions, i.e., placing j
items of type i in the knapsack results in total profit πi(j)
and requires volume vi(j). The goal is to maximize the
profit from items placed in the knapsack without exceeding
its volume. [16] gives an FPTAS for the special case where
πi is concave and vi is convex for i = 1, ..., n. [27] gives
an FPTAS for the special case where πi is general but vi is
linear for i = 1, ..., n.
3. Dynamic capacity expansion [29]: This problem is
best viewed as a multi-period minimum integer knapsack
problem. Given a sequence of demands d1, ..., dt and a
set of items {1, ..., n} of various volumes vi and costs ci,
we would like to determine a combination of quantities of
each of these items to be placed in a knapsack in each
time period. Our objective is to satisfy the accumulated
demand in minimal cost. [29] gives a pseudo-polynomial
time solution for this problem.
4. Time-cost tradeoff machine scheduling [8]: There
is a single machine and n jobs J1, ..., Jn. Job Jj has a given
due date dj , a late penalty wj , a “normal” processing time
p̄j , and a nonincreasing resource consumption function ρj

with ρj(x) = 0 for any x ≥ p̄j . The processing time of Jj ,
denoted as xj , is a nonnegative integer decision variable,
and it incurs a cost of ρj(xj). All jobs are available for
processing at time 0, and job preemption is not allowed.
The objective is to determine the job processing times and
to schedule the jobs onto the machine so that the total cost
is minimized, Cheng et al. [8] have considered a special case
of this problem in which ρj is a linear function.
5. Batch disposal [25]: Consider managing a warehouse
where a single truck of capacity Q is available to dispatch
the goods. The goods are received randomly based on a
distribution known in advance. The question is whether
we dispatch the truck and if yes, what is its load. If we
use the truck, a fixed cost is incurred in addition to a per-
unit cost. The goods that remain in the warehouse incur a
per-unit holding cost.

6. Lifetime consumption planning with risk expo-
sure [26]: There is a single consumer who must manage
her capital in discrete time periods. She can spend some
amount of capital, which is governed by the underlying non-
decreasing utility function. The remaining capital yields a
stochastic return rate, and, in addition, she receives a fixed
amount of wealth in each time period. The problem is to
find an optimal consumption strategy.
7. Deterministic and stochastic growth models [1]:
Consider a single consumer with initial capital who wishes
to manage her capital in order to maximize total utility
over a finite discrete time horizon. In each time period the
capital grows based on a production function, there is a rate
of return 1− δ for initial capital, and a utility function.
8. Cash management [15]: In this problem one needs to
manage the cash flow of a mutual fund. In the beginning
of each time period the cash balance can be changed by
either selling or buying stocks. At the end of each time
period the net value of deposits/withdrawals is discovered,
and consequently the cash balance of the mutual fund is
determined. If the balance is negative, the fund borrows
money from the bank. If the balance is positive, than
a cost is incurred due to the fact that the fund’s money
could have been invested elsewhere. This problem fits into
the framework when all these costs are convex functions.

Organization of the paper. We state our model and
give the sufficient conditions needed for our framework to
work in Section 2. In Section 3 we review the notion of K-
approximation sets and functions. In Section 4 we develop
a theory which links K-approximation sets to dynamic
programming. Based upon this theory, we present in
Section 5 our main result for Monotone DP, namely an the
FPTAS together with its analysis. (For the sake of brevity
the FPTAS for Convex DP is omitted in this extended
abstract). We consider extensions to random vectors in
Section 7. We end with some concluding remarks.

2 Notations and model statement

Let R,Q,Z,N denote the set of real numbers, rational
numbers, integers, and positive integers, respectively. For
every Boolean expression X, let δX be 1 if X is true and
0 otherwise. For any pair of integers A < B, let [A, ..., B]
denote the set of integers {A,A+1, ..., B}. We call [A, ..., B]
a contiguous interval. For any number x ∈ R we let
x+ = max{0, x} and x− = max{0,−x}. For a subset
X ⊆ R, we denote by X+ the set of nonnegative numbers
in X, i.e., X+ := {x ∈ X | x ≥ 0}. The base two logarithm
of z is denoted by log z. We use the standard computation
model in which the binary size of a positive rational number
p
q is log p + log q, where p, q ∈ N.

In this paper we deal with rational-valued functions
whose domains are finite sets of integers. We formally
define the domain of some of these functions. Let X
be a finite set of integers. For every x ∈ X, let Y (x)
be a finite nonempty set of integers. Let X ⊗ Y :=⋃

x∈X({x} × Y (x)) ⊂ Z2, see Figure 1.
In this section we review a basic model of decision

making under stochastic uncertainty over a finite number

- X

6

Y

1

2

3

4

1 2 3 4

t
t

t
t
t

t
t
t

Figure 1: X ⊗ Y for X = {1, 2, 3} and Y (1) =
{2, 3}, Y (2) = {2, 3, 4}, Y (3) = {1, 2, 3}.

of time periods. We consider the following formulation for
a finite horizon stochastic dynamic program, as defined in
Bertsekas [7]. The model has two principal features: (1)
an underlying discrete time dynamic system, and (2) a cost
function that is additive over time. The system dynamics
are of the form

(2.2) It+1 = ft(It, xt, Dt), t = 1, ..., T,

where
t is the discrete time index,

It is the state of the system,
xt is the action or decision to be selected in time period t,
Dt is a discrete random variable,
T is the number of time periods.

The cost function is additive in the sense that the cost
incurred at time period t, denoted by gt(It, xt, Dt), is
accumulated over time. Let I1 be the initial state of the
system. Given a realization dt of Dt, for t = 1, ..., T , the
total cost is

gT+1(IT+1) +
T∑

t=1

gt(It, xt, dt),

where gT+1(IT+1) is the terminal cost incurred at the end
of the process. The problem is to find

(2.3)

z∗(I1) := min
x1,...,xT

E

{
gT+1(IT+1) +

T∑
t=1

gt(It, xt, Dt)

}
,

where the expectation is taken with respect to the joint
distribution of the random variables involved. The opti-
mization is over the actions x1, ..., xT which are selected
with the knowledge of the current state.

The state It is an element of a given state space St,
the action xt is constrained to take values in a given
action space At(It), and the discrete random variable Dt

takes values in a given set Dt. The state space and the
action space are one-dimensional. Note that the domain of
functions gt and ft is (St ⊗ At) × Dt. We state now the
well-known DP recursion for this model.

Theorem 2.1. (The DP Recursion [6]) For every ini-
tial state I1, the optimal cost z∗(I1) of the DP is equal to
z1(I1), where the function z1 is given by the last step of the

following recursion, which proceeds backward from period T
to period 1:

zT+1(IT+1) = gT+1(IT+1),

(2.4)
For all t = 1, ..., T, zt(It) = minxt∈At(It)

EDt {gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))} ,

where the expectation is taken with respect to the probability
distribution of Dt.

Note that assuming At(It) ≡ A and St ≡ S for every
t and It ∈ St, the recurrence given in (2.4) yields an
exact solution for z1(I1) in O(T |A||S|) time, which is
pseudopolynomial in the input size, i.e., the cardinality of
these sets may be exponential in the (binary) input size.

The input data of the problem consists of the number of
time periods T , the initial state I1, an oracle that evaluates
gT+1, and for each time period t = 1, ..., T , oracles that
evaluate the functions gt and ft, and the discrete random
variable Dt. For each Dt we are given nt, the number of
different values it admits with positive probability, and its
support Dt := {dt,1, ..., dt,nt}, where dt,i < dt,j for i < j.
Moreover, we are also given positive integers qt,1, ..., qt,nt

such that
Prob[Dt = dt,i] =

qt,i∑nt

j=1 qt,j
.

We define for every t = 1, ..., T and i = 1, ..., nt the
following values:

pt,i = Prob[Dt = dt,i] probability that Dt has the value
dt,i in time period t;

n∗ = maxt nt maximum number of different
values Dt can take over the
entire time horizon;

D∗ =
∑T

t=1 dt,nt maximum possible total value the
random variables can take over
the entire time horizon;

Qt =
∑nt

j=1 qt,j a common denominator of all the
probabilities in time period t;

Mt =
∏T

j=t Qj a common denominator of all the
probabilities in all time periods
following time period t− 1;

MT+1 = 1.

Note that with the above notation we have

(2.5)
EDt {gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))} =∑nt

j=1 pt,j (gt(It, xt, dt,j) + zt+1(ft(It, xt, dt,j))) .

In order to derive an FPTAS for our dynamic program, we
need the following conditions to hold.

Condition 1. There exists a constant d such that
ST+1,St,At ⊂ Z, and Dt ⊂ Zd, for every t = 1, ..., T .
For any set X among these sets, and any 1 ≤ k ≤ |X|,
log maxx∈X |x| is bounded polynomially by the (binary) in-
put size and the kth largest element in X can be found in
time logarithmic in |X|.

Typically the state and action spaces are contiguous in-
tervals, so the kth largest element in X can be found in
constant time. However, as stated in Condition 1, we allow
a more general setting.

Let US denote the least power of two such that
maxIt∈St |It| ≤ US , ∀t = 1, ..., T + 1. Similarly, let UA
denote the least power of two such that maxxt∈At

|xt| ≤
UA, ∀t = 1, ..., T . Condition 1 implies that log US and
log UA are polynomially bounded by the input size.

Condition 2. For every t = 1, ..., T + 1, gt is a function
whose values are nonnegative rational numbers, and the
binary size of any of its values is polynomially bounded by
the (binary) size of the input.

Let Ū := maxt maxI∈It, x∈At(I), d∈Dt
gt(I, x, d) denote the

maximal single-period cost value. Algorithm 2 below makes
a polynomial number of evaluations of gt. Hence, by the
condition above there exists an integer M such that log M
is bounded polynomially by the input size and Mgt is an
integer for all evaluations performed during the execution
of the algorithm. In this way, Condition 2 tells us that
MTŪ is an upper bound on the value of (2.3) which is
polynomially bounded by the input size.

We also need to impose on St,At, gt and ft some
properties to make zt “easier” to approximate. Recall that
the states and actions take values from subsets of the totally
ordered set Z, so defining a function to be either monotone
or convex over these domains makes sense.

Condition 3. At least one of the following cases holds.

(i) (Convex DP) The terminal state space ST+1 is a
contiguous interval. For all t = 1, ..., T + 1 and
I ∈ St, the state space St and the action space A(It)
are contiguous intervals. gT+1 is convex over ST+1.
For every t = 1, ..., T and fixed d ∈ Dt, gt(·, ·, d) is
convex over St ⊗ At, and the transition function is
ft(It, xt, d) ≡ a(d)It + bxt + c(d), where a(·) and c(·)
are both functions of d, and b ∈ {−1, 0, 1}.

(ii) (Nondecreasing DP) gT+1 is nondecreasing. For
every t = 1, ..., T, and fixed d ∈ Dt, gt(·, ·, d)
and ft(·, ·, d) are nondecreasing in their first vari-
able. ft(·, ·, d) is monotone in its second vari-
able. gt(·, ·, d) ≡ ga

t (·, ·, d) + gb
t (·, ·, d) where

ga
t (·, ·, d), gb

t (·, ·, d) are nonnegative functions mono-
tone in their second variable. Moreover, ∀I ′, I ∈ St

with I ′ ≤ I, At(I) ⊆ At(I ′).

(iii) (Nonincreasing DP) gT+1 is nonincreasing. For
every t = 1, ..., T, and fixed d ∈ Dt, gt(·, ·, d) is nonin-
creasing in its first variable and ft(·, ·, d) is nondecreas-
ing in its first variable. ft(·, ·, d) is monotone in its
second variable. gt(·, ·, d) ≡ ga

t (·, ·, d)+gb
t (·, ·, d), where

ga
t (·, ·, d), gb

t (·, ·, d) are nonnegative functions mono-
tone in their second variable. Moreover, ∀I ′, I ∈ St

with I ′ ≤ I, At(I ′) ⊆ At(I).

We call the DP formulation (2.4) convex whenever it
satisfies Condition 3(i) and monotone whenever either one
of the last two cases holds.

At a first glace Condition 3, with its three cases,
appears quite cumbersome. It is possibly due to our
effort to formulate it in a general way. We try to justify
this formulation by showing that each of its various cases
has applications. Case (i) seems particularly “clumsy”.
Unfortunately, dropping either one of the conditions about
either At(I) or ft is unlikely, as seen in the theorem below.

Theorem 2.2. A convex DP where either b /∈ {−1, 0, 1},
or the action space is not a contiguous interval, does not
admit an FPTAS unless P=NP.

We aim at providing an FPTAS for the optimal solution
z1(I1). Note that even in the very restrictive case where the
number of the states of the system is constant, computing
the optimal solution by Theorem 2.1 can take up to∑T

t=1 maxI |At(I)| evaluations of function gt. When the
action spaces are “large” this number of calls can be
exponential in the input size. In [32], Woeginger designs
a framework for deriving an FPTAS for deterministic DP.
Among other assumptions, he requires the cardinality of
the action space to be bounded by a polynomial over the
binary input size (Condition C.4(ii) in [32]). We do not
require this. For this reason our framework, when applied
on deterministic DP, is not a special case of Woeginger’s
framework.

3 K-approximation sets and functions

Since we build our framework upon the notion of approxi-
mation sets introduced in [14], we base this section mainly
on definitions and results from [14]. The notion of weak
K-approximation sets presented here is new. For the ease
and brevity of exposition we consider mainly the definitions
and results concerning Monotone DP.

Let K > 1 be an arbitrary value. Recall that a
K-approximation algorithm for a minimization problem
guarantees its output to be no more than K times the
optimal solution.

Definition 3.1. ([14]) Let K ≥ 1 and let ϕ : D→R+ be
a function. We say that ϕ̃ : D→R is a K-approximation
function of ϕ (K-approximation of ϕ, in short) if for all
x ∈ D we have ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x).

For the ease of exposition we assume in the sequel that the
domain D of ϕ(·) is the contiguous interval [0, ..., U]. All
the definitions below and all the results regarding monotone
functions can be extended in a natural way to any general
totally ordered finite domain D. The results concerning
convex functions require D to be a contiguous interval.

In order to get an FPTAS, we consider only a subset
of all possible states, whose cardinality is polynomially
bounded in the input size. Of course this can only be done
by sacrificing accuracy in the final solution.

Definition 3.2. Let K > 1 and let ϕ : [0, ..., U]→Z+ be a
nondecreasing function. A weak K-approximation set of ϕ
is an ordered set W = {i1 < ... < ir} of integers satisfying
the following two properties:

1. 0, U ∈ W ⊆ [0, ..., U];

2. for each k = 1 to r − 1, if ik+1 > ik + 1, then
ϕ(ik+1) ≤ Kϕ(ik);

Note that this definition implies that for every nonnegative
integer x ≤ U there is an element ik ∈ W such that ik ≥ x
and ϕ(x) ≤ ϕ(ik) ≤ Kϕ(x).

Definition 3.3. ([14]) Let K > 1 and let ϕ :
[0, ..., U]→Z+ be a nondecreasing function. A K-
approximation set of ϕ is a weak K-approximation set of ϕ
where for every k = 1, ..., r − 1, there exists a nonnegative
integer j such that ik+1 − ik = 2j.

The additional property of K-approximation sets is techni-
cal and is needed for the integrality of Uϕ̂ in Proposition 3.1
below.

Example 3.1. Let U = 11, K = 1 1
2 , and ϕ be a function

defined for i = 0, 1, ..., 11 as ϕ(i) = b i
2c. It is easy to check

that S1 := {i1 = 0, i2 = 1, i3 = 2, i4 = 3, i5 = 4, i6 =
5, i7 = 7, i8 = 9, i9 = 11} is a minimal (by set inclusion)
1 1

2 -approximation set of ϕ, and W1 := {i1 = 0, i2 = 1, i3 =
2, i4 = 3, i5 = 4, i6 = 6, i7 = 9, i8 = 11} is a minimal (by
set inclusion) weak 1 1

2 -approximation set of ϕ, see Table 1.
Note that W1 is not a K-approximation set of ϕ.

Objects / i 0 1 2 3 4 5 6 7 8 9 10 11

ϕ(i) 0 0 1 1 2 2 3 3 4 4 5 5
S1 * * * * * * * * *
W1 * * * * * * * *

Table 1: S1 is a 1 1
2 -approximation set of ϕ and W1 is a

weak 1 1
2 -approximation set of ϕ.

We are interested in finding “small” K-approximation sets
for ϕ. Let Ū ≥ ϕ(U) be an arbitrary upper bound for
the values of ϕ. The next lemma tells us that there exist
“small” K-approximation sets which can be constructed in
time logarithmic in U and Ū .

Lemma 3.1. Let ϕ : [0, ..., U]→Z+ be a nondecreasing
function. For every K > 1 there exists a K-approximation
set S of ϕ of cardinality O(logK Ū log U). Furthermore, it
takes O((1 + tϕ) logK Ū log U) time to construct this set,
where tϕ is the time needed to evaluate ϕ. Moreover, for
every K > 1 there exists a weak K-approximation set W
of ϕ of cardinality O(logK Ū) which can be constructed in
O((1 + tϕ) logK Ū log U) time.

Proof. The Lemma’s assertion about S is proved in [14].
It is easy to see that the simple Algorithm 1 below is well
defined, and correctly builds a weak K-approximation set
W for f of size O(logK Ū) in time O((1+tϕ)(logK Ū log U).

We use K-approximation sets for ϕ in order to build
approximation functions for ϕ in the following way.

1: Function WeakApxSet(K, f)
2: Let W := {U} and x := U
3: while x 6= 0 do
4: if f(x) ≤ Kf(0) then
5: Let y := 0
6: else
7: if f(x) > Kf(x− 1) then
8: Let y := x− 1
9: else

10: By bisection let y be the first element in [0, ..., x]
with f(x) ≤ Kf(y)

11: end if
12: end if
13: Insert y into W
14: Let x := y
15: end while
16: Return W

Algorithm 1: Constructing a weak K-approximation set
for f .

Definition 3.4. Let K > 1 and let ϕ : [0, ..., U]→Z+ be a
nondecreasing function. Let V ⊆ [0, ..., U] be a subset which
contains 0, U . For any integer 0 ≤ x ≤ U and successive
elements ik, ik+1 ∈ V with ik < x ≤ ik+1 let

ϕ̂(x) :=
ik+1 − x

ik+1 − ik
ϕ(ik)+

x− ik
ik+1 − ik

ϕ(ik+1); ϕ̌(x) := ϕ(ik+1).

We call ϕ̂, ϕ̌ the approximations of ϕ corresponding to V .

From its definition, ϕ̂ is a piecewise linear function, and ϕ̌
is a step function.

In what follows we assume that U is a power of 2. We
denote by V any subset of [0, ..., U] which contains 0, U ,
by ϕ̃ an arbitrary K-approximation of ϕ, and by ϕ̂, ϕ̌ the
approximations as defined above.

Note that ϕ, ϕ̂ and ϕ̌ coincide on V , so since 0 ∈ V ,
minx∈[0,...,U] ϕ(x) = minx∈V ϕ(x) = ϕ(0), while for an
arbitrary approximation function ϕ̃, minx∈[0,...,U] ϕ̃(x) is
not necessarily realized in x = 0. Moreover, while ϕ̂ and ϕ̌
are nondecreasing, ϕ̃ may not be such. We consider ϕ̂ and
ϕ̌ as special cases of approximation functions of ϕ.

Also note that if we calculate and store the values of
ϕ on V in advance, then any query for the value of either
ϕ̂(x) or ϕ̌(x) for any x, can be calculated in O(log |V |) time.
This is done by performing binary search on V to find the
consecutive elements ik, ik+1 ∈ V such that ik ≤ x ≤ ik+1.

The next proposition tells us that an approximation
ϕ̂ of a convex nondecreasing function ϕ, corresponding
to a given K-approximation set S of ϕ, is a convex K-
approximation of ϕ.

Proposition 3.1. ([14]) Let K > 1, let ϕ : [0, ..., U]→Z+

be a nondecreasing function, and let S be a K-
approximation set of ϕ. The approximation ϕ̂ of ϕ corre-
sponding to S is a piecewise-linear nonnegative nondecreas-
ing function satisfying ϕ̂(x) ≤ Kϕ(x) for any 0 ≤ x ≤ U ,
and Uϕ̂ is an integer-valued function. Moreover, if ϕ is
convex, then ϕ̂ is convex and ϕ̂ ≥ ϕ, and therefore ϕ̂ is a
K-approximation of ϕ.

Similarly, the next proposition tells us that an approxi-
mation ϕ̌ of a (general) nondecreasing function ϕ, corre-
sponding to a given weak K-approximation set W of ϕ, is
a K-approximation of ϕ:

Proposition 3.2. Let K > 1, let ϕ : [0, ..., U]→Z+

be a nondecreasing function, and let W be a weak K-
approximation set of ϕ. The approximation ϕ̌ of ϕ cor-
responding to W is a nonnegative nondecreasing integer-
valued step function, and is a K-approximation of ϕ.

We extend the definition of K-approximation sets and
weak K-approximation sets to nonnegative nonincreasing
functions in a natural way.

Definition 3.5. Let K > 1 and let ϕ : [−U, ..., 0]→Z+

be a nonincreasing function. Let ϕ̇(x) := ϕ(−x), for x in
[0, ..., U]. A K-approximation set of ϕ is an ordered set
S = {i1 > ... > ir} of integers such that = {−i1, ...,−ir} is
a K-approximation set of ϕ̇. A weak K-approximation set
of ϕ is an ordered set W = {i1 > ... > ir} of integers such
that = {−i1, ...,−ir} is a weak K-approximation set of ϕ̇.

4 From K-approximation sets to dynamic
programming

In this section we develop a theory, based upon the notion
of K-approximation sets. In the next section we will use
this theory to build a framework for approximating the
basic stochastic dynamic programming model considered
in Section 2.

The following proposition, which we call Calculus
of K-approximation Functions, follows directly from the
definition of K-approximation functions, and its proof is
therefore omitted. (The first two properties can also be
derived from [14].)

Proposition 4.1. (Calculus of K-approximation
Functions) For i = 1, 2 let Ki > 1, let ϕi : D→R+ be
an arbitrary function over domain D, and let ϕ̃i : D→R
be a Ki-approximation of ϕi. Let ψ1 : D→D, and let
α, β ∈ R+. The following properties hold:

1. (summation of approximation) αϕ̃1 + βϕ̃2 is a
max{K1,K2}-approximation of αϕ1 + βϕ2,

2. (composition of approximation) ϕ̃1(ψ1) is a K1-
approximation of ϕ1(ψ1),

3. (minimization of approximation) min{ϕ̃1, ϕ̃2} is a
max{K1,K2}-approximation of min{ϕ1, ϕ2},

4. (approximation of approximation) If ϕ2 = ϕ̃1 then ϕ̃2

is a K1K2-approximation of ϕ1.

The Calculus of K-approximation Functions turns out to
be very handy. For example, for proving that Lemma 3.1
and Propositions 3.1 and 3.2 hold also for cases where the
domain of ϕ is a general interval [A, ..., B]. All we need is to
define ψ(x) = x−A and use composition of approximation.

Suppose for a moment that we have at hand an ora-
cle which computes K-approximations for functions gt, ft

and zt+1 in (2.4). Note that (2.4) consists of minimization,
summation, and composition of these functions. The ques-
tion is, can we then approximate function zt in polynomial
time? The following proposition gives us a partial answer.

Proposition 4.2. (minimization of summation of
composition) For i = 1, 2 let Ki > 1, let ϕi : D→R+

be an arbitrary function over domain D, let ϕ̃i : D→R be
a Ki-approximation of ϕi and let ψi : D × E→D. Then

ϕ̃3(x) := min
y∈E

{ϕ̃1(ψ1(x, y)) + ϕ̃2(ψ2(x, y))}

is a max{K1,K2}-approximation of
ϕ3(x) := miny∈E{ϕ1(ψ1(x, y)) + ϕ2(ψ2(x, y))}.
The proof of Proposition 4.2 (as well as its name), is due
to summation of approximation, minimization of approxi-
mation, and composition of approximation (Properties 1-3
in Proposition 4.1).

Since the cardinality of E may be “big”, applying
Proposition 4.2 and calculating the minimum over all the
elements of E may take time exponential in the input size.
For this reason we would like to perform the minimization
over a subset of E, whose cardinality is at most logarithmic
in the cardinality of E. The question now is whether
the approximation ratio for the resulting function remains
“under control”. The following theorem tells us that this
is indeed possible, whenever the functions we want to
approximate are either convex or monotone.

Theorem 4.1. For i = 1, 2 let Ki ≥ 1, Li > 1 and let
ϕi : D→R+ be a function over domain D. Let ϕ̃i : D→R
be a Ki-approximation of ϕi. For every fixed x ∈ D, let
ψi : D×E→D be a function such that ϕ̃i(ψi(x, ·)) is either
monotone or convex over the totally ordered domain E. If
Wi(x) ⊆ D is a weak Li-approximation set of ϕ̃i(ψi(x, ·)),
then

ϕ̃4(x) := min
y∈W1(x)∪W2(x)

{ϕ̃1(ψ1(x, y)) + ϕ̃2(ψ2(x, y))}

is a max{K1,K2,min{K1L1,K2L2}}-approximation of
ϕ4(x) := miny∈E{ϕ1(ψ1(x, y)) + ϕ2(ψ2(x, y))}.
The following corollary links the notion of K-
approximation sets to dynamic programming. We
use it in the next section in order to construct FPTASs for
Monotone DP.

Corollary 4.1. Let K2 > 1, K2 ≥ L1 > 1, L2 > 1. In
the setting of Theorem 2.1, for fixed 1 ≤ t ≤ T , It and d ∈
Dt, let z̃t+1 be a K2-approximation of zt+1. Suppose each of
gt(It, ·, d) and z̃t+1(ft(It, ·, d)) is either monotone or convex
function. Let W g

t (It) be a weak L1-approximation set of
EDtgt(It, ·, Dt), W z

t+1(It) be a weak L2-approximation set
of EDt z̃t+1(ft(It, ·, Dt)), and Xt(It) = W g

t (It) ∪W z
t+1(It).

Then

z̄t(It) = min
xt∈Xt(It)

{EDtgt(It, xt, Dt)+EDt z̃t+1(ft(It, xt, Dt))}

is a K2-approximation of zt.

5 An FPTAS for Monotone DP

In this section we present an FPTAS for monotone DP. For
ease of exposition, we multiply the functions gt by M1M ,
for every t = 1, ..., T + 1, so their values are nonnegative
integers.

5.1 Algorithm. We consider here nondecreasing DP
where gt(·, ·, d) is monotone in its second variable, for every
fixed d. The FPTAS for the general case of nondecreasing
DP and for nonincreasing DP is similar.

1: Procedure FPTASNondecreasingDP
2: Let K := 1 + ε

2T
and zT+1 := gT+1

3: Let WT+1 be a weak K-approximation set of zT+1

4: Let žT+1 be the K-approximation of zT+1 corr. to WT+1

5: for t := T downto 1 do
6: Let Wt :=WeakApxSet’(K,EvalMonz̄(·, t))
7: Modify z̄t to be nondecreasing on Wt

8: Let žt be the K-approximation of z̄t corresponding to Wt

9: end for

Algorithm 2: FPTAS for Nondecreasing DP.

1: Function EvalMonz̄(I, t)
2: Let W g

t := WeakApxSet(K, EDtgt(I, ·, Dt))
3: Let W z

t+1 := WeakApxSet(K, EDt žt+1(ft(I, ·, Dt)))
4: Let Xt := W g

t ∪W z
t+1

5: Return minxt∈Xt{EDtgt(I, xt, Dt)+EDt žt+1(ft(I, xt, Dt))}
Algorithm 3: Evaluating z̄ for Monotone DP.

We give a few remarks about the algorithm. Our first
remark is about Step 7 in Algorithm 2. Since z̄t is
not necessarily monotone, we modify it to be nonde-
creasing by scanning Wt backwards, and setting z̄t(x)
for every pair of successive elements x < y in Wt to
be z̄t(x) ← min{z̄t(x), z̄t(y)}. Considering Step 6 of
Algorithm 2, since we have no explicit formula, nor
oracle access to z̄t, we calculate it by calling Func-
tion WeakApxSet’(K, EvalMonz̄(·, t)). We define Func-
tion WeakApxSet’ to be identical to Function WeakApxSet
except for that in the “while loop” of Algorithm 1 the calls
to f(·) are replaced with calls to min{f(·), f(x)}. (This
replacement is necessary since z̄t is not necessarily mono-
tone.) The identical analysis shows that Wt is a weak K-
approximation set of the modified z̄t. Using the monotonic-
ity of the optimal zt it is easy to see that the modified z̄t

has the same approximation ratio to zt has the unmodified
one. Last remark is about the various resulted weak K-
approximation sets. Note that for every t, Wt is a subset
of the state space and W g

t , W z
t+1 are subsets of the action

space.

5.2 Invariants. There are several properties which re-
main invariant throughout the execution of our FPTAS.

Proposition 5.1. (Integrality Invariant) For every
t = 1, ..., T +1 and It, MtMzt(It) is a nonnegative integer.
Moreover, so are MtMžt in Step 8 of Algorithm 2, and the
MtMz̄t which is calculated by Function EvalMonz̄.

Proposition 5.2. (Nondecreasing Invariant) If
Condition 3(ii) is satisfied, then for every t = 1, ..., T,
function zt in (2.4) is nondecreasing over St. Moreover,
so are the modified z̄t in Step 7 of Algorithm 2, and the žt

in Step 8 of Algorithm 2.

5.3 Analysis. Finally, we present our main result.

Theorem 5.1. (FPTAS for monotone DP) Every
monotone dynamic program admits an FPTAS.

We only provide here the outline of the proof for nonde-
creasing DP. It suffices to prove that for every 1 > ε > 0
and every initial state I1, a (1+ε)-approximation of the op-
timal cost z∗(I1) is equal to z̄1(I1), where z̄1(I1) is given in
Step 7 in the last iteration of Algorithm 2, and that Algo-
rithm 2 runs in time polynomial in both 1

ε and the (binary)
input size.

We first show that the algorithm is well defined. The
Integrality Invariant, Proposition 5.1, together with the
Nondecreasing Invariant, Proposition 5.2, assure us that
all the functions for which the algorithm builds weak K-
approximation sets are nonnegative nondecreasing integer-
valued. In this way the weak K-approximation sets for
them are well defined.

The correctness of the algorithm follows from the
correctness of the DP (exact) algorithm, Theorem 2.1,
and is proved by induction. We observe that when the
algorithm first enters the “for loop”, all the conditions
required by Corollary 4.1 are satisfied with L1 = L2 = K
and K2 = 1. Hence, z̄T (I) is a K-approximation of
zT (I). In every additional iteration, by approximation of
approximation (Property 4 in Proposition 4.1), the error
is multiplied by K, resulting in a total accumulated error
of KT . The choice of K = 1 + ε

2T results in the required
(1+ε)-approximation by applying the inequality inequality
(1 + x

n)n ≤ 1 + 2x, which holds for every 0 ≤ x ≤ 1.
We show now that the algorithm runs in time

polynomial in both the input size and 1
ε . By

Lemma 3.1 the first two steps are executed in O((1 +
tg) logK Ū log US) time, where tg is the time needed
to evaluate g. Clearly, the “for loop” is executed T
times, so by Lemma 3.1 Function EvalMonz̄ is executed
O(T logK Ū log US) times. The execution time of Func-
tion EvalMonz̄ is dominated by the time needed to build
the various weak K-approximation sets, and is O((tg +
tf + tžt+1)n

∗ logK Ū log UA), where tg, tf , tžt+1 is the time
needed to evaluate g, f, žt+1, respectively. We conclude
that the running time of the algorithm is O((tg + tf +
log(logK Ū log US))n∗T log2

K Ū log US log UA). Since ε < 1,
we get that K < 2, so O(logK Ū) = O(1

K−1 log Ū). By re-
placing K with 1 + ε

2T , we conclude that the running time
of the algorithm is

O((tg+tf +log(
T

ε
log Ū log US))

n∗T 3

ε2
log2 Ū log US log UA).

Since Ū depends linearly on the multiplying factor, which
is at most M1M , and since log US , log UA, log M1 and
log M are all polynomially bounded by the input size, the
algorithm runs in polynomial time in both the input size
and 1

ε .

6 The stochastic ordered adaptive knapsack
problem

In this section we demonstrate the application of our
framework using the stochastic ordered adaptive knapsack
problem. Although this is the only application presented in
the Introduction where the action space is not exponential
in the size of the input (it is rather constant), we choose it
because it is the most recent application, and appears to
draw a lot of interest in the community.

The classical knapsack problem can be formulated as
follows. We are given n items, each is associated with
integer profit πi and volume vi, i = 1, ..., n. We are also
given an integer knapsack volume B. The goal is to select a
subset of this items with maximum profit without exceeding
the knapsack volume. Formally, the problem is

(6.6)
max

∑n
i=1 πixi

subject to
∑n

i=1 vixi ≤ B
xi ∈ {0, 1} i = 1, ..., n.

In this formulation, xi indicates the selected items.
This problem is also known as the 0/1 knapsack

problem, since each item can appear in the knapsack 0 or
1 times. The 0/1 knapsack problem is NP-hard [22] and a
first FPTAS for it was developed by Ibarra and Kim [19].

Many stochastic variants of the knapsack problem have
been studied in the literature. We consider the ordered
adaptive model which is discussed in [9]. In this model we
are given a sequence (i.e., ordered set) of n items. While
the profit of item i, πi, is a constant, its volume, vi, is a
random discrete variable with a known distribution. The
distribution of vi is given as the one of Dt in Section 2.
The problem is about which of the items to place in the
knapsack. The actual volume of an item is unknown until
we instantiate it by attempting to place it in the knapsack.
The goal is to maximize the expected profit from items
successfully placed in the knapsack. In the ordered adaptive
model the decision whether to put item i in the knapsack is
made after knowing the available capacity of the knapsack
after executing the previous i− 1 decisions. In the ordered
nonadaptive model all n decisions are made in advance. In
[9] the authors give a polynomial time algorithm for the
stochastic ordered adaptive knapsack problem. For every
ε > 0, their algorithm gives a solution whose value is at
least the optimal value, at the expense of a slight loss in
terms of feasibility, i.e., the total volume of the items placed
in the knapsack does not exceed (1 + ε)B. While valuable,
their algorithm is not in the spirit of FPTASs, in which
constraints are treated as “hard” and feasibility is always
maintained.

We now present a dynamic program for the problem.
Let zt(It) be the expected profit when considering only
items t to n, where the remaining available volume in the
knapsack is It. The recurrence relation is

(6.7)
zt(It) = max{EvT

{πtδvt≤It + zt+1((It − vt)+)}, zt+1(It)},
for It = 1, ..., B and t = 1, ..., n. The boundary conditions
are zn+1 ≡ 0 and zt(0) = 0 for t = 1, ..., n. The optimal
solution is z1(B).

We note that the first term in the set in (6.7) is the
outcome of placing item t in the knapsack, and the second
term is the outcome of not doing so. In order to show that
this problem fits in our framework we need to reformulate
(6.7) as a maximization over a function of the action space.
It is easy to see that (6.8) below is equivalent to (6.7),
and that it is indeed a maximization over a function of the
action space.

(6.8) zt(It) = max
xt=0,1

Evt{xtπtδvt≤It + zt+1((It − xtvt)+)}.

We next show that problem (6.8) is a maximization nonde-
creasing dynamic program which fits into our framework,
i.e., a dynamic program satisfying Conditions 1, 2 and a
condition which is the counterpart of Condition 3(ii) for
maximization problems (i.e., gT+1 is nondecreasing. For
every t = 1, ..., T, and fixed d ∈ Dt, gt(·, ·, d) and ft(·, ·, d)
are nondecreasing in their first variable. ft(·, ·, d) is mono-
tone in its second variable. gt(·, ·, d) ≡ ga

t (·, ·, d)+gb
t (·, ·, d),

where ga
t (·, ·, d), gb

t (·, ·, d) are nonnegative functions mono-
tone in their second variable. Moreover, ∀I ′, I ∈ St with
I ′ ≤ I, At(I ′) ⊆ At(I) holds).

We define Dt = vt, St = [0, ..., B], At = At(It) =
[0, 1] for all It and t = 1, ..., n. We define the sys-
tem dynamics function to be ft(It, xt, Dt) = max{It −
xtDt, 0}, t = 1, ...n, and the single-period cost functions
to be gT+1(IT+1) = 0 and gt(It, xt, Dt) = xtπtδDt≤It , t =
1, ..., n.

We need to show that Conditions 1, 2 and the maxi-
mization counterpart of Condition 3(ii) are satisfied. Let
us fix the time period t. Clearly, Dt,St,At ∈ Z. The log-
arithm of the cardinality of the maximum element in St is
linear in the input size since the input size of B is log B.
Hence Condition 1 is satisfied. Clearly, Condition 2 is sat-
isfied as well. As for the maximization counterpart of Con-
dition 3(ii), note that both gt and ft are nondecreasing in
It, ft is nonincreasing in xt, gt is nondecreasing in xt, and
At(It) does not depend on It. Therefore, this condition is
satisfied as well.

7 Extensions to random vectors and structure of
optimal policies

Until now we have assumed that the Dt are independent
random one-dimensional variables. We first observe that
dealing with multi-dimensional random variable is straight-
forward. Consider, for example, a more general version of
the stochastic adaptive ordered knapsack problem studied
in Section 6, where not only the volume Vt is a random vari-
able, but also the profit Πt. In this case the input includes
the mutual distribution of (Vt, Πt) = Dt (for every t we al-
low Vt and Πt to be non-independent). The domain of the
single-period cost function gt and the transition function ft

is then 4-dimensional, where gt(It, xt, Vt,Πt) = xtΠtδVt≤It

and ft(It, xt, Vt, Πt) = (It − xtVt)+.
In this paper we mainly deal with complexity and

computational issues of our framework. A natural issue
to explore is the structure of optimal policies for problems
in our framework. Recall that a real-valued function f :
Rd→R+ is V-shaped on its first variable x if it is linear with

non-positive slope for x < 0, and linear with nonnegative
slope for x > 0. Also recall that a limit policy (r, s)
(−∞ ≤ r ≤ s ≤ ∞) is a policy under which whenever
the state I falls below r we augment it to r by ordering
r−I units, and whenever the state I exceeds s we decrease
it to s by discarding of I − s units. (When the state I is
between r and s we do nothing.)

Theorem 7.1. Suppose a given convex DP satisfies the
following. For every time period t and fixed Dt the
transition cost function ft(·, ·, Dt) is linear and the absolute
values of the coefficients for both its variables are the same.
Moreover, the single-period cost function can be expressed
as gt(It, xt, Dt) = vt(xt, Dt) + ut(ft(It, xt, Dt), Dt), where
vt is V-shaped on xt, and ut is convex. Then this convex
DP admits an optimal limit policy (rt, st)

The cash management problem mentioned in the Introduc-
tion satisfies the conditions of the theorem above.

8 Concluding remarks and future research

In this paper, we introduce a general framework for obtain-
ing FPTASs for stochastic dynamic programs, and show
that by making use of this framework, we can construct
FPTASs for a number of difficult stochastic and determin-
istic optimization problems. These problems are all NP-
hard; they have no known FPTASs; and they cover a broad
range of applications.

Previous works tried to determine sufficient and neces-
sary conditions for a dynamic program to admit an FPTAS.
While most of these works are not constructive, the one of
Woeginger [32] gives sufficient conditions for a determin-
istic dynamic program to admit an FPTAS, and states a
clear FPTAS for such a DP. He demonstrates a number
of examples that fit into his framework, where all of those
examples have already (other) known FPTASs. We note
that none of the problems discussed in this extended ab-
stract appears to fit into his framework, either because the
problem is stochastic, or it does not satisfy his Condition
C4(ii).

It is interesting to relax any of Conditions 1-3. Regard-
ing Condition 1, we would have liked to extend our frame-
work to deal with multi-variate DP, i.e., to allow fixed-
dimensional state and action spaces. Unfortunately, this
is unlikely to be successful, since it is known that the ex-
istence of an FPTAS for the 2-dimensional 0/1 knapsack
problem (which can be formulated as a 2-dimensional non-
decreasing DP) would imply P = NP (see p. 252 in [23]
and the references therein).

We conclude with two complexity remarks. First,
Alekhnovich et al. [2] present a model for backtracking
and dynamic programming. They prove several upper and
lower bounds on the capabilities of algorithms in their
model, and show that it captures the simple dynamic
programming framework of Woeginger [32]. In their paper
they question whether their model captures other dynamic
programming algorithms. It would be interesting to check
the capabilities of our framework in this context.

Second, many #P-complete problems exhibit fully
polynomial randomized approximation schemes (FPRASs),

for example, counting Hamiltonian cycles in dense graphs
[11], counting knapsack solutions [10], counting Eulerian
orientations of a directed graph [24], counting perfect
matchings in a bipartite graph [20], and computing the per-
manent [21]. To the best of our knowledge, the only deter-
ministic FPTASs for #P-hard problems known up-to-date
and published in the literature are the very recent works of
[31, 4, 5, 13], which are all developed by applying methods
from statistical physics. Our FPTAS, which uses different
methods, is another rare example in the literature of a (de-
terministic) FPTAS for #P-hard problems. Dyer et al. [12]
investigate classes of counting problems that are interre-
ducible under approximation-preserving reductions. One
of these classes is the class of counting problems that ad-
mit (randomized) FPRASs. It is therefore interesting in
this context to investigate the class of counting problems
that admit FPTASs.
Acknowledgments. The first author would like to thank
Oded Goldreich, Sudipto Guha and Asaf Levin for inspiring
discussions, and Leslie Ann Goldberg for pointing out
selected references.

References

[1] J. Adda and R. Cooper. Dynamic Economics: Quantitive
Methods and Applications. MIT Press, 2003.

[2] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Im-
pagliazzo, A. Magen, and T. Pitassi. Towards a model for
backtracking and dynamic programming. In Proceedings of
the 20th IEEE Conference on Computational Complexity,
2005.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Complexity and
Approximation. Springer, 1999.

[4] A. Bandyopadhyay and D. Gamarnik. Counting without
sampling. new algorithms for enumeration problems using
statistical physics. To Appear in Random Structures and
Algorithms, 2007.

[5] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali.
Simple deterministic approximation algorithms for count-
ing matchings. In Proceedings of the 39th ACM Symposium
on Theory of Computing, 2007.

[6] R. Bellman. Applied Dynamic Programming. Princeton
University MIT Press, Princeton, NJ, 1957.

[7] D.P. Bertsekas. Dynamic Programming and Optimal Con-
trol. Athena Scientific, Belmont, MA, 1995.

[8] T.C.E. Cheng, Z.-L. Chen, C.-L. Li, and B.M.-T. Lin.
Scheduling to minimize the total compression and late
costs. Naval Research Logistics, 45:67–82, 1998.

[9] B.C. Dean, M. X. Goemans, and J. Vondrák. Approximat-
ing the stochastic knapsack problem: the benefit of adap-
tivity. In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, 2004.

[10] M. Dyer. Approximate counting by dynamic program-
ming. In Proceedings of the 35th Annual ACM Symposium
on the Theory of Computing, pages 693–699, 2003.

[11] M. Dyer, A. Frieze, and M. Jerrum. Approximately
counting Hamilton paths and cycles in dense graphs. SIAM
Journal on Computing, 27:1262–1272, 1998.

[12] M. Dyer, L.A. Goldberg, C. Greenhill, and M. Jerrum.
The relative complexity of approximate counting problems.
Algorithmica, 38:471–500, 2003.

[13] D. Gamarnik and D.Katz. Correlation decay and deter-
ministic fptas for counting list-colorings of a graph. In
Proceedings of the 18th ACM-SIAM Symposium on Dis-
crete Algorithms, 2007.

[14] N. Halman, D. Klabjan, M. Mostagir, J. Orlin, and
D. Simchi-Levi. A fully polynomial time approximation
scheme for single-item stochastic inventory control with
discrete demand. Technical report, Massachusetts Insti-
tute of Technology, 2006. Submitted for journal publica-
tion.

[15] K. Hinderer and K.-H. Waldmann. Cash management in
a randomly varying environment. European Journal of
Operational Research, 130:468–485, 2001.

[16] D.S. Hochbaum. A nonlinear knapsack problem. Opera-
tions Research Letters, 17:103–110, 1995.

[17] D.S. Hochbaum. Various notions of approximations:
Good, better, best, and more. In D.S. Hochbaum, editor,
Approximation Algorithms for NP-hard Problems, pages
346–398. PWS Publishing company, 1997.

[18] E. Horowitz and S. Sahni. Exact and approximate algo-
rithms for scheduling nonidentical processors. Journal of
the ACM, 23:317–327, 1976.

[19] O.H. Ibarra and C.E. Kim. Fast approximation algorithms
for the knapsack and sum of subset problems. Journal of
the ACM, 22:463–468, 1975.

[20] M. Jerrum and A. Sinclair. Approximating the permanent.
SIAM Journal on Computing, 18:1149–1178, 1989.

[21] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time
approximation algorithm for the permanent of a matrix
with nonnegative entries. Journal of the ACM, 51(4):671–
697, 2004.

[22] R.M. Karp. Reducibility among combinatorial problems.
In R.E. Miller and J.W. Thatcher, editors, Complexity
of Computer Computations, pages 85–103. Plenum Press,
New York, 1972.

[23] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springler-Verlag, 2004.

[24] M. Mihail and P. Winkler. On the number of Eulerian
orientations of a graph. Algorithmica, 16:402–414, 1995.

[25] K.P. Papadaki and W.B. Powell. An adaptive dynamic
programming algorithm for stochastic multiproduct batch
dispatch problem. Naval Research Logistics, 50:742–769,
2003.

[26] E. Phelps. The accumulation of risky capital: A sequential
utility analysis. Econometrica, 30:729–743, 1962.

[27] H. Safer and J. Orlin. Fast approximation schemes for
multi-criteria flow, knapsack, and scheduling problems.
Sloan school working paper 3757-95, Massachusetts Insti-
tute of Technology, 1995.

[28] S. Sahni. Algorithms for scheduling independent tasks.
Journal of the ACM, 23:116–127, 1976.

[29] I. Saniee. An efficient algorithm for the multiperiod
capacity expansion of one location in telecommunications.
Operations Research, 43:187–190, 1995.

[30] V.J. Vazirani. Approximation Algorithms. Springler-
Verlag, 2001.

[31] D. Weitz. Counting independent sets up to the tree thresh-
old. In Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, 2006.

[32] G. J. Woeginger. When does a dynamic programming
formulation guarantee the existence of a fully polynomial
time approximation scheme (FPTAS)? INFORMS Journal
on Computing, 12:57–75, 2000.

