CHAPTER 5 NOTES

This chapter should be relatively self-explanatory. It focuses on the relationship between the transformational analysis of control constructions and the LFG analysis. Most of the material is standard Bresnan (1982) vintage. There is an attempt to extend LMT to complement constructions, and arguments are given in the final section for analyzing infinitival *to* as a complementizer.

Arguments are given for a Raising-to-Object analysis; these are not original, but are important for students who have learned the standard GB ECM analysis of such constructions.

The page after this is a handout to explain the notation for structure-sharing, which often confuses people.

The following two pages comprise a handout which is useful in discussing the analysis of equi complement constructions, and the distinction between anaphoric control and functional control.
Notations for structure sharing (as in functional control)

The idea:

[\[
\begin{array}{|c|c|c|}
\hline
\text{SUBJ} & \text{DEF} & \text{+} \\
\text{PRED} & \text{‘geneticist’} & \\
\text{NUM} & \text{SG} & \\
\hline
\end{array}
\]

\text{TENSE} \quad \text{PAST} \\
\text{PRED} \quad \text{‘seem} \quad \langle \uparrow \text{XCOMP} \rangle \langle \uparrow \text{SUBJ} \rangle' \\
\hline
\text{XCOMP} & \text{SUBJ} & \\
\text{PRED} & \text{‘clone} \quad \langle \uparrow \text{SUBJ} \rangle \langle \uparrow \text{OBJ} \rangle' \\
\text{OBJ} & \text{PRED} & \text{‘dinosaur’} \\
\text{NUM} & \text{PL} & \\
\hline
\end{array}
\]

because then there are two different functional ‘geneticist’ elements. Instead, it’s something like:

[\[
\begin{array}{|c|c|c|}
\hline
\text{SUBJ} & \text{DEF} & \text{+} \\
\text{PRED} & \text{‘geneticist’} & \\
\text{NUM} & \text{SG} & \\
\hline
\end{array}
\]

\text{TENSE} \quad \text{PAST} \\
\text{PRED} \quad \text{‘seem} \quad \langle \uparrow \text{XCOMP} \rangle \langle \uparrow \text{SUBJ} \rangle' \\
\hline
\text{XCOMP} & \text{PRED} & \text{‘clone} \quad \langle \uparrow \text{SUBJ} \rangle \langle \uparrow \text{OBJ} \rangle' \\
\text{OBJ} & \text{PRED} & \text{‘dinosaur’} \\
\text{NUM} & \text{PL} & \\
\hline
\end{array}
\]

This notation is awkward. So other notations are used instead. The one on the left is the one usually used in LFG (and therefore in the textbook); the one on the right is the normal HPSG notation.

[\[
\begin{array}{|c|c|c|}
\hline
\text{SUBJ} & \text{DEF} & \text{+} \\
\text{PRED} & \text{‘geneticist’} & \\
\text{NUM} & \text{SG} & \\
\hline
\end{array}
\]

\text{TENSE} \quad \text{PAST} \\
\text{PRED} \quad \text{‘seem} \quad \langle \uparrow \text{XCOMP} \rangle \langle \uparrow \text{SUBJ} \rangle' \\
\hline
\text{XCOMP} & \text{SUBJ} & \\
\text{PRED} & \text{‘clone} \quad \langle \uparrow \text{SUBJ} \rangle \langle \uparrow \text{OBJ} \rangle' \\
\text{OBJ} & \text{PRED} & \text{‘dinosaur’} \\
\text{NUM} & \text{PL} & \\
\hline
\end{array}
\]

Unfortunately, these notations are less self-explanatory than the one above. The LFG notation looks like it means movement (especially when, as some people do, an arrowhead is put at the end of the curved line), and the HPSG notation looks like the coindexation of two distinct elements.
Properties of functional and anaphoric control

<table>
<thead>
<tr>
<th>functional control</th>
<th>anaphoric control</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller must be syntactically present (in f-structure)</td>
<td>controller need not be syntactically present</td>
</tr>
<tr>
<td>because without the controller there is no controllee (i.e. SUBJ in the complement)</td>
<td>The controllee is an anaphor. It exists independently of whether it has an antecedent. Pronouns don't necessarily have antecedents.</td>
</tr>
<tr>
<td>controller must be a core function</td>
<td>controller need not be a core function</td>
</tr>
<tr>
<td>control equation can only specify core function</td>
<td>there is no restriction on what grammatical function the antecedent of a pronoun has</td>
</tr>
<tr>
<td>no split controller</td>
<td>split controllers possible</td>
</tr>
<tr>
<td>unique controller specified by control equation</td>
<td>pronouns can have split antecedents</td>
</tr>
<tr>
<td>existence of control construction is determined syntactically by the governing verb</td>
<td>construction is not determined syntactically by the governing verb</td>
</tr>
<tr>
<td>it's due to a lexical property of the governing verb</td>
<td>it's just anaphora</td>
</tr>
<tr>
<td>“obligatory control”: overt SUBJ not possible</td>
<td>overt SUBJ possible</td>
</tr>
<tr>
<td>because XCOMP is an open function; its SUBJ must be identified with an element of the governing clause</td>
<td>because COMP is a closed function; the SUBJ is an element of the clause itself, even if it can be left covert</td>
</tr>
<tr>
<td>UNLESS the XCOMP argument alternates with COMP, in which case an overt SUBJ will be possible if the COMP option is taken</td>
<td>BUT an overt SUBJ may be ruled out by the semantics of the governing verb</td>
</tr>
</tbody>
</table>

1. a. The dinosaur agreed to eat trees.
 b. The dinosaur tried to eat trees.

2. a. It was agreed to eat trees.
 b. *It was tried to eat trees.

3. a. It was agreed by the dinosaur to eat trees.
 b. *It was tried by the dinosaur to eat trees.

4. a. The brachiosaurus said that the diplodocus agreed to share the tree. (SUBJ of share can be both the brachiosaurus and the diplodocus)
(5)
 a. The dinosaur agreed that he should eat trees.
 b. *The dinosaur tried that he should eat trees.

(6)
 a. The hamster agreed for the dinosaur to eat trees.
 b. *The hamster tried for the dinosaur to eat trees.

It appears that the agree sentence has the properties of anaphoric control and the try sentence has the properties of functional control. The lexical forms of the verbs are:

(6)
 a. ‘agree \[\langle \uparrow \text{SUBJ} \rangle (\uparrow \text{COMP}) \rangle’
 b. ‘try \[\langle \uparrow \text{SUBJ} \rangle (\uparrow \text{XCOMP}) \rangle’

The f-structures of the sentences in (1) are:

(7)
 a.

 b.

©2002, 2003 Yehuda N. Falk