
Bacterial Community Reconstruction

Using Compressed Sensing

*AMNON AMIR1 and *OR ZUK2

ABSTRACT

Bacteria are the unseen majority on our planet, with millions of species and comprising most
of the living protoplasm. We propose a novel approach for reconstruction of the composition
of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture.
Our method is based on compressive sensing theory, which deals with reconstruction of a
sparse signal using a small number of measurements. Utilizing the fact that in many cases
each bacterial community is comprised of a small subset of all known bacterial species, we
show the feasibility of this approach for determining the composition of a bacterial mixture.
Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene
sequence may provide enough information for reconstruction of mixtures containing tens
of species, out of tens of thousands, even in the presence of realistic measurement noise.
Finally, we show initial promising results when applying our method for the reconstruction
of a toy experimental mixture with five species. Our approach may have a potential for a
simple and efficient way for identifying bacterial species compositions in biological samples.
All supplementary data and the MATLAB code are available at www.broadinstitute.org/
*orzuk/publications/BCS/.
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1. INTRODUCTION

M icroorganisms are present almost everywhere on earth. The population of bacteria found in

most natural environments consists of multiple species, mutually affecting each other, and creating

complex ecological systems (Keller and Zengler, 2004). In the human body, the number of bacterial cells is

over an order of magnitude larger than the number of human cells (Savage, 1977), with typically several

hundred species identified in a given sample taken from humans (e.g., over 400 species were characterized in

the human gut [Eckburg et al., 2005] while Sears [2005] estimates a higher number of 500–1000, and 500–

600 species were found in the oral cavity [Dewhirst et al., 2008; Paster et al., 2001]). Changes in the human

bacterial community composition are associated with physical condition and may indicate (Mager et al.,

2005)—as well as cause or prevent—various microbial diseases (Guarner and Malagelada, 2003). In a
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broader aspect, the study of bacterial communities is a highly active field of research (Medini et al., 2008;

Wooley et al., 2010), with goals ranging from understanding the interactions between microorganisms and

their plant (Singh et al., 2004) or mammalian (Faith et al., 2011; Muegge et al., 2011) hosts, to spatial,

temporal, and meteorological effects on the composition and diversity of microorganisms in urban aerosols

(Brodie et al., 2007) and marine environments (Rusch et al., 2007).

Identification of the bacteria present in a given sample is not simple, and technical limitations impede

large scale quantitative surveys of bacterial community compositions. Since the vast majority of bacterial

species are non-amenable to standard laboratory cultivation procedures (Amann et al., 1995), culture-

independent methods are needed. The golden standard of microbial population analysis has been cloning

and direct Sanger sequencing of the ribosomal 16S subunit gene (16S rRNA) (Hugenholtz, 2002). How-

ever, since each 16S rRNA sequence is sampled randomly from the mixture, the sensitivity of this method

is determined by the number of sequencing reactions, and therefore tens to hundreds of sequencing

reactions are required for each sample analyzed. A modification of this method for identification of small

mixtures of bacteria using a single Sanger sequence has been suggested (Kommedal et al., 2008) and

showed promising results when reconstructing mixtures of 2–3 bacteria from a given database of *260

human pathogen sequences.

Recently, DNA microarray-based methods (Gentry et al., 2006) and identification via next generation

sequencing (Hamady and Knight, 2009) have been used for bacterial community reconstruction. In mi-

croarray-based methods, such as the Affymetrix PhyloChip platform (Brodie et al., 2007), the sample 16S

rRNA is hybridized with short probes aimed at identification of known microbes at various taxonomy

levels. While being more sensitive and cheaper than standard cloning and sequencing techniques, each

bacterial mixture sample still needs to be hybridized against a microarray, thus the cost of such methods

limit their use for wide-scale studies. Methods based on next generation sequencing obtain a very large

number of reads of a short hyper-variable region of the 16S rRNA gene (Armougom and Raoult, 2008;

Dethlefsen et al., 2008; Hamady et al., 2008). Usage of such methods, combined with DNA barcoding,

enables high-throughput identification of bacterial communities, and can potentially detect species present

at very low frequencies. However, since such sequencing methods are limited to relatively short read

lengths (typically a few dozens and at most a few hundred bases in each sequence), species identification is

not straightforward. In practice, identification using current methods is nonunique and limited in resolution,

with reliable identification typically up to the genus level (Huse et al., 2008). Improving resolution depends

on obtaining longer read lengths, which is currently technologically challenging, and/or developing novel

analytical methods which utilize the (possibly limited) information from each read to allow in aggregate a

better separation between the species.

In this work we suggest a novel experimental and computational approach for sequencing-based profiling

of bacterial communities (Fig. 1). We demonstrate our method using a single Sanger sequencing reaction

FIG. 1. Schematics of the proposed

BCS reconstruction method. The 16S

rRNA gene is PCR-amplified from the

mixture and then subjected to Sanger

sequencing. The resulting chromato-

gram is preprocessed to create

the Position Specific Score Matrix

(PSSM). For each sequence position,

four linear mixture equations are de-

rived from the 16S rRNA sequence

database, with vi denoting the fre-

quency of sequence i in the mixture,

and the frequency sum taken from the

experimental PSSM. These linear

constraints are used as input to the CS

algorithm, which returns the sparsest

set of bacteria recreating the observed

PSSM.
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for a bacterial mixture, which results in a linear combination of the constituent sequences. Using this mixed

chromatogram as linear constraints, the sequences which constitute the original mixture are selected using a

Compressed Sensing (CS) framework.

Compressed Sensing (CS) (Candes, 2006; Donoho, 2006a) is an emerging field of research, based on

statistics and optimization, with a wide variety of applications. The goal of CS is recovery of a signal from

a small number of measurements, by exploiting the fact that many natural signals are in fact sparse when

represented at a certain appropriate basis. CS designs sampling techniques that condense the information of

a compressible signal into a small amount of data. This offers the possibility of performing fewer mea-

surements than previously appreciated, thus lowering costs and simplifying data-acquisition methods for

various types of signals in many distantly related fields such as magnetic resonance imaging (Lustig et al.,

2007), single pixel camera (Duarte et al., 2008), geophysics (Lin and Herrmann, 2007), and astronomy

(Bobin et al., 2008). Recently, CS has been applied to various problems in computational biology, for

example, for pooling designs for re-sequencing experiments (Erlich et al., 2010; Shental et al., 2010), for

drug-screenings (Kainkaryam and Woolf, 2009), and for designing multiplexed DNA microarrays (Dai

et al., 2009), where each spot is a combination of several different probes.

The classical CS problem is solving the under-determined linear system,

Av¼ b (1)

where v¼ (v1‚ . . . ‚ vN ) is the vector of unknown variables, A is the sensing matrix, often called also the

mixing matrix, and b¼ (b1‚ . . . ‚ bk) are the measured values of the k equations, with the number of

variables N far greater than the number of equations k. Without further information, v cannot be re-

constructed uniquely since the system is under-determined. Here one uses an additional sparsity assumption

on the solution—by assuming that the solution vector v has at most s non-zero entries, for some s / N.

According to the CS theory, when the matrix A satisfies certain conditions, one can find the sparsest

solution uniquely by using a number of equations, k = O(s log(N/s)), which is only logarithmic in the

number of unknowns N, instead of a linear number (N) needed for general solution of a linear system. One

notable such sufficient condition on the matrix A is the Restricted Isometry Property (RIP) (Candes and

Tao, 2005; Candes et al., 2006). Briefly, RIP for a matrix A means that any subset of 2s columns of A is

‘‘almost orthogonal’’ (although since k < N, the columns cannot be perfectly orthogonal). This property

makes the matrix A ‘‘invertible’’ for sparse vectors v with sparsity s, and allows accurate recovery of v

from eq. (1) (Candes and Tao, 2005; Candes et al., 2006).

In this article, we show an efficient application of a single Sanger-sequencing for bacterial communities

reconstruction using CS. The sparsity assumption is fulfilled by noting that although numerous species of

bacteria have been characterized and are present on earth, at a given sample typically only a small fraction

of them are present at significant levels.

The proposed Bacterial Compressed Sensing (BCS) algorithm uses as inputs a database of known 16S

rRNA sequences and a single Sanger-sequence of the unknown mixture, and returns the sparse set of

bacteria present in the mixture and their predicted frequencies. We show a successful reconstruction of

simulated mixtures containing dozens of bacterial species out of a database of tens of thousands, using

realistic biological parameters. In addition, we demonstrate the applicability of our method for a real

sequencing experiment using a toy mixture of five bacterial species.

2. METHODS

2.1. The BCS algorithm

In the Bacterial Community Reconstruction Problem, we are given a bacterial mixture of unknown

composition. In addition, we have at hand a database of the orthologous genomic sequences for a specific

known gene, which is assumed to be present in a large number of bacterial species (in our case, the gene

used was the 16S rRNA gene). Our purpose is to reconstruct the identity of species present in the mixture,

as well as their frequencies, where the assumption is that the sequences for the gene in all or the vast

majority of species present in the mixture are available in the database. The input to the reconstruction

algorithm is the measured Sanger sequence of the gene in the mixture (Fig. 1). Since Sanger sequencing

proceeds independently for each DNA molecule present in the sample, the sequence chromatogram of the
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mixture corresponds to the linear combination of the constituent sequences, where the linear coefficients

are proportional to the abundance of each species in the mixture.

Let N be the number of known bacterial species present in our database. Each bacterial population is

characterized by a vector v¼ (v1‚ . . . ‚ vN) of frequencies of the different species. Denote by s = kvk[0 the

number of species present in the sample, where k $ k[0 is the [0 norm which simply counts the number of

non-zero elements of a vector jjvjj‘0¼+
i
1fvi 6¼0g. While the total number of known species N is usually very

large (in our case, on the order of tens to hundreds of thousands), a typical bacterial community consists of

a small subset of the species, and therefore in a given sample, s / N, and v is a sparse vector. We denote

the database sequences by a matrix S, where Sij is the j’th nucleotide in the orthologous sequence of the i’th

species (i¼ 1‚ ::‚ N‚ j¼ 1‚ ::‚ k).

We represent the results of the mixture Sanger sequencing as a 4 · k Position-specific-Score-Matrix

(PSSM)

P¼

a1 a2 � � � ak

c1 c2 � � � ck

g1 g2 � � � gk

t1 t2 � � � tk

0
BB@

1
CCA¼

a

c

g

t

0
BB@

1
CCA (2)

where pj = (aj, cj, gj, tj)
t is a column vector representing the observed frequencies at sequence position j of

the four nucleotides, with aj, cj, gj, tj ‡ 0.

Each position in the mixed sequence gives information about the bacterial composition of the mixture.

For example, if at a certain position j, the frequency aj of ‘‘A’’ in the mixed sequence is 0, and assuming no

measurement noise is present, it follows that all bacteria which have ‘‘A’’ at the j’th position of their

orthologous gene are not present in the mixture, and their corresponding frequencies in the solution vector

must be zero. More generally, the frequency of each nucleotide at a given position j gives a linear constraint

on the mixture:

+
N

i¼ 1

vi1fSij ¼ ‘‘A’’g ¼ aj (3)

and similarly for the nucleotides ‘‘C’’, ‘‘G’’, and ‘‘T’’. We next define the k · N mixture matrix A for the

nucleotide ‘‘A’’,

Aij¼ 1 Sij¼ ‘‘A’’

0 otherwise

n
(4)

and similarly for the nucleotides ‘‘C’’, ‘‘G’’, and ‘‘T’’. The constraints given by the sequencing reaction can

therefore be expressed in matrix form as:

Av¼ a‚ Cv¼ c‚ Gv¼ g‚ Tv¼ t (5)

The crucial assumption we make in order to cope with the insufficiency of information is the sparsity of

the vector v, which reflects the fact that only a small number of species are present in the mixture. We

therefore seek a sparse solution for the set of equations (5). CS theory shows that under certain conditions

on the mixture matrix and the number of measurements, the sparse solution can be recovered uniquely by

solving the following minimization problem (Candes and Tao, 2006; Donoho, 2006b; Tropp, 2006),

v� ¼ argmin
v
jjvjj‘1¼ argmin

v
+
N

i¼ 1

jvij s:t: Av¼ a‚ Cv¼ c‚ Gv¼ g‚ Tv¼ t (6)

which is a convex optimization problem whose solution can be obtained in polynomial time. The above

formulation requires our measurements to be precisely equal to their expected value based on the species

frequency and the linearity assumption for the measured chromatogram. This description ignores the effects

of noise, which is typically encountered in practice, on the reconstruction. Measurements of the signal

mixtures suffer from various types of noise and biases. Fortunately, the CS paradigm is known to be robust

to measurement noise (Candes and Tao, 2007; Candes et al., 2006). One can cope with noise by enabling

a trade-off between sparsity and accuracy in the reconstruction merit function, which in our case is

formulated as,
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v� ¼ argmin
v

1

2

�
jja�Avjj2‘2þ jjc�Cvjj2‘2þ jjg�Gvjj2‘2þ jjt� Tvjj2‘2)þ sjjvjj‘1 (7)

This problem represents a more general form of eq. (6) and accounts for noise in the measurement

process. This is utilized by insertion of an [2 quadratic error term. The parameter s determines the relative

weight of the error term vs. the sparsity promoting term, with higher levels of s leading to a sparser

solution. Many algorithms which enable an efficient solution of problem (7) are available, and we have

chosen the widely used GPSR algorithm (Figueiredo et al., 2007). The error tolerance parameter was set to

s = 10 for the simulated mixture reconstruction, and s = 100 for the reconstruction of the experimental

mixture. These values achieved a rather sparse solution in most cases (a few species reconstructed with

frequencies above zero), while still giving a good sensitivity—our ability to identify correctly species

present in the mixture is not compromised significantly. The performance of the algorithm was quite robust

to the specific value of s used, and therefore further optimization of the results by fine tuning s was not

followed in this study.

2.2. Ribosomal DNA database

16S rRNA gene sequences were obtained from grenegenes (greengenes.lbl.gov) using database version

06-2007 (DeSantis et al., 2006), which contains approximately 136, 000 chimera checked full-length

sequences. Sequences were reverse complemented and aligned with primer 1510R (Gao et al., 2007),

resulting in approximately 42,000 sequences matching the primer sequence (with up to six mismatches with

the primer). Out of this set, sequences with up to two base-pair difference with another sequence in the

database were removed, resulting in N = 18, 747 unique sequences which were used in this study. This last

step was used for two purposes: first, to unite closely related species and enable a coarser identification of

species in the mixture (since the information provided by the sequencing may not suffice to distinguish

between very close species), and second, to reduce input size to the GPSR algorithm, thus making the CS

problem more computationally feasible.

We manually added the sequence of Enterococcus faecalis (ATCC no. 19433) to the unique sequences

list, as it was used in the experimental mixture but did not appear in the database (closest database species

has 32 different positions).

2.3. Experimental mixture reconstruction

2.3.1. Sample preparation. We used the following strains for the experimental reconstruction: Es-

cherichia coli W3110, Vibrio fischeri, Staphylococcus epidermidis (ATCC no. 12228), Enterococcus

faecalis (ATCC no. 19433), and Photobacterium leiognathi. We obtained the 16S rRNA gene from each

bacterial strain by boiling for one minute followed by 40 cycles of PCR amplification. Primers used for the

PCR were the universal primers 8F and 1510R (Gao et al., 2007), amplifying positions 8–1513 of the

E. coli 16S rRNA,

8F: 50-AGAGTTTGATYMTGGCTCAG

1510R: 50-TACGGYTACCTTGTTACGACTT

For mixture preparation and sequencing, we mixed together equal amounts of DNA from each bacterial

16S rRNA gene, and then sequenced them using an ABI3730 DNA Analyzer (Applied Biosystems, USA)

with the 1510R primer.

2.3.2. Preprocessing steps. The input to the BCS algorithm is a 4 · k PSSM (a, c, g, t)t of the

mixture. However, obtaining this PSSM from an experimental mixture is not trivial. The output of a

Sanger-sequencing reaction is a chromatogram, which describes the fluorescence of the four terminal

nucleotides as a function of sequence position. In classical single-species sequencing, each peak in the

chromatogram corresponds to a single nucleotide in the sequence. Identifying the peaks becomes more

complicated when sequencing a mixture of different sequences. It has been previously shown (Bowling

et al., 1991; Nickerson et al., 1997) that chromatogram peak height and position depend on the local

sequence of nucleotides preceding a given nucleotide. Therefore, when performing Sanger sequencing of a

mixture of multiple DNA sequences, the peaks of the constituent sequences may lose their coherence,

making it nearly impossible to determine where the chromatogram peaks are located.
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We therefore opted for a slightly different approach for chromatogram preprocessing, which does not

depend on identifying the peak for each nucleotide. Rather, we bin the chromatogram into constant sized

bins, and use the total intensity of each of the four nucleotides in each bin to construct the PSSM used as

input to the BCS (see Fig. 9A below). A similar process is applied to each sequence in the 16S rRNA

database. In order to correct for local-sequence effects, statistics were collected for local-sequence de-

pendence of peak height and position. Similar statistics are used to obtain quality scores for single-sequence

chromatogram base-calling in the Phred algorithm (Ewing and Green, 1998; Ewing et al., 1998). By

utilizing these statistics, we predict the chromatogram for each sequence in the database, which is then

binned and results in a PSSM for the single sequence.

Figure 10 below shows the inherent variation in chromatogram peak distances and heights, a substantial

part of it is due to local sequence context, while Figure 11 below shows that considering these local

sequence effects significantly improves our estimation of chromatogram peak locations and heights. The

database of predicted PSSMs is then used to construct the mixing matrices A, C, G, T participating in the

BCS problem representation (see eq. (7) and Fig. 9B below). We give further details on the chromatogram

and database preprocessing steps in Appendices A and B, respectively.

3. RESULTS

3.1. Simulation results

In order to asses the performance of the proposed BCS reconstruction algorithm, random subsets of

species from the greengene database (DeSantis et al., 2006) were selected. Within these subsets, the relative

frequencies of each species were drawn at random from a uniform frequency distribution normalized to

sum to one (results for a different, power-law frequency distribution, are shown later), and the mixture

Sanger-sequence PSSM was calculated. This PSSM was then used as the input for the BCS algorithm,

which returned the frequencies of database sequences predicted to participate in the mixture (Fig. 1).

A sample of a random mixture of 10 sequences, and a part of the corresponding mixed sequence PSSM,

are shown in Figure 2A,B, respectively. Results of the BCS reconstruction using a 500 bp long sequence are

shown in Figure 2C. The BCS algorithm successfully identified all of the species present in the original

mixture, as well as several false positives (species not present in the original mixture). The largest false

positive frequency was 0.01, with a total fraction of 0.04 false positives. In order to quantify the perfor-

mance of the BCS algorithm, we used two main measures: RMSE and recall/precision. RMSE is the Root-

Mean Squared-Error between the original mixture vector and the reconstructed vector, defined as

RMSE(v‚ v�)¼ jjv� v�jj‘2¼ (+N

i¼ 1
(vi� v�i )2)1=2. This measure accounts both for the presence or absence of

species in the mixture, as well as their frequencies. In the example shown in Figure 2, the RMSE score

of the reconstruction was 0.03. As another measure, we have recorded the recall, defined as the fraction of

species present in the original vector v, which were also present in the reconstructed vector v* (this is also

known as sensitivity), and the precision, defined as the fraction of species present in the reconstructed

FIG. 2. Sample reconstruction of a

simulated mixture. (A). Frequencies

and species for a simulated random

mixture of s = 10 sequences. Species

were randomly selected from the 16S

rRNA database, with frequencies

generated from a uniform distribu-

tion. (B). A 20 nucleotide sample

region of the PSSM for the mixture in

(A). (C). True vs. predicted frequen-

cies for a sample BCS reconstruction

for the mixture in (A) using k = 500

bases of the simulated mixture. Red

circles denote species returned by the

BCS algorithm which are not present

in the original mixture.

A

B

C
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vector v*, which were also present in the original mixture vector v. Since the predicted frequency is a

continuous variable, whereas the recall/precision relies on a binary categorization, a minimal threshold for

calling a species present in the reconstructed mixture was used before calculating the recall/precision scores.

3.1.1. Coherence of database sequences. As detailed in the previous sections, the CS theory

requires the columns of the mixing matrix to be incoherent, that is, close to orthogonal (e.g., satisfy the RIP

condition [Candes, 2008]), in order to allow successful reconstruction using a small number of measure-

ments. In our case, this cannot be achieved, as we were given the sequences determining the mixing matrix

and cannot control them.

It has previously been shown (Ben-Haim et al., 2010, Tropp, 2006) that a computationally feasible

method for assessing the information content of the mixing matrix is the mutual coherence, defined as the

maximal coherence (inner product) between two columns of the mixing matrix. We therefore analyzed the

empirical coherence distribution of sequences present in the current database. Even though the sequences

are orthologous and thus quite similar, insertions and deletions came to our aid, as they bring similar

sequences to being out of phase (e.g., even a deletion of a single base from a sequence, reduces its

correlation with a copy of itself from one to a number typically much lower).

The distribution of coherence values for random pairs of database species is shown in Figure 3. While

most correlations are centered around 0.25, there exists a small fraction of highly correlated sequences,

with 0.005 of the sequence pairs showing a correlation above 0.8, and a maximal correlation value of 0.998.

This high mutual coherence value places a limit on the reconstruction performance in the worst case, when

such a sequence is present in the mixture. Since the database contains another highly similar sequence,

distinguishing between these two is very difficult, and therefore the CS reconstruction cannot guarantee

complete accuracy. However, given that such similar sequences are typically of closely related species

(thus not being able to distinguish between them may be considered acceptable) and since most of the

sequences show near random coherence, the reconstruction in most of the cases may still require only a

small number of measurements (which translates into a small number of nucleotides read in the se-

quencing).

3.1.2. Effect of sequence length. To determine the typical sequence length required for recon-

struction, we tested the BCS algorithm performance using different sequence lengths. In Figure 4A (black

line), we plot the reconstruction RMSE for random mixtures of 10 species. To enable faster running times,

each simulation used a random subset of N = 5000 sequences from the sequence database for mixture

generation and reconstruction. It is shown in Figure 4A that using longer sequence lengths results in a

larger number of linear constraints and therefore higher accuracy, with *300 nucleotides sufficing for

accurate reconstruction of a mixture of 10 sequences. The large standard deviation is due to a small

FIG. 3. Coherence distribution of the 16S rRNA se-

quences. Coherence (inner product) of 107 16S rRNA

vector pairs chosen randomly from the sequence data-

base (*5.7% of all possible pairs). As each column of

the mixture matrix is a binary vector with 1/4 of the

coordinates being one, the dot product between two

randomly generated vectors is expected to be *0.25.

While most 16S rRNA database pairs exhibit a coher-

ence around 0.25, many pairs exhibit significantly

higher correlations, with a few (*0.5%) even exceed-

ing 0.8 (see inset).
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probability of selection of a similar but incorrect sequence in the reconstruction, which leads to a high

RMSE. Due to a cumulative drift in the chromatogram peak position prediction, typical usable experi-

mental chromatogram lengths are in the order of k* 500 bases rather than the *1000 bases usually

obtained when sequencing a single species.

In order to asses the effect of similarites between the database sequences (which leads to high coherence

of the mixing matrix columns) on the performance of the BCS algorithm, a similar mixture simulation was

performed using a database of random nucleotide sequences (i.e., each sequence was composed of i.i.d.

nucleotides with 0.25 probability for ‘‘A,’’ ‘‘C,’’ ‘‘G,’’ or ‘‘T’’). Using a mixing matrix derived from these

random sequences, the BCS algorithm showed better performance (green line in Fig. 4A), with *100

nucleotides sufficing for a similar RMSE as that obtained for the 16S rRNA database using 300 nucleotides.

3.1.3. Effect of number of species. For a fixed value of k = 500 nucleotides per sequencing run, the

effect of the number of species present in the mixture on reconstruction performance is shown in Figure 4B,C.

Even on a mixture of 100 species, the reconstruction showed an average RMSE less than 0.04, with the highest

false positive reconstructed frequency (i.e., frequency for species not present in the original mixture) being less

than 0.01. Using a minimal frequency threshold of 0.0025 for calling a species present in the reconstruction,

the BCS algorithm shows an average recall of 0.75 and a precision of 0.85. Therefore, while the sequence

database did not perform as well as random sequences, the 16S rRNA sequences exhibit enough variation to

enable a successful reconstruction of mixtures of tens of species with a small percent of errors.

The frequencies of species in a biologically relevant mixture need not be uniformly distributed. For

example, the frequency of species found on the human skin (Gao et al., 2007) were shown to resemble a power-

law distribution. We therefore tested the performance of the BCS reconstruction on a similar power-law

distribution of species frequencies with with vi* i - 1. Performance on such a power-law mixture is similar to

the uniformly distibuted mixture (blue and green lines in Fig. 4B, respectively) in terms of the RMSE. A

sample power-law mixture and reconstruction are shown in Figure 5A,B. The recall/precision of the BCS

algorithm on such mixtures (Fig. 5C) is similar to the uniform distribution for mixtures containing up to 50

species, with degrading performance on larger mixtures, due to the long tail of low frequency species.

3.1.4. Effect of noise on BCS solution. Experimental Sanger sequencing chromatograms contain

inherent noise, and we cannot expect to obtain exact measurements in practice. We therefore turned to

study the effect of noise on the accuracy of the BCS reconstruction algorithm. Measurement noise was

modeled as additive i.i.d. Gaussian noise zij*N(0, r2) applied to each nucleotide read at each position.

Noise is compensated for by the insertion of the [2 norm into the minimization problem (see eq. (7)), where

the factor s determines the balance between sparsity and error-tolerance of the solution. The effect of added

random i.i.d. Gaussian noise to each nucleotide measurement is shown in Figure 6. The reconstruction

performance slowly degrades with added noise both for the real 16S rRNA and the random sequence

database.

A B CFIG. 4. Reconstruction of simu-

lated mixtures. (A). Effect of se-

quence length on reconstruction

performance. RMSE between the

original and reconstructed fre-

quency vectors for uniformly dis-

tributed random mixtures of s = 10

species from the 16S rRNA data-

base (black) or randomly generated

sequences (green). Error bars de-

note the standard deviation derived from 20 simulations. (B). Dependence of reconstruction performance on number of

species in the mixture. Simulation is similar to (A) but using a fixed sequence length (k = 500) and varying the number

of species in the mixture. Blue line shows reconstruction performance on a mixture with power-law distributed species

frequencies (vi* i - 1). (C). Recall (fraction of sequences in the mixtures identified, shown in red) and precision

(fraction of incorrect sequences identified, shown in black) of the BCS reconstruction of uniformly distributed database

mixtures shown as black line in (B). The minimal reconstructed frequency for a species to be declared as present in the

mixture was set to 0.25%.
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Using a noise standard deviation of r = 0.15 (which is the approximate experimental noise level) and

sequencing 500 nucleotides, the reconstruction performance as a function of the number of species in the

mixture is shown in Figure 7. Under this noise level, the BCS algorithm reconstructed a mixture of 40

sequences with an average RMSE of 0.07 (Fig. 7B), compared to *0.02 when no noise is present (Fig. 4B).

By using a minimal frequency threshold of 0.006 for the predicted mixture, BCS showed a recall (sen-

sitivity) of *0.7, with a precision of *0.7 (Fig. 7B), attained under realistic noise levels. To conclude, we

have observed that the addition of noise leads to a graceful degradation in the reconstruction performance,

and one can still achieve accurate reconstruction with realistic noise levels.

3.2. Reconstruction of an experimental mixture

While these simulations show promising results, they are based on correctly converting the experi-

mentally measured chromatogram to the PSSM used as input to the BCS algorithm (Fig. 1). A major

problem in this conversion is the large variability in the peak heights and positions observed in Sanger

sequencing chromatograms (see Fig. 10 below). It has been previously shown that a large part of this

variability stems from local sequence effects on the polymerase activity (Lipshutz et al., 1994). In order to

overcome this problem, we utilize the fact that both peak position and height are local sequence dependent,

in order to accurately predict the chromatograms of the sequences present in the 16S rRNA database. The

CS problem is then stated in terms of reconstruction of the measured chromatogram using a sparse subset of

predicted chromatograms for the 16S rRNA database. This is achieved by binning both the predicted

chromatograms and the measured mixture chromatogram into constant sized bins, and applying the BCS

algorithm on these bins (Fig. 9).

We tested the feasibility of the BCS algorithm on experimental data by reconstructing a simple bacterial

population using a single Sanger sequencing chromatogram. We used a mixture of five different bacteria:

Escherichia coli W3110, Vibrio fischeri, Staphylococcus epidermidis, Enterococcus faecalis, and Photo-

bacterium leiognathi. A sample of the measured chromatogram is shown in Figure 8A (solid lines). The

BCS algorithm relies on accurate prediction of the chromatograms of each known database 16S rRNA

sequence. In order to asses the accuracy of these predictions, Figure 8A shows a part of the predicted

chromatogram of the mixture (dotted lines) which shows similar peak positions and heights to the ones

experimentally measured (solid lines). The sequence position dependency of the prediction error is shown

in Figure 8B. On the region of bins 125–700, the prediction shows high accuracy, with an average root

A B C FIG. 5. Sample reconstruction of

a power-law mixture. (A). Sorted

frequency distribution of 40 random

species following a power-law dis-

tribution with frequencies vi* i - 1,

i = 1,.., 40. (B). True vs. predicted

frequencies for a sample BCS re-

construction for the mixture in (A)

using k = 500 bases of the simu-

lated mixture. Red circles denote

species returned by the BCS algorithm which are not present in the original mixture. (C). Average precision (black) and

recall (red) for the reconstruction of simulated mixtures with power-law distributed frequencies as in (A). The minimal

reconstructed frequency for a species to be declared as present in the mixture was set to 0.17%.

A B FIG. 6. Effect of noise on recon-

struction. (A). Reconstruction RMSE

of mixtures of s = 10 sequences of

length k = 500 from the 16S rRNA

sequence database (black) or random

sequences (green), with Gaussian

noise added to the chromatogram.

(B). Recall (red) and precision

(black) of the 16S rRNA database

mixture reconstruction shown in (A).
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square error of 0.08. The loss of accuracy at longer sequence positions stems from a cumulative drift in

predicted peak positions, as well as reduced measurement accuracy. We therefore used the region of bins

125–700 for the BCS reconstruction.

Results of the reconstruction are shown in Figure 8C. The algorithm successfully identifies three of the

five bacteria (Vibrio fischeri, Enterococcus faecalis, and Photobacterium leiognathi). Out of the two

remaining strains, one (Staphylococcus epidermidis) is identified at the genus level, and the other (Es-

cherichia coli) is mistakenly identified as Salmonella enterica. While Escherichia coli and Salmonella

enterica show a sequence difference in 33 bases over the PCR amplified region, only two bases are

different in the region used for the BCS reconstruction, and thus the Escherichia coli sequence was

removed in the database preprocessing stage. When this sequence is manually added to the database

(in addition to the Salmonella enterica sequence), the BCS algorithm correctly identifies the presence

of Escherichia coli rather than Salmonella enterica in the mixture. Another strain identified in the

reconstruction—the Kennedy Space Center clone KSC6-79—is highly similar in sequence (differs in five

bases over the region tested) to the sequence of Staphylococcus epidermidis used in the mixture.

4. DISCUSSION

In this work, we have proposed a framework for identifying and quantifying the presence of bacterial

species in a given population using information from a single sequencing reaction. Simulation results with

A B CFIG. 7. Reconstruction with ex-

perimental noise level. (A). Re-

construction RMSE as a function of

number of species present in the

mixture. Frequencies were sampled

from a uniform distribution. Noise

is set to r = 0.15. Sequence length

is set to k = 500. Black and green

lines represent 16S rRNA and ran-

dom sequences respectively. (B).

Recall vs. precision curves for different number of 16S rRNA sequences as in (A) obtained by varying the minimal

inclusion frequency threshold. (C). Sample reconstruction of s = 40 16S rRNA sequences from (A).

FIG. 8. Reconstruction of an ex-

perimental mixture. (A). Sample re-

gion of the mixed chromatogram

(solid lines). 16S rRNA from five

bacteria was extracted and mixed at

equal proportions. Dotted lines show

the local-sequence corrected predic-

tion of the chromatogram using the

known mixture sequences. (B). Square

root distance between the predicted

and measured chromatograms shown

in (A) as a function of bin position,

representing nucleotide position in the

sequence. Prediction error was low for

sequence positions *100–700. (C).

Reconstruction results using the BCS

algorithm. Runtime was*20 minutes

on a standard PC. Shown are the 8

most frequent species. Original strains

were: Escherichia coli, Vibrio fischeri,

Staphylococcus epidermidis, Entero-

coccus faecalis, and Photobacterium

leiognathi (each with 20% frequency).

A

B C
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noise levels comparable to the measured noise in chromatograms obtained experimentally for real sequence

indicate that our method can reconstruct mixtures of tens of species. When not enough information is

present in the sequence (e.g., when the number of sequences present in the mixture is large), performance

of the reconstruction algorithm decays gracefully, and still retains detection of the prominent species.

In order to test the applicability of the BCS algorithm to real experimental data, we performed a

reconstruction of a toy mixture containing five bacterial species. Results of the sample reconstruction

(identification of three out of five species at the strain level, and the additional two at the genus level, when

the E. coli sequence is included in the 16S rRNA database; see Section 3.2) indicate that with appropriate

chromatogram preprocessing, BCS can be applied to experimental mixtures. However, further optimization

of the sequencing and preprocessing is required in order to obtain more accurate results.

The amount of information needed for identifying the species present in the mixture is logarithmic in the

database size (Candes, 2006; Donoho, 2006a), as long as the number of the species present in the mixture is

kept constant. Therefore, a single sequencing reaction with hundreds of bases may in principle provide

sufficient information for unique reconstruction even when the database contains millions of different

sequences. Compressed Sensing enables the use of such information redundancy through the use of linear

mixtures of the sample. However, coherence between the columns of the reconstruction matrix may hinder

the reconstruction performance. The mixtures are dictated by the sequences in the database, which are

exhibit a complicated dependence structure resulting from the phylogenetic relationships of both the

species and the 16S rRNA gene. Since the mixing matrix is built using each sequence in the database

separately, our method does not rely on correct alignment of the database sequences. While two sequences

which differ in a few nucleotides have high coherence and clearly do not contribute to RIP, even a single

insertion or deletion completely brings the two sequences to being ‘‘out of phase,’’ thus making it easier to

distinguish between them using CS (provided that the insertion/deletion did not occur to close to the end of

the sequenced region). In this case, a species actually present in the mixture is likely to appear in the

solution vector with high frequency, whereas sequences of similar species that are different by one or a few

insertion or deletion events will violate the linear constrains present in our optimization criteria, and are not

likely to ‘‘fool’’ the reconstruction algorithm.

While limited to the identification of species with known 16S rRNA sequences, the BCS approach may

enable low cost simple comparative studies of bacterial population composition in a large number of

samples. The performance of our method (or any other method used for species identification) depends on

the inherent inter-species variation in the sequenced region. At the most extreme scenario, if two species

are completely identical at the 16S rRNA locus, no method will be able to distinguish between them based

on this locus alone. In the simulations we presented, we defined a species reconstruction to be accurate

when having up to 2 nucleotide difference from the original sequence. Since sequence lengths used were

typically around 500bp, the reconstruction sequence accuracy was < 0.4%. Average sequence differences

within genus has been previously measured to be approximately 3%, whereas within species is approxi-

mately 2% (Yarza et al., 2008). Therefore, one can interpret our simulation’s performance as measuring

reconstruction at sub-species resolution. However, there are a few cases of species with identical or nearly

identical 16S rRNA sequences, and therefore these species cannot be discriminated based on 16S rRNA

alone. Sequencing of additional loci (such as in the MLST database [Maiden et al., 1998]) is likely to

achieve higher reconstruction resolution. Our proposed method can easily be extended to more than one

sequencing reaction per mixture, whether they come from the same region or distinct regions, by simply

joining all sequencing results as linear constraints. This increases the amount of information available for

our reconstruction algorithm, which may enable both to overcome experimental noise present in each

sequencing reaction, and to distinguish between closely related species more accurately and at a higher

resolution.

5. APPENDIX

A: Chromatogram Preprocessing

The purpose of the chromatogram preprocessing scheme is to convert the raw measured chromatogram

data to a PSSM representing the frequency of each base at each position along the sequence in the mixture

(Fig. 9A). We provide below a formal algorithm sketch for this step, followed by a more detailed

description:
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Algorithm 1: Chromatogram preprocessing

Input: (a, c, g, t) - four fluorescent trace vectors (such as from an .abi or .scf file).

Output: P = (a, c, g, t)t—a PSSM representing nucleotide frequencies

1. Normalize the chromatogram amplitude:

ap¼
50 � 12 � ap

+25�12

q¼ � 25�12
(apþ qþ cpþ qþ gpþ qþ tpþ q)

(8)

and similarly for cp, gp and tp.

2. bin into constant sized bins, and apply a square root transformation:

aj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+
12jþ 11

p¼ 12j

ap‚

s
j¼ 1 . . . k (9)

and similarly for cj,gj,tj.

A

B

FIG. 9. Preprocessing steps. (A).

Preprocessing of the experimental

chromatogram. The result of the

Sanger-sequencing of a bacterial

mixture (I) is normalized by divi-

sion with a *1000 pixel total in-

tensity running average to

compensate for the peak amplitude

decrease. The resulting chromato-

gram (II) is binned into constant

sized bins (sample section shown in

III), and the resulting PSSM (sam-

ple section shown in IV) is further

square-root transformed to obtain

the final experimental PSSM (sam-

ple section shown in V). (B). Pre-

processing of the 16S rRNA

sequence database. Sequences are

first aligned and similar sequences

are removed. Then, a predicted

chromatogram is generated for each

sequence in the database, based on

local sequence statistics collected

from a training set. Finally, the

predicted chromatograms are binned

into constant sized binned and the

resulting PSSMs are further square-

root transformed similarly to (A), to

produce the final PSSMs which are

stored in the database.
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The input to the chromatogram preprocessing is the measured chromatogram, consisting of four fluo-

rescent trace vectors a, c, g, t, where for example ap represents the signal intensity for nucleotide ‘‘A’’ at the

p’s position along the chromatogram, where each position is represented by one pixel in the chromatogram

image. The value p corresponds roughly to the timing of the sequencing reaction, with a resolution of

approximately a dozen points per nucleotide, thus p runs from 1 to *12k (a few thousand points in a typical

chromatogram—for example, 6900 points in the experimental chromatogram described in Section 3,

corresponding to approximately 575 base-pairs).

In a typical Sanger sequencing reaction, the chromatogram peak heights decrease as the position p

becomes higher (nucleotides further in the sequence which were sequenced later in the sequencing reaction)

due to depletion of the dideoxynucleotides. To overcome this long-scale decrease in signal amplitude, prior

to the binning step, the amplitude at each position was normalized by division with average total peak

height in a *50 base-pair (bp) region around each position (see step 1 in the algorithm description below).

The resulting vectors after the normalization step are binned into constant sized bins (12 pixels per bin),

and the sum of intensity values of each bin is computed for the four different nucleotides. Then, we take

square root of this sum for the four different nucleotides for the i’th bin as the i’th column in the output

4 · k PSSM. The square root is used rather than the sum as this was shown to decrease the effect of large

outliers. The resulting 4 · k PSSM is used as input to the BCS reconstruction.

B: Database Preprocessing

The purpose of the Database Preprocessing scheme is to produce predicted PSSMs for all 16S rRNA

sequences in the database (Fig. 9B). For each sequence Si in the database sequences we compute a PSSM

Pi = (ai, ci, gi, ti)
t. These predicted PSSMs are then used in the BCS reconstruction algorithm described in

Section 2.1 as ‘‘basis vectors.’’

We use a generative model-based approach for simulating the measured PSSMs obtained from an

(hypothetical) measured chromatogram for each sequence in the database. The model generates, as an

intermediate stage, a predicted chromatogram for the input sequence. This chromatogram is then further

processed to obtain the predicted PSSM. The model captures the relations between the sequence of

nucleotides comprising a DNA molecule and the chromatogram charts obtained when sequencing such a

molecule. The main factor affecting the chromatogram shape is local-sequence context, which we modeled

by a 5th order Markov Chain. We fitted the model parameters in a preliminary step by using a training set

of sequences with experimentally available chromatograms. We describe this preliminary step in the next

section. Next, in the Database PSSMs Generation Step Section, we describe the database preprocessing step

performed once the model parameters are fully specified.

Preliminary step: Compute local-sequence adjusted chromatogram statistics. The preliminary

step fits model parameters representing context-specific peak height and width, as well as a sequence-

position dependent correction factor b used to model variation in peak position. We give a formal algorithm

sketch followed by a detailed description:

Algorithm 2: Compute local-adjusted chromatogram statistics

Input: A set of training chromatograms given as (ai, ci, gi, ti) - four fluorescent trace vectors for the i-th sequence in the

training set.

Output: H, D - tables of size 46 = 4196 of context-specific peak heights and distances, respectively. b - position-

dependent peak-peak distance parameter.

1. Determine S0 - the set of nucleotide sequences of the input chromatograms, where S0i determined by applying the

standard ABI base-caller on the i-th input chromatogram.

2. Determine chromatogram peak positions pi,j for each sequence i and position along the sequence j using the

standard ABI base-caller. Determine chromatogram peak heights hi,j as the peak height of the trace corresponding

to the base S0i‚ j returned by the ABI base-caller at position pi,j.

3. Normalize peak heights hi,j by applying local height correction similarly to step 1 of the chromatogram

preprocessing algorithm (see Algorithm 1).

4. Compute context-specific peak height averages: for a given k-mer a¼ (a1‚ . . . ‚ a6), compute the averaged peak

heights of all the occurrences of a as a k-mer in all training set sequences:

BACTERIAL COMMUNITY RECONSTRUCTION USING COMPRESSED SENSING 1735



H(a)¼+
i‚ j

1fa1 ¼ S0
i‚ j� 5

‚ ...‚ a6 ¼ S0
i‚ j
ghi‚ j

+
i‚ j

1fa1 ¼ S0
i‚ j� 5

‚ ...‚ a6 ¼ S0
i‚ j
g

(10)

5. Compute the relative peak-peak distance for each position,

di‚ j¼
pi‚ j� pi‚ j� 1

+
k

j¼ 2

pi‚ j� pi‚ j� 1

: (11)

6. Compute context-specific peak distance averages D(a) for each k-mer a by measuring the average relative peak-

peak distance between current and previous peaks:

D(a)¼
+
i‚ j

1fa1 ¼ S0
i‚ j� 5

‚ ...‚ a6 ¼ S0
i‚ j
gdi‚ j

+
i‚ j

1fa1 ¼ S0
i‚ j� 5

‚ ...‚ a6 ¼ S0
i‚ j
g

(12)

7. Fit a position-based linear model for peak distance di,j:

di‚ j¼ cþ bj (13)

and output the linear coefficient b.

In the course of the Sanger sequencing process, both the polymerase specificity for incorporating

deoxynucleotides over dideoxynucleotides and the fragment mobility depend on sequence local to the

incorporation point. Therefore for each nucleotide in the DNA fragment being sequenced, its corresponding

chromatogram peak height and position are affected by the preceding nucleotides (Lipshutz et al., 1994). In

order to predict and correct for the effect of local sequence context on the resulting chromatogram, we

collected statistics from a training set S0 of 1000 sequencing runs performed on an ABI3730 machine. Runs

were randomly selected from experiments submitted for sequencing in the Weizmann Institute sequencing

unit by various labs. The average length of the runs was approximately 800 base-pairs, providing in total

chromatogram statistics for *800,000 nucleotides. Chromatogram heights hi,j were normalized to over-

come the long-scale amplitude decrease (as described in Appendix A).

We have modeled the local sequence context by looking at the 5 nucleotides preceding each nucleotide,

giving us 46 = 4096 different unique 6-mers, each representing a possible nucleotide and the five nucle-

otides preceding it. For each unique 6-mer, the fitting step searches for all of its occurrences in S0, and

averages the peak height and position data of the last nucleotide over all such occurrences in S0. We have

used 6-mers as this gives the maximal context length for which we had sufficient statistics to collect for

each 6-mer. Approximately 200 instances were available per 6-mer on average, with a minimal number of

16 instances for one 6-mer (it is possible that a smaller local sequence context is sufficient for accurate

prediction of chromatogram heights).

The resulting final peak height and distance tables H and D, respectively, each of size 4096( = 46), are

available at www.broadinstitute.org/norzuk/publications/BCS/. While the average height and position were

1 (as was ensured by our normalizations), there was significant variability in height and position according

to sequence context, with height values H typically in the range of *0.5–1.3 and position values P in the

range of *0.8–1.2 (Fig. 10). We observed an additional sequence-independent change in peak-peak

distance in the chromatograms studied, where distance between consecutive peaks increases as we move

further along the chromatogram. We accounted for this by fitting an additional linear model based only on

the nucleotide position along the sequence according to eq. (13), giving an additional parameter of

b = 0.00036 representing increase in peak-peak distance with each position - we used this parameter later

to predict the resulting chromatograms (see eq. (15) in Algorithm 3).
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Database PSSMs Generation step: Generate a database of predicted PSSMs. This step gen-

erates predicted PSSMs for the N sequences in the 16S rRNA database S. It uses the model parameters from

the training set described in the previous Section. The sequence input S and model parameters are used to

determine peak heights and positions and thus compute a set of N chromatograms of the form (a, c, g, t),

one for each 16S rRNA gene sequence in S. We then further process these chromatograms to get predicted

PSSMs. This step is illustrated in Figure 9B. We give the details next in Algorithm 3:

Algorithm 3: Compute PSSM from chromatogram

Input: S - a set of 16S rRNA sequences from the database with maximal length denoted by k. H, D - context-specific

chromatogram peak height and distance tables. b - position-dependent peak distance parameter.

Output: A set of PSSMs Pi = (ai, ci, gi, ti)
t, one for each sequence Si in the database.

1. For every nucleotide Si,j in the database, estimate it’s chromatogram peak height:

ai‚ j¼H(Li‚ j) (14)

where Li‚ j¼ (Si‚ j� 5‚ . . . ‚ Si‚ j) denotes the local 6-mer sequence context of nucleotide j in the i-th gene sequence

(Li‚ j 2 1 . . . 46).

2. For every nucleotide Si,j in the database, estimate it’s chromatogram peak position as:

bi‚ j¼ bi‚ j� 1þD(Li‚ j)þ b � j (15)

3. For every nucleotide Si,j in the database, create a corresponding peak in the chromatogram using a Gaussian peak

function:

fi‚ j(x)¼ ai‚ je
� (x� bi‚ j )2

2c2 (16)

where x is sampled in a range [0, k] at a resolution of 1/12 thus giving 12k different x values x1‚ . . . ‚ x12k and their

corresponding fi,j values.

4. For each sequence compute the four chromatogram trace vectors. The trace vector for nucleotide ‘‘A’’ for the i-th

sequence is computed as:

ai‚ p¼ +
j

fi‚ j(xp)1fSi‚ j ¼ ‘A0g (17)

and similarly for the other three nucleotides (’C’,’G’,’T’).

5. Bin trace vectors to obtain final PSSMs: The four predicted chromatograms trace vectors (ai, ci, gi, ti) are binned

using a constant bin size of 1 and transformed via square root, according to the chromatogram preprocessing step

in eq. (9), to give a PSSM Pi = (ai, ci, gi, ti)
t for each 16S rRNA sequence Si in the database.

A B FIG. 10. Local-sequence effect

on chromatogram peak height and

position. (A). Distribution of aver-

age normalized peak-peak distances

for the 4096 sequence 6-mers. (B).

Distribution of normalized peak

heights for the 4096 sequence 6-

mers. Both distributions show a

rather wide spread around one,

showing that local sequence context

has a significant effect on peak

height and position.
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The database preprocessing step was applied for a database sequence matrix S, comprised of 18, 747

unique 16S rRNA gene sequences of average length 1,480 bases (see Section 2.2). The output is a set of

PSSMs Pi = (ai, ci, gi, ti)
t, one for each sequence Si in the database. The database processing scheme is

applied only once to the database and the predicted PSSMs are stored and can be used for any new mixture

sample obtained. It is applied to each sequence in the database independently.

We generated a chromatogram trace for a given 16S rRNA gene sequence by modeling each peak as a

Gaussian centered at the peak position and with height equal to the peak height. The widths of the

chromatogram Gaussian peaks were approximated using a constant peak width obtained by setting c = 0.4.

Each fi,j was evaluated for x values equally spaced in the entire sequence range [0,k], but has a non-

negligible contribution to the entire chromatogram only in the vicinity of the nucleotide position bi,j, as is

ensured by the Gaussian decay. A resolution of 1/12 was used as it corresponds roughly to the number of

pixels available for a single nucleotide in real chromatograms. A chromatogram was generated for each 16S

rRNA gene sequence by summing the values of obtained fi,j over all nucleotides.

A

B C

FIG. 11. Correcting for local se-

quence effects on chromatogram

peak heights and positions. (A).

Sample sequenced chromatogram

and prediction (magenta circles) of

peak heights and positions based

on local (6-mer) sequence. (B).

Distribution of peak-peak distance

differences between predicted and

measured peak positions before

(red) and after (blue) correction for

local sequence effects. The average

peak-peak distance is *12 pixels.

(C). Distribution of distance be-

tween predicted and measured

peak heights before (red) and after

(blue) correction for local se-

quence effects. Employing local

sequence context improves both

height and positions predictions.

FIG. 12. Determination of chro-

matogram offset. (A). Root square

distance between measured chro-

matogram and the chromatogram

predicted from the BCS recon-

struction. Minimal value is obtained

when position 1 in the measured

chromatogram is aligned to position

304 in the database. (B). Root

square distance between measured

chromatogram and the chromato-

gram predicted using the known

composition of the five species in

the mixture. Minimal value is ob-

tained when position 1 in the mea-

sured chromatogram is aligned to

position 304 in the database.

A B
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Alignment of predicted and measured chromatograms. Sanger-sequencing chromatograms dis-

play an initial region (*100 bases), which is highly noisy and therefore unusable. We are therefore faced

with the problem of correctly aligning the initial bin position in the measured chromatogram and the bin

positions of the predicted chromatograms. This was solved by trying the BCS reconstruction for different

initial bin offsets in the measured chromatogram, and selecting for the offset with the lowest reconstruction

root square distance (Fig. 12A). This reconstruction root square distance is calculated as the difference

between the measured chromatogram and the predicted chromatogram based the reconstructed species

frequencies. To verify the validity of this criterion, we also compared the average distance between the

measured chromatogram and the predicted mixture chromatogram obtained using the known mixture

composition (Fig. 12B), using various offsets for the measured chromatogram binning. Both methods

obtained an identical offset, which was used in the reconstruction.
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