On Smoluchowski Equations for Coagulation Processes
with Multiple Absorbing States

Shay Gueron Or Zuk
Department of Mathematics Department of Mathematics
University of Haifa Technion - Israel Institute of Technology
Haifa, 31905, ISRAEL Haifa, 32000, ISRAEL

Version of: December 11, 2000

Abstract

Smoluchowski coagulation equations propose a model for the stochastic time evolution
of a particles population in which particle clusters merge to form larger clusters, at
some given rates. These equations represent the dynamics of the expected cluster size
distribution. Since Smoluchowski equations were not derived as a rigorous description
of the underlying stochastic process, their quality in this context is not obvious.

Here, we consider the case of a finite particles population and raise the following question:
to what limit do the solutions of Smoluchowski equations converge as ¢t — oo? In
particular, we are concerned with the case where the population size is N and the
coagulation rates restrict the maximal group sizes to D. For D = N, the stochastic
process has only one absorbing state, but if D < V it may have many absorbing states.
We demonstrate here that when the D &~ N, the solutions of Smoluchowski equations
do not converge, as t — oo, to the expected cluster size distribution, but when D < N,

the convergence is to a limit which is close to the exact solution.

1 introduction

A Coagulation process (CP) describes the stochastic time evolution of a population of particles
distributed into groups (clusters) which coagulate at rates that depend only on the sizes of the
interacting groups. Such processes and their applications have been studied extensively (see

[3] for a thorough review). The process has been studied by means of the system of ODE’s
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In (1), ¢; = ¢;(t) denote the expected number of j-particle, and R; represents the coagulation
rate of clusters of size j and k into clusters of size j + k. These equations are named after
Smoluchowski who formulated them in 1916 and 1917. They involve various mathematical
problems which have been studied in many papers (see [3] for a review). When the coagula-

tion rates are positive (i.e., R, for ¢,j > 0) and the particles population is assumed to be
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infinite, infinitely large clusters may appear at finite time (this phenomenon is called gelation).
Thus, although the system (1) is formally a conservation law, the total mass is not always
conserved. Further, under such conditions, the global existence, uniqueness and positiveness,

of the solutions is not guaranteed.

The derivation of Smoluchowski equations is heuristic. Gueron [2] showed how equations
similar to (1) can be viewed as a deterministic approximation for ¢;(¢) if one ignores the
effects of correlations. The consequences of neglecting these correlations may be significant,
and therefore the value of Smoluchowski equations as an approximation for the expectation
of the stochastic process is not clear. To emphasize the difficulty of ignoring correlations, we
mention the case of coagulation-fragmentation processes where the model integral equation
(the continuous analog of Smoluchowski equations) was shown to deviate from the exact

solution [1].

In this paper we are concerned with the relation between the stochastic CP’s and Smolu-
chowski equations for a finite particles population. For positive coagulation rates, which are
those studied in the literature, the stochastic process has only one absorbing state: it al-
ways terminates with a single cluster containing the whole population. However, when the
coagulation rates bound the largest cluster that can be generated, the CP may have many ab-
sorbing states. In this context, our questions are the following: to what limit do the solutions
of Smoluchowski equations converge as ¢ — oo? Does this limit approximate the expected

steady state cluster size distribution? How are the multiple absorbing states being accounted
for?

2 The Coagulation Process

2.1 Preliminaries and definitions

Consider a population of N particles found at time t = 0, at the “solitary state” where each
particle forms a group of size 1. The population undergoes stochastic evolution of coagulation
events where any two groups can merge into a larger one. This CP is a time-homogeneous
interacting particle system whose state space is (included in) the set @ = Qy = {n} of all

partitions of N. We denote a partition of N into n; summands of size z, : = 1,2,..., N, by

N

n = (ni,ng,...,nx), where n, > 0 and sz = N. In these notations, the initial state at
=1

t =01is 1 = (N,0,0,...,0). Assuming mass action kinetics, we model the total merging

intensity, W(¢,7;7), at the state n = (ny,ng,...,ny) € Qn by



W(e,j5m) = V(2,55n0,m5) = ¥(e,7) (ning), 1#7, 2<i+j <N,
i(ng —1 .
U(i,ism) = Ui, ni,n:) = (i,9) % 92 <2 <N,

(2)

In (2), the rates of the infinitesimal (in time) transitions depend only on the sizes of the
interacting groups. For ¢ and j such that 1 <:,5 < N —1 and 2 <71+ j < N, the merging
rate of two groups of sizes ¢ and j into one group of size ¢ + j is denoted by (¢, ), where
(2, 7) is some function satisfying ¢(¢, ) = ¢(j,¢) > 0. The CP is a non-ergodic Markov chain

on Qp: from the initial state ng, it eventually reaches an absorbing state.

We denote the set of all absorbing states of the process by A. For each state 1, we denote the
probability of being in 7 at time ¢ by 7,(¢), and the probability of being in n when ¢ — oo
by m,. The CP is non-ergodic Markov chain, and therefore the existence of such a limit is

guaranteed. Clearly =, > 0 if and only if n € A.

Our study concerns the resulting expected groups size distribution f = f(i; N). Here, f(2; N)
denotes the expected number of groups of size ¢, when ¢ — oco. The expected groups size

distribution is given by
fGN)= > mnin) = > myni(n) 1=1,2,....N (3)
neQly neA

The time dependent groups size distribution is defined analogously. Note that mass conser-

vation implies

S if(iN) = N (4)

To identify the states in Q5 we sort them lexicographically and use #n to denote the ordinal

number of the state 7.

2.2 Coagulation processes with multiple absorbing states

Suppose the coagulation kernel is strictly positive, that is, ¥(¢,7) > 0 for ¢,57 > 0 such that
14+ 37 < N. Then, independently of the initial condition, the process terminates only when all
the particles are found in one cluster of size N. In other words, n = (0,0, ...,0,1) is the only

absorbing state.



D-truncated CP’s

We define here another class of CP’s, which we call D-truncated CP’s, where ¢(¢,7) > 0 <
i+ < D for some D < N. In D-truncated CP’s (starting from 7o) the size of a group never
exceeds D. Accordingly, the process may have many absorbing states as shown the following

examples.

2.3 Direct computation of the group size distribution

The group size distribution f(i; N) is a functional of the probability distribution 7. One way
to compute f(2; N) is to compute 7 first, and to obtain f(i; V) from (3).

To compute the probability distribution = we construct the transition rate matrix B, whose
entries are determined as follows. A transition accounting for the coagulation of groups
of size ¢+ # j moves the population from a state n = (ny,n9,...,ny) to the state & =
(ny,no,...,ni—1,...onj—=1, ... ng;4+1, ... ny). Inthis case, B(#n, #&) = (1, j)ni(n)n;(n).
A transition representing the coagulation of two groups of size ¢ moves the population from a
state n = (n1,n9,...,ny) to the state £ = (n1,n9,...,n;—2,...,ny;+1,...,nx). In this case,
B(#n, #&) = (1, 9)ni(n)(ni(n) — 1). For all other pairs 7, such that n # &, the transition
from n to £ cannot occur, and therefore B(#n,#£) = 0. Since the rate of leaving the state
n 1s the sum of all the rates of transitions emanating from 7, the diagonal entries of B are

determined by

n#EEy

With these definitions, the probability distribution = (t) is

w(t) = no x €7 (6)

To compute 7 (i.e., the limit as { — 00) we generate a new matrix, C', in a way that for any
n # &, C(#n, #E) is the transition probability from 5 to . This is done in the following way:

L. If B(#n,#n) # 0, then row number #n in C is obtained by dividing row number #7 in
B by —B(#n, #n).

2. If B(#n,#n) =0, 5 is an absorbing state, and the entire row of B is 0. In this case we
set C'(#n,#n) = —1 and the other entries of this row remain 0.

For each absorbing state n € A we define 1, as a vector of length |Qy]|, whose entries are 0

except for entry number #n which is set to be —1. We now consider the linear system

St Ca=1, (7)



and note that 7, is the value of x4, in the solution of S(n). Thus, in order to find 7, we
have to solve C'x = 1,, for every n € A (this requires one Gauss elimination with multiple free
columns). The solution when the initial condition is not 5 can be obtained from this system

as well.

2.4 The Smoluchowski equations

Smoluchowski equations are an attempt to approximate the group size distribution by forming
a self contained system of ODE’s with the unknowns f; = fi(¢), where f; “represents” f(i; N).

Following [2], the exact evolution equations for f;(t) read

dfi & , . Lo o tiyo
i k:%:#%fkfz—kﬁ/ﬂ(kal k) + Qf%(f% 1)@/’(27 2)(wven)
D-1
k=1 ki

with initial conditions f; = N and f; = 0 otherwise. Here, CORR, are the correlation terms,
and so far, f; and f(i; V) are the same (see [2]). To obtain a self contained system of equations
(Smoluchowski type equations) for the unknowns f;, we ignore the CORR, terms that depend
explicitly on the distribution ;.

For computing the equilibrium, we take % =0,:=1,2,..., N, in (8) and obtain a system of
quadratic equations. Any steady state of the process is a solution of this system.

The question we address here concerns the comparison between limit, when ¢ — oo, of f;,
the solution of the Smoluchowski system, and f(¢; V), the expected groups size distribution

(which we can compute directly for small populations).

3 Example 1: CP with a small population and one

absorbing state

In our first example we take N =5, and ¢(¢,j) = 1. The state space €25 has 7 states,listed in

lexicographic order
Qs = {(0,0,0,0,1),(0,1,1,0,0),(1,0,0,1,0),(1,2,0,0,0),(2,0,1,0,0),(3,1,0,0,0),(5,0,0,0,0) }

There is only one absorbing state, namely n = (0,0,0,0,1). The transition rates matrix B is



00 00 0 00
1-1 0 0 0 0 O
1 0-1 0 0 0 O

B=0 2 1-3 0 0 0 9)
01 2 0-3 0 0
00 03 3—-6 0
0 0 0 0 010-10

and the “normalized” matrix ' is

—-10 0 0 0 0 O
1-1 0 0 0 0 O
1 0-1 0 0 0 O

C=120 % %—1 0 0 0 (10)
0 % % 0-1 0 0
0 0 0 % %—1 0
0 000 0 1-1

For finite time, the group size distribution is calculated by using (12) and (6). The steady
state group size distribution (i.e., at t — o0), computed by (7), is fezaer = (0,0,0,0,1) (it

corresponds with having only one absorbing state).

The Smoluchowski equations for this case read

filt) = =A)AE) = 1) = fi) fo(8) = () (1) — fi(t) fa(t)
fo(t) = = fi(t) fat) = fat)(falt) — 1) + %fl(t)(fl(t) —1) = falt) f5(t)

1) = —AAWD) + AR — L0 0
1) = LR~ 1)+ HOAD ~ Fi)

fs(t) = fult) fa(t) + fo(t) f5(2) (11)
with the initial conditions f1(0) =5, f2(0) = f3(0) = f4(0) = f5(0) =0
The equations of (11) are, by definition, functionally dependent: adding up ¢ times equation

number 7, for ¢ = 1,2,...,5, gives an identity fl(t) + ng(t) + 3f3(t) + 4f4(t) + 5f5(t) =0,

which reflects the fact that the system (11) is a conservation law.

To compare the solution of Smoluchowski system (11) with the exact expected group size
distribution, we solved (11) numerically. Fig. 1 shows the trajectory of fi(¢) (panel a), and
fa(t) (panel b) for 0 < ¢ < 30, compared with the exact solution (which was obtained from
(6) and the definition of the expectation). As one can see, the wiggling solution of (11) is not
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a good approximation to the exact solution. Further, note that the numerical trajectory of

(11) dips below 0, which renders it completely irrelevant.

Propagating the numerical trajectory of (11) to large ¢, enables us to approximate numerically
the limit to which the system converges, and the result is fsmotuchowsti = (1,0,0,0,0.8).
Recalling that the exact expected equilibrium group size distribution is fepeer = (0,0,0,0,1),

we conclude that fs,ouchowski 18 not a good approximation.

4 Example 2: D-truncated CP (D =~ N) CP with a

small population and multiple absorbing states

We now study a D-truncated CP. We take N = 5, D = 4, (2,3) = ¢(3,2) = ¥(1,4) =
p(4,1) =0, and ¢(z,5) = 1 for all other ¢, j. The state space is €5, which was listed above.

Unlike the case with Example 1, we have here two absorbing states. These are

A={n=1(0,1,1,0,0),{ = (1,0,0,1,0)}

The transition rates matrix B is

0 0
0 0
0 0
0 0 (12)
0 0
6 0

Il
o oo o o o o
o o = o o o

and the normalized matrix C is
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To compute the probability of being absorbed in = (0,1,1,0,0) (the first absorbing state of
A), we set 1, = (0,—1,0,0,0,0,0) and solve the system S(n): Cx = 1,. The solution is

x=(0,1,0, ) (14)

[N

1
727

Lo =

Y

[ONR N W)



From (14) it follows that =, = 27 = % Recalling that there are only two absorbing states,

it follows that m¢ = 1 — &, = L i.e., the probability of being absorbed in either one of the

29
absorbing states equals % The resulting steady state group size distribution, computed by

(3), 18 fezact = (0.5,0.5,0.5,0.5,0).
The Smoluchowski equations in this case read

fit) = — RO = 1) = L0 ~ AO(0)
Folt) = = (O (0 = B~ 1) + S A ~ 1)

fs(t) = =fi(t) fs(t) + fu(t) fa(2)
fit) = SR = 1)+ FOAW)

fs(t)=0 (15)
with the initial conditions f1(0) =5, f2(0) = f3(0) = f4(0) = f5(0) = 0.

To compare the solution of (15) with the exact expected group size distribution, the system
(15) was solved numerically. Fig. 2 shows the numerical trajectory of f3(¢) (panel a), and
fa(t) (panel b) for 0 < ¢ < 30, compared with the exact solution. As with the previous
example, the wiggling solution of (15) is not a good approximation to the exact solution, and

the numerical trajectory of (15) dips below 0.

By propagating the numerical solution of (15) to large ¢, we find (numerically) that the solution
of the Smoluchowski system converges to fsmotuchowski = (1,0,0,1,0). It fails to approximate
the exact solution fe,qt = (0.5,0.5,0.5,0.5,0). Moreover, it is easy to check (by substitution)
that the exact solution fepaer = (0.5,0.5,0.5,0.5,0) does not even satisfy the Smoluchowski
equilibrium equations.

Note that in the given example, the numerical solution of Smoluchowski system converges
to one of the two absorbing states (1,0,0,1,0), whereas the expected equilibrium group size
distribution is a nontrivial linear combination of them. However, in general, the Smoluchowski
system does not necessarily converge to an absorbing state. For example, with the initial con-
dition fsmotuchowski = (3,1,0,0,0), the solution of (15) converges to ~ (0,1,0.5787,0.3159,0).
This solution is not an absorbing state and not even a linear combination of the two absorbing

states.



5 Example 3: D-truncated CP (D < N) with a large

population and multiple absorbing states and

Here we study a D-truncated CP with a large population and D < N. We take N = 100,
D =3, ¢(1,1) =¢(1,2) =(2,1) = 1 with ¢(7,j) = 0 otherwise. Here, we cannot use 19
directly because it too large. However, the relevant state space (containing only states with
group of size not exceeding 3) has only 884 states (we do not list these states here). Also,

there are 18 absorbing states, listed in lexicographic order:
A ={(0,2,32),(0,5,30),(0,8,28),(0,11,26), (0, 14,24), (0,17, 22), (0, 20, 20), (0,23, 18), (0, 26, 16),

(0,29,14), (0,32,12), (0,35, 10), (0, 38,8), (0,41,6), (0,44, 4), (0,47,2), (0, 50, 0), (1,0, 33)}

To compute 7, we solve the 884 x 884 linear system (7) with 18 free columns (one for each
absorbing state). The resulting group size distribution is fe;.. = (0.0091,7.9031,28.0616).

The Smoluchowsky equations this case reads

L) = =H(AE) = 1) = fil) f2(8)

: 1
fa(t) = =fi(t) f2(1) + §f1(t)(f1(t) —1)
folt) = Ai() fo(t) (16)
with the initial conditions f1(0) = 100, f5(0) = f3(0) = 0. This system was solved numerically,
and the solution was propagated to large ¢ in order to approximate the equilibrium group size
distribution to which the Smoluchowsky system converges as t — oco. The resulting limit is
Fsmotuchowski = (0.0000,6.4703,29.0198). This distribution is a fairly reasonable approximation

to the exact solution (note also that if we substitute the exact solution into the Smoluchowsky

equilibrium system, we get relatively small deviations from zero.)

Larger populations

Our conjecture is that as the population size N grows, the Smoluchowsky equations (at least
at equilibrium) provide a better approximation to the exact expected group size distribution.
Verifying this conjecture is difficult because computing the exact solution directly is unfeasible
for large values of NV, due to the large state space and the corresponding dimensions of the
transition rates matrix. To replace the unfeasible direct computation, we used a Monte Carlo
method to simulate the actual stochastic process (see [2] for details). Simulation of the D-

truncated CP with N = 900, D = 3, ¢(1,1) = ¥(1,2) = ¢(2,1) = 1 with ¢(s,j) = 0



otherwise, gave fxeraer = (0.0000,69.3329,253.7781). The Smoluchowsky system with these
parameters yields fs,, = (0.0000,67.9305,254.7130), which is a good approximation of the

exact solution.

6 Concluding remarks

Smoluchowsky equations are not a good model for D-truncated CP’s when D &~ N (or D = N).
This is due to the correlation between relatively large interacting groups (see [2] for details).
For small populations, we always have D ~ N (or D = N), and we demonstrated that
Smoluchowski equations produce a poor approximation to the stochastic CP. With nonpositive
coagulation kernels, there are several absorbing states. The Smoluchowski system does not
necessarily converge to the exact solution, neither to one of the absorbing states, or to a linear
combination of absorbing states, and the solutions are not positive. The same occurs for
strictly positive coagulation kernels.

For a large population and D <« N, we gave an example where the Smoluchowski system
converges, as t — 00, to a good approximation of the correct solution. We conjecture that
this is the case for finite populations with D < N.

The classical study of CP’s deals with strictly positive coagulation kernels and N = oo,
and is modeled by the infinite system of OD’s (1). Many of the mathematical difficulties and
phenomena associated with this model (e.g., violation of mass conservation) do not correspond
to analogous phenomena in a finite particles population. Note that the classical study allows
for only one absorbing state: one cluster containing the whole population. Therefore, in our
terminology, the classical Smoluchowski equations can be viewed as the limit as N — oo
of a D-truncated CP where D = N. Recalling that for finite populations, the Smoluchowski
equations for D-truncated CP’s with D = N produce a poor approximation to the exact group

size distribution, illustrates an intrinsic difficulty.
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(@) 7 (b)
Figure 1: The numerical trajectory (solid line) fo(t) (panel a), and f4(¢) (panel b), of the

Smoluchowski ODE system (11), compared with the exact expectation (dashed line). The

horizontal axis is time.

(a) (b)
Figure 2: The numerical trajectory (solid line) fo(t) (panel a), and f4(¢) (panel b), of the

Smoluchowski ODE system (15), compared with the exact expectation (dashed line). The

horizontal axis is time.
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