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Preface

These are the lecture notes for the courses “Statistical Inference and Applications A”
(52303)/ “Theory of Statistics” (52314) I have taught at the Statistics Department of the Hebrew
University during the fall semesters of 2009-2012 .

The course is divided into two parts: the introduction to multivariate probability theory
and introduction to mathematical statistics. The probability is served on an elementary (non-
measure theoretic) level and is similar in the spirit to the corresponding part of Casella & Berger
text [3] ([14] is my choice for a deeper insight into probability theory).

The statistical part is in the spirit of Bickel & Doksum [1], Casella & Berger [3]. For an
in depth reading the comprehensive classical texts are recommended: Lehmann & Casella [8],
Lehmann & Romano [9], Borovkov[2]. The text of Shao [12] (comes with the solutions guide
[13] to the exercises) is highly recommended, if your probability is already measure theoretic.
The book of Ibragimov and Khasminskii [6] is an advanced treatment of the asymptotic theory
of estimation (both parametric and non-parametric). A.Tsybakov’s [15] is an excellent text,
focusing on the nonparametric estimation. Finally, the papers [16] and [7] contain the proofs of
some facts, mentioned in the text.

Please do not hesitate to e-mail your comments/bug reports to the author.

P.Ch., 21/01/2013
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Part 1

Probability





CHAPTER 1

Probabilistic description of a single random variable

a. Probability space

In probability theory the outcomes of experiments are identified with points in a set Ω, called
the sampling space. Subsets of Ω are called events and an event A is said to have occurred, if
the realized ω ∈ Ω belongs to A. Probability measure P is a function which assigns numbers in
[0, 1] to events. It is required to satisfy the normalization property P(Ω) = 1 and additivity1:

A ∩B = ∅ =⇒ P(A ∪B) = P(A) + P(B).

In words, this means that if A and B are mutually exclusive, the probability of either A or B
to occur is the sum of their individual probabilities.

For technical reasons, beyond our scope, one cannot define many natural probability mea-
sures on all the subsets of Ω, if it is uncountable, e.g., Ω = R. Luckily it can be defined on
a rich enough collection of subsets, which is denoted by F and called the σ-algebra2 of events.
The triple (Ω,F,P) is called probability space. In general construction of probability measures
on (Ω,F) can be a challenging mathematical problem, depending on the complexity of Ω (think
e.g. about Ω consisting of all continuous functions).

Probability measures on Ω := Rd can always be defined by the cumulative distribution
functions (or c.d.f. in short). Hence in this course, a probability measure will be always identified
with the corresponding c.d.f. For d = 1, a function F : R 7→ [0, 1] is a legitimate c.d.f. if and
only if it satisfies the following properties

(i) F is a nondecreasing function

(ii) limx→∞ F (x) = 1

(iii) limx→−∞ F (x) = 0

(iv) F is right continuous

The probability measure of semi-infinite intervals is defined by the formulas

P
(
(−∞, x]

)
:= F (x), and P

(
(−∞, x)

)
:= lim

ε↘0
F (x− ε) =: F (x−)

and is extended to other types of intervals or their finite (or countable) unions through additivity.
For example, since (−∞, a] ∪ (a, b] = (−∞, b] for a < b, by additivity

P
(
(−∞, a]

)
+ P

(
(a, b]

)
= P

(
(−∞, b]

)
1in fact, a stronger property of σ-additivity is required, but again this is way beyond our scope.
2the term σ-algebra comes from the fact that F is to be closed under taking compliments and countable

unions or intersections
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10 1. PROBABILISTIC DESCRIPTION OF A SINGLE RANDOM VARIABLE

and hence

P
(
(a, b]

)
= F (b)− F (a). (1a1)

Similarly, probabilities of other intervals, e.g. [a, b), [a, b], etc. or unions of intervals are defined.
In fact, this assignment defines P on subsets (events), much more general than intervals, but we
shall rarely need to calculate such probabilities explicitly. These definitions explain the need for
the conditions (i)-(iv).

The c.d.f. is said to be purely discrete (atomic) if it is a piecewise constant function with
jumps at xk ∈ R, k ∈ N with the corresponding sizes {pk}:

F (x) =
∑

k:xk≤x
pk, x ∈ R. (1a2)

In this case,

P({xk}) = F (xk)− F (xk−) = pk,

i.e. each value xk is assigned a positive probability pk (check that (i)-(iv) imply pk > 0 and∑
k pk = 1). Often {xk} = N, in which case {pk} is referred to as probability mass function

(p.m.f.) Here are some familiar examples

Example 1a1 (Bernoulli distribution). Bernoulli distribution with parameter p ∈ (0, 1),
denoted Ber(p), has the c.d.f.

F (x) =


0 x ∈ (−∞, 0)

1− p x ∈ [0, 1)

1 x ∈ [1,∞)

This function satisfies (i)-(iv) (sketch a plot and check). We have

P(X = 0) = F (0)− F (0−) = 1− p, and P(X = 1) = F (1)− F (1−) = 1− (1− p) = p.

For any y ̸∈ {0, 1},
P(X = y) = F (y)− F (y−) = 0,

since F (y) is continuous at those y’s. �
Example 1a2 (Poisson distriution). The Poisson distribution with rate parameter λ > 0

has piecewise constant c.d.f with jumps at {0, 1, ...} = {0} ∪ N =: Z+ and its p.m.f. is given by

P(X = k) =
e−λλk

k!
, k ∈ Z+

Hence e.g.

P (X ∈ [3, 17.5]) = F (17.5)− F (3−) = F (17)− F (3−) =
17∑
k=3

e−λλk

k!
.

The latter expression can be evaluated numerically if λ is given as a number (rather as a symbolic
variable). Also

F (x) =
∑
k:k≤x

e−λλk

k!
.

�



B. RANDOM VARIABLE 11

Other examples of discrete distributions are Geometric, Hypergeometric, Binomial, etc.
If F has the form

F (x) =

∫ x

−∞
f(u)du (1a3)

for some function f , it is said to have density f (check that (i)-(iv) imply
∫
R f(u)du = 1 and

that f(u) ≥ 0, if it is continuous). Of course, in general c.d.f may increase in other ways, e.g.
to have both jumps and continuous parts.

Note that a continuous c.d.f. assigns zero probability to each point in Ω. Does this imply
that we cannot get any particular outcome? Certainly not, since P(Ω) = 1. This seemingly
paradoxical situation is quite intuitive: after all, drawing 1/2 or any other number from the
interval [0, 1] with the uniform distribution on it feels like impossible. Mathematically, this is
resolved by means of the measure theory, which is the way probability is treated rigorously3.

Example 1a3. Normal (Gaussian) c.d.f. N(µ, σ2) with mean µ ∈ R and variance σ2 > 0
has the density

f(x) =
1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
, x ∈ R.

�
Other frequently encountered p.d.f’s are Exponential, Cauchy, Gamma, etc.

b. Random variable

Functions on the sampling space are called random variables. We shall denote random
variables by capital letters to distinguish them from the values they take. A random variable
X : Ω 7→ R generates events of the form {ω ∈ Ω : X(ω) ∈ A}, where A is a subset of R, e.g. an
interval. The function

FX(x) := P
(
{ω ∈ Ω : X(ω) ∈ (−∞, x]}

)
is called the c.d.f. of the random variable X. It defines the probabilities of the events, generated
by X, similarly to (1a1). In fact, for the coordinate random variables X(ω) := ω, the c.d.f. of
X coincides with the c.d.f., which defines P:

FX(x) = P({ω ∈ Ω : X(ω) ≤ x}) = P({ω ∈ Ω : ω ≤ x}) = F (x). (1b1)

For other random variables, FX is always a c.d.f., but the connection between FX and F can be
more complicated.

Example 1b1. One simple yet important example of r.v. is the indicator of an event A:

I(A) :=

{
1, ω ∈ A

0, ω ∈ Ac.

Since I(A) ∈ {0, 1}, it is in fact a Bernoulli r.v. with parameter P(I(A) = 1) = P(A).

It is customary in probability theory not to elaborate the structure of the function X(ω) and
even omit ω from the notations, but just specify the corresponding c.d.f. FX . This is sufficient
in many problems, since FX defines probabilities of all the events, generated by X, regardless
of the underlying probability space.

3consult books, if you are curious. My favorite text on the subject is [14]
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A random variable X is said to be discrete (atomic) or to have a density according to the
type of its c.d.f. Also random variables inherit names from their distributions, e.g., X ∼ Poi(λ)
means that the c.d.f. of X is Poi(λ).

Here is a simple example of a random variable, whose c.d.f have both discrete and continuous
parts:

Example 1b2. Let X ∼ U([0, 1]) and set Y = max(1/2, X). Clearly Y takes values in
[1/2, 1]. Hence for x < 1/2,

FY (x) = P(Y ≤ x) = 0.

Further,
FY (1/2) = P(Y ≤ 1/2) = P(X ≤ 1/2) = 1/2

and for x > 1/2,
FY (x) = P(Y ∈ [1/2, x]) = P(X ∈ [0, x]) = x.

To summarize,

FY (x) =


0, x < 1/2

1/2, x = 1/2

x, x ∈ (1/2, 1]

1, x > 1

Hence Y has an atom at {1/2} and a continuous nontrivial part. �

c. Expectation

Expectation of a random variable is averaging over all its possible realizations. More pre-
cisely, given a function g, defined on the range of the r.v. X

Eg(X) :=
∑
i

g(xi)P(X = xi) =
∑
i

g(xi)
(
FX(xi)− FX(xi−)

)
=

∑
i

g(xi)∆FX(xi) =:

∫
R
g(x)dFX(x),

if X is discrete, and

Eg(X) =

∫
R
g(x)fX(x)dx =:

∫
R
g(x)dFX(x),

if X has p.d.f. fX(x). Note that in the two cases the notation
∫
R g(x)dFX(x) is interpreted

differently, depending on the context4.
For particular functions g(·), expectation has special names: e.g. EX is the mean of X, EXp

is the p-th moment of X, E(X − EX)2 is the variance of X, etc.

Example 1c1. For5 X ∼ Poi(λ),

EX =

∞∑
k=0

k
e−λλk

k!
= ... = λ,

4you can think of dFX(x) = fX(x)dx if F ′
X(x) = fX(x) and dF (x) = ∆FX(x) if FX(x) has a jump at x.

However, do not think that this is just a caprice of notations: in fact,
∫
g(x)dF (x) makes perfect sense as the

Lebesgue integral.
5“= ... =” means that an obvious calculation is omitted
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and for X ∼ N(µ, σ2)

EX =

∫
R
x

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx = ... = µ,

and

Var(X) = E(X − EX)2 = E(X − µ)2 =

∫
R
(x− µ)2

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx = ... = σ2

�
Being an integral (or series), expectation of g(X) does not have to be finite or even well

defined:

Example 1c2. Recall that X is a Cauchy r.v. if it has the density

fX(x) =
1

π

1

1 + x2
, x ∈ R.

Consider g(x) := |x|1/2, then

E|X|1/2 =
∫
R

|x|1/2

π

1

1 + x2
dx := lim

N→∞

∫ N

−N

|x|1/2

π

1

1 + x2
dx = ... = π/

√
2.

Now let g(x) = |x|:

E|X| =
∫
R

|x|
π

1

1 + x2
dx := lim

N→∞

∫ N

−N

|x|
π

1

1 + x2
dx = ∞,

since the function x/(1+x2) behaves as 1/x for large x, whose integral behaves as logN . Notice
E|X| would be the same if we used a different limiting procedure in the above improper integral,
e.g. if instead of −N we would have taken −2N .

Something different happens, if we try to calculate EX: the choice of the upper and lower
integration limits before going to ∞ changes the value of the integral completely. For example,

lim
N→∞

∫ N

−N

x

π

1

1 + x2
dx = 0,

since the function is antisymmetric and

lim
N→∞

∫ N

−2N

x

π

1

1 + x2
dx = lim

N→∞

∫ −N

−2N

x

π

1

1 + x2
dx = ... = −∞.

Hence EX cannot be defined in this case unambiguously. If we still insist on defining EX e.g. by
choosing the symmetric case as above, the emerging object may not satisfy the usual properties
of expectations (see below), which limits severely its usefulness. �

For non-negative (non-positive) r.v. the expectation is always defined, possibly taking infinite
value. Furthermore, the expectation of a r.v. X is well defined and finite, if E|X| <∞.

Expectation satisfies a number of useful and important properties, including

(1) “monotonicity”6

X ≥ 0 =⇒ EX ≥ 0.

(2) Ec = c for a constant c (note that a constant can be viewed as a r.v. as well)

6make sure you understand what X ≥ 0 means when X is a r.v.
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We shall recall more properties as the story unfolds.

d. Moment generating function (m.g.f.)

As we have recalled above, probability distribution of a r.v. is determined by c.d.f. or,
equivalently, by p.d.f. or by p.m.f., when they exist. It turns out that there is a useful alternative
characterization of a distribution 7:

Definition 1d1. Let X be a r.v. such that Eeδ|X| < ∞ for some δ > 0, then the m.g.f. of
X is

MX(t) := EetX , t ∈ (−δ, δ).

Example 1d2. Let X ∼ Exp(λ). Then

Eeδ|X| = EeδX =

∫ ∞

0
eδxλe−λxdx <∞,

if δ < λ. Hence

MX(t) = EetX =

∫ ∞

0
λe(t−λ)xdx = ... = (1− t/λ)−1, t ∈ (−λ, λ).

�
Example 1d3. For the Cauchy r.v. the m.g.f. is not defined: for all δ > 0, Eeδ|X| = ∞. �
Note that if m.g.f. is well defined on an open interval (−δ, δ) near the origin, then X has

finite absolute moments (and hence the moments) of all orders:

E|X|p =
∫
R
|x|pdF (x) ≤

∫
R
Ceδ/2|x|dF (x) = CEeδ/2|X| <∞,

since |x|p ≤ Ceδ|x| for all x ∈ R and sufficiently large C.
One can show that the function MX(t) is smooth (i.e. differentiable any number of times).

Moreover8,

M ′
X(0) :=

d

dt
MX(t)∣∣t=0

=
d

dt

∫
R
etxdFX(x)∣∣t=0

†
=

∫
R

d

dt
etxdFX(x)∣∣t=0

=∫
R
xetxdFX(x)∣∣t=0

=

∫
R
xdFX(x) = EX,

where the interchanging the derivative and integral in † should and can be justified (think how).
Similarly, for k ≥ 1,

M
(k)
X (0) = EXk,

which is where the name of MX(t) comes from: if one knows MX(t), one can reconstruct
(generate) all the moments.

7another characterization of the probability distribution of r.v. X is the characteristic function φX(t) :=
EeitX , where i is the imaginary unit (i.e. the Fourier transform of its c.d.f.) The advantage of c.f. is that it is
always well defined (unlike the m.g.f.). It is a powerful tool in many applications (e.g. limit theorems, etc.). You
will need to know some complex analysis to discover more.

8recall that we interpret
∫
h(x)dFX differently, depending on the context - this is just a convenient unifying

notation in our course
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Example 1d4. Let X ∼ Exp(λ), then

M ′
X(0) =

d

dt
(1− t/λ)−1∣∣t=0

= ... = 1/λ,

which agrees with the calculations in the preceding example. �

It is then very plausible that knowing all the moments is enough to be able to reconstruct
FX(x). Indeed the m.g.f., when it exists, completely determines 9 FX(x) and consequently the
probability law of X.

While in principle FX(x) can be reconstructed from MX(t), the reconstruction formula is
quite complicated and is beyond our scope. However in many cases, MX(t) can be recognized
to have a particular form, which identifies the corresponding FX(x). This simple observation,
as we shall see, is quite powerful.

While m.g.f. is defined for r.v. of any type, it is more convenient to deal with probability
generating function (p.g.f.) if X is integer valued:

Definition 1d5. The p.g.f. of a discrete r.v. X with values in Z+ is

GX(t) := EtX =
∑
k

tkP(X = k), t ∈ D,

where D is the domain of convergence of the series.

Note that GX(t) is always well defined as the series are absolutely summable:∣∣∣∑
k

tkP(X = k)
∣∣∣ ≤∑

k

|t|k ≤ 1

1− |t|
<∞, ∀t ∈ (−1, 1),

and clearly GX(1) = 1.
Note that GX(0) = P(X = 0) and

G′
X(0) :=

d

dt
GX(t)|t=0 =

∞∑
k=1

ktk−1P(X = k)|t=0 = P(X = 1)

and similarly

G
(m)
X (0) = m!P(X = m) = m!pm,

i.e. p.m.f. is in one-to-one correspondence with p.g.f. (and hence with c.d.f.) - p.g.f. “generates”
p.m.f.

Example 1d6. Let X ∼ Geo(p), then

GX(t) =
∞∑
k=1

tkp(1− p)k−1 = ... =
pt

1− tq
,

9though plausible, the moments do not determine FX in general. The fact that there is a one-to-one cor-
respondence between MX(t) and FX(x) stems from the theory of Fourier-Laplace transform from functional
analysis
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where q = 1− p. Then

P(X = 0) = GX(0) = 0

P(X = 1) = G′
X(0) =

p(1− tq) + qpt

(1− tq)2
∣∣t=0

= p

etc.

�

Note that MX(ln t) = GX(t) and hence p.g.f. is m.g.f. in disguise.

Exercises

Problem 1.1. Let X be a r.v. with

(a) p.d.f.

fX(x) = c(1− x2)I(x ∈ (−1, 1)).

(b) p.d.f.

fX(x) = (1− |x|)I(|x| ≤ 1)

(c) p.m.f.

pX(k) =

{
1
N , x ∈ {0, ..., N − 1}
0 otherwise

(d) Poisson distribution

Answer the following questions for each one of the cases above:

(1) Find the normalization constant c
(2) Find the c.d.f.
(3) Find EX, var(X)
(4) Calculate P(X ≤ 1/2), P(1/3 ≤ X ≤ 1/2), P(−1/4 ≤ X ≤ 1/3), P(X ≥ −1)
(5) Find the m.g.f./p.g.f (and specify the domain). Use the latter to calculate EX and

var(X)

Problem 1.2. Check the following properties of the indicator function:

(1) IA ∼ Ber(p), with p = P(A). In particular, EIA = P(A)
(2) I∩iAi =

∏
i IAi

(3) I∪iAi = maxi IAi

(4) IA = I2A
(5) IAc = 1− IA
(6) A ⊆ B =⇒ IA ≤ IB
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Problem 1.3. Let X be a discrete r.v. with integer values with the p.g.f. GX(s) and the
m.g.f. MX(t). Show that

d

ds
GX(s)|s=1 = EX

d2

ds2
GX(s)|s=1 = EX2 − EX

using

(1) the definition of GX(s);
(2) the relation GX(s) =MX(ln s)

Problem 1.4.

(1) Find the m.g.f. of N(µ, σ2) and use it to check that EX = µ and var(X) = σ2.
(2) For X ∼ N(µ, σ2) prove

E(X − µ)p =

{
0 p odd

σp p!
2p/2(p/2)!

p even

Problem 1.5. Find the c.d.f. (or p.d.f./p.m.f. if appropriate) of the r.v. with the following
m.g.f.’s

(1) MX(t) = et(t−1), t ∈ R
(2) MX(t) = 1/(1− t), |t| < 1
(3) MX(t) = pet + 1− p, t ∈ R
(4) Mx(t) = etC , t, C ∈ R
(5) MX(t) = exp(et − 1), t ∈ R

Problem 1.6. Show that X ≥ 0 =⇒ EX ≥ 0





CHAPTER 2

Probabilistic description of several random variables

In majority of situations, there is a need to consider probabilities on Rd for d > 1 or,
alternatively, a number of random variables simultaneously. The familiar example, is the usual
mantra: “let X1, ..., Xn be i.i.d. random variables” or the same, with a more statistical flavor:
“let X1, ..., Xn be a sample from the p.d.f. f(x)”. What is actually meant here, is that we obtain
values (realizations) of the r.v.’s (X1, ..., Xn), which are, in this case, independent (whatever it
means at this point) and have the same probability law. But how do we describe several r.v.’s
simultaneously which are dependent or/and not identically distributed, etc.?

a. A pair of random variables

A probability measure P on Ω := R2 is assigned by a two-dimensional c.d.f F . Probabilistic
description of a pair of random variables (X,Y ) on Ω is accomplished by their joint c.d.f.

FXY (u, v) := P
(
X ≤ x, Y ≤ y

)
.

Analogously to the one-dimensional case, the c.d.f. of the coordinate random variables(
X(ω), Y (ω)

)
= (ω1, ω2) = ω

coincides with the c.d.f., defining the probability measure P. Hence defining a c.d.f. on R2 and
construction of a random vector (X,Y ) with values in R2 and a given joint c.d.f. is essentially
the same problem. Below we shall refer to random variables, when exploring the properties of
two-dimensional c.d.f’s.

Clearly a c.d.f. must satisfy1 FXY (−∞, v) = FXY (u,−∞) = 0 for all u, v ∈ R and
FXY (∞,∞) = 1. These properties are parallel to the familiar requirements FX(−∞) = 0
and FX(∞) = 1 in dimension one. FXY (u, v) must be right-continuous in each one of the
coordinates, hence e.g.

P(X ≤ x, Y < y) = FXY (x, y−).

The monotonicity is also valid in R2, but should be interpreted correctly. In particular, the
condition P(X ∈ (a1, b1], Y ∈ (a2, b2]) ≥ 0, implies (think how)

∆a1,b1∆a2,b2FXY ≥ 0, ∀a1 ≤ b1, a2 ≤ b2, (2a1)

where for a function h of n variables (in this case n = 2),

∆ai,bih(x1, ..., xn) := h(x1, ..., bi, ..., xn)− h(x1, ..., ai, ..., xn).

Hence a c.d.f should satisfy (2a1) and it turns to be not only necessary, but also the sufficient
condition.

1FXY (−∞, v) := limu→−∞ FXY (u, v), etc.

19
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It is already clear at this point that individual c.d.f.’s of each component can be found from
FXY , e.g.:

FX(u) = P(X ≤ u) = P(X ≤ u, Y ∈ R) = FXY (u,∞).

However, in general one cannot restore FXY from its marginals FX and FY (see Example 2a6
below). Thus FXY is a more complete probabilistic description of (X,Y ).

All of these properties are automatically satisfied in the two particular cases: the jointly
discrete and jointly continuous.

*. Jointly discrete random variables

Definition 2a1. A random vector (X,Y ) is (jointly) discrete if there is a countable (or
finite) number of points (xk, ym) ∈ R2, k ≥ 1, m ≥ 1 and positive numbers pk,m > 0, such that∑

k,m pk,m = 1 and

P
(
(X,Y ) = (xk, ym)

)
= P

(
X = xk, Y = ym

)
:= pk,m.

The numbers pk,m (along with the points (xk, ym)) are called joint p.m.f. of (X,Y ). Note
that this definition yields an explicit expression for the j.c.d.f:

FXY (u, v) =
∑

k:xk≤u

∑
m:ym≤v

pk,m,

and for a subset A ∈ R2,

P((X,Y ) ∈ A) =
∑

k,m:(xk,ym)∈A

pk,m.

In particular,

FXY (u,∞) = P
(
(X,Y ) ∈ (−∞, u]× R

)
=

∑
k:xk≤u

∑
m:ym∈R

pk,m =
∑

k:xk≤u
pX(k) = FX(u),

where pX(k) :=
∑

m pk,m is the p.m.f. of X. Similarly, we get FXY (∞, v) = FY (v). This means
that the c.d.f.’s of both entries of the vector (which are one dimensional random variables) are
recovered from the joint c.d.f., i.e. the probabilistic description of X and Y as individual r.v., is
in fact incorporated in their joint probabilistic characterization. From this point of view, FX(u)
and FY (v) are the marginal c.d.f’s of the j.c.d.f FXY (u, v). Similarly, pX(k) and pY (m) are the
marginal p.m.f’s of the j.p.m.f. pk,m (or in other popular notation, pXY (k,m)).

Example 2a2. Consider the random vector (X,Y ) with values in N2 and j.p.m.f.

pk,m = (1− p)k−1p(1− r)m−1r, k,m ∈ N,
where p, r ∈ (0, 1). Let’s check that it is indeed a legitimate j.p.m.f.: clearly pk,m ≥ 0 and∑

k,m

pk,m =
∑
k

(1− p)k−1p
∑
m

(1− r)m−1r = ... = 1.

The p.m.f. of X (or X-marginal p.m.f. of pk,m) is

pk =
∑
m

pk,m = (1− p)k−1p
∑
m

(1− r)m−1r = (1− p)k−1p, k ∈ N,

i.e. X ∼ Geo(p). Similarly, Y ∼ Geo(r). �
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Note that two different j.c.d.f’s may have identical marginals (see also the Example 2a6
below)

Example 2a3. Let (X,Y ) be a r.v. taking values in

{(0, 0), (0, 1), (1, 0), (1, 1)}

with the j.p.m.f.:

pXY (0, 0) = 1/4− ε

pXY (0, 1) = 1/4 + ε

pXY (1, 0) = 1/4 + ε

pXY (1, 1) = 1/4− ε

where ε ∈ (0, 1/4) is an arbitrary constant. Clearly, j.p.m.f depends on ε, while the marginals
do not: check that X ∼ Ber(1/2) and Y ∼ Ber(1/2) irrespectively of ε. �

If (X,Y ) is a discrete random vector, then both X and Y are discrete random variables, e.g.∑
k

P(X = xk) =
∑
k

∑
m

P(X = xk, Y = ym) = 1.

The converse is also true, i.e. if X is discrete and Y is discrete, then (X,Y ) is discrete. 2

Given a function g : R2 7→ R, the expectation of g(X,Y ) is defined:

Eg(X,Y ) :=
∑
k,m

g(xk, ym)pk,m.

As in the one dimensional case, the expectation Eg(X,Y ) may take values in R∪{±∞} or may
not be defined at all (recall the Example 1c2).

The expectation is linear: for a, b ∈ R,

E(aX + bY ) =
∑
k,m

(axk + bym)pk,m = a
∑
k,m

xkpk,m + b
∑
k,m

ympk,m =

a
∑
k

xkpX(k) + b
∑
m

ympY (m) = aEX + bEY. (2a2)

2Proof: suppose that X takes values in {x1, x2, ...} and Y takes values in {y1, y2, ...}, then

1 =
∑
k

P(X = xk) =
∑
k

P(X = xk, Y ∈ R) = P(X ∈ {x1, x2, ...}, Y ∈ R),

which implies P(X ∈ R \ {x1, x2, ...}, Y ∈ R) = 0. Similarly, P(X ∈ R, Y ∈ R \ {y1, y2, ...}) = 0. Recall that if
P(A) = 0 and P(B) = 0, then P(A ∩B) = 0, hence we conclude

P(R \ {x1, x2, ...}, Y ∈ R \ {y1, y2, ...}) = 0,

which implies
∑

k,m P(X = xk, Y = yk) = P(X ∈ {x1, x2, ...}, Y ∈ {y1, y2, ...}) = 1, i.e. (X,Y ) is a discrete

random vector.
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Example 2a4. Let (X,Y ) be as in the Example 2a2 and g(x, y) = x2y, then

Eg(X,Y ) =
∑
k,m

k2m(1− p)k−1p(1− r)m−1r =

∞∑
k=1

k2(1− p)k−1p

∞∑
m=1

m(1− r)m−1r = ... =
2− p

p2
1

r

�

The expectations of monomials EXℓY n, ℓ, n ∈ N are called the joint moments.
The joint p.g.f (or j.m.g.f.) is (here we assume that xk = k and ym = m, i.e. the r.v. are

integer valued):

GXY (s, t) := EsXtY =
∑
k,m

sktmpk,m,

which is well defined in e.g. the rectangular |s| < 1, |t| < 1. Analogously to one dimension, the
j.p.m.f. can be generated from j.p.g.f.:

∂k

∂sk
∂m

∂tm
GXY (0, 0) = k!m!pk,m.

Jointly continuous random variables. A pair of random variables (X,Y ) are called
jointly continuous (or, equivalently, the vector (X,Y ) is continuous), if the j.c.d.f. FXY (u, v) is
a continuous function, jointly3 in (u, v). We shall deal exclusively with a subclass of continuous
random vectors 4, whose c.d.f. is defined by:

FXY (u, v) =

∫ u

−∞

∫ v

−∞
fXY (x, y)dxdy,

where fXY (x, y) is the joint p.d.f., i.e. a non-negative integrable function satisfying∫∫
R2

fXY (x, y)dxdy = 1.

Note that e.g. FXY (u,−∞) = 0 and

FXY (u,∞) =

∫ u

−∞

(∫
R
fXY (u, v)dv

)
du =

∫ u

−∞
fX(u)du = FX(u) =: P(X ≤ u),

where fX(u) :=
∫
R fXY (u, v)dv is the p.d.f. of X (indeed it is non-negative and integrates to

1). Hence as in the discrete case, the one dimensional p.d.f.’s and c.d.f’s are marginals of j.p.d.f.
and j.c.d.f.

Example 2a5. Let (X,Y ) be a r.v. with j.p.d.f.

fXY (x, y) =
1

2π
e−x

2/2−y2/2, x, y ∈ R.

3recall that a function h(x, y) is jointly continuous in (x, y), if for any sequence (xn, yn), which converges to
(x, y), limn h(xn, yn) = h(x, y)

4and call them just “continuous”, abusing the notations
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It is easy to see that fXY integrates to 1 and hence is a legitimate j.p.d.f.

fX(x) =

∫
R

1

2π
e−x

2/2−y2/2dy =
1√
2π
e−x

2/2

∫
R

1√
2π
e−y

2/2dy =
1√
2π
e−x

2/2, x ∈ R,

i.e. X ∼ N(0, 1) (and similarly Y ∼ N(0, 1)). �

j.c.d.f is not uniquely determined by its marginals, i.e. two different j.c.d.f’s may have
identical marginals:

Example 2a6. Suppose X and Y have p.d.f.’s fX and fY . Let α be a number in [−1, 1] and
define

fXY (x, y;α) = fX(x)fY (y)
(
1 + α

(
2FX(x)− 1

)(
2FY (y)− 1

))
.

Since 2FX(x) − 1 ∈ [−1, 1] for all x ∈ R, fXY is a non-negative function. Further, since
d
dxF

2
X(x) = 2FX(x)fX(x) ∫

R
2FX(x)fX(x)dx =

∫
R

d

dx
F 2
X(x)dx = 1,

we have
∫∫

R2 fXY (x, y;α)dxdy = 1 and thus fXY is a legitimate two dimensional p.d.f. Also a
direct calculation shows that its marginals are fX and fY , regardless of α. However, fXY is a
different function for different α’s! �

Expectation of g(X,Y ) for an appropriate function g : R2 7→ R is defined

Eg(X,Y ) =

∫∫
R2

g(u, v)fXY (u, v)dudv.

Again it may be finite or infinite or may not exist at all. The linearity property as in (2a2) is
readily checked.

The joint moments and the j.m.g.f. are defined similar to the discrete case, e.g.

MXY (s, t) = EesX+tY ,

if the expectation is finite in an open vicinity of the origin. In this case,

∂k

∂sk
∂m

∂tm
MXY (s, t)∣∣(s,t)=(0,0)

= EXkY m.

The components of continuous random vector are continuous r.v. as we have already seen.
However, the r.v. X and Y can be continuous individually, but not jointly:

Example 2a7. Consider X ∼ N(0, 1) and Y := X, then each X and Y are N(0, 1), i.e.
continuous, while not jointly continuous. Indeed, suppose that (X,Y ) has a density fXY (x, y).
Since P(X ̸= Y ) = 0,

1 =

∫∫
R2

fXY (u, v)dudv =

∫∫
R2\{(x,y):x=y}

fXY (u, v)dudv = P(X ̸= Y ) = 0,

where the first equality is a property of the integral over R2. The contradiction indicates that
j.p.d.f. doesn’t exist in this case.
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Remark 2a8. Of course, random vectors may be neither discrete nor continuous in various
ways. In particular, their entries may be r.v. of the “mixed” type, i.e. contain both continu-
ous and discrete components, or the vector may contain both discrete and continuous entries.
Calculation of the expectations in this case follow the same pattern, but can be more involved
technically.

b. Independence

From here on we shall consider both discrete and continuous random vectors within the
same framework, emphasizing differences only when essential. All of the following properties
are equivalent5 and can be taken as the definition of independence of X and Y :

(1) the j.c.d.f. factors into the product of individual c.d.f’s:

FXY (x, y) = FX(x)FY (y), ∀x, y ∈ R.

(2) the j.m.g.f. factors into the product of individual m.g.f’s:

MXY (s, t) =MX(s)MY (t), ∀s, t ∈ D,

where D is the relevant domain;
(3) the j.p.d.f. factors into the product of individual p.d.f’s in the continuous case:

fXY (x, y) = fX(x)fY (y), ∀x, y ∈ R.

or the j.p.m.f. factors into the product of individual p.m.f’s in the discrete case:

pXY (k,m) = pX(k)pY (m), ∀k,m ∈ N.

(4) for all bounded functions g,h,

Eg(X)h(Y ) = Eg(X)Eh(Y ).

The equivalence between some of the characterizations (e.g. 3⇔ 1) is not hard to see directly
from the definitions, while equivalence of the others is technically (but not conceptually!) more
involved (e.g. 4 ⇔ 1).

The intuition behind independence can be gained from the familiar notion of conditional
probabilities: notice that (4) with g(x) = I(x ∈ A) and h(x) = I(x ∈ B), where A and B are
subsets (e.g. intervals) of R, yields:

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

If P(X ∈ B) > 0, then conditional probability of the event {X ∈ A}, given {X ∈ B} has
occurred, equals the a priori probability of {X ∈ A}:

P(X ∈ A|Y ∈ B) :=
P(X ∈ A, Y ∈ B)

P(Y ∈ B)
= P(X ∈ A).

Hence independent r.v. generate independent events.

Example 2b1. X and Y are independent in both Examples 2a2 and 2a5 above, as is readily
verified by applying e.g. (3) above. �

5of course, assuming that all of them apply (e.g. MXY (s, t) might not be defined)
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Example 2b2. LetX ∼ U([0, 1]) and Y = I(X > 1/2). Note that (X,Y ) does not categorize
as discrete or continuous random vector. X and Y are not independent, since e.g.

EXY = EXI(X ≥ 1/2) =

∫ 1

1/2
xdx = 3/8,

while
EXEI(X ≥ 1/2) = 1/2 · 1/2 = 1/4,

contradicting (4) above. �
The familiar notion of correlation between two r.v. is a weaker notion of independence.

Definition 2b3. Let X and Y be a pair of r.v. with finite second moments, EX2 < ∞,
EY 2 <∞. Then the correlation coefficient between X and Y is

ρXY :=
cov(X,Y )√
var(X)var(Y )

,

where var(X) = E(X − EX)2, etc. and cov(X,Y ) = E(X − EX)(Y − EY ).

To see that ρXY is a number in [−1, 1], we shall need

Lemma 2b4 (Cauchy–Schwarz inequality). Let Z1 and Z2 be r.v. with finite second moments,
then (

EZ1Z2

)2 ≤ EZ2
1EZ2

2 .

The equality is attained if and only if Z1 and Z2 are proportional, i.e. Z1 = cZ2 for a constant
c ̸= 0.

Proof. Since (Z1−αZ2)
2 ≥ 0 for any α ∈ R, it follows that E(Z1−αZ2)

2 ≥ 0 or expanding

E(Z1)
2 − 2αEZ1Z2 + α2E(Z2)

2 ≥ 0.

The C-S inequality is obtained with α := EZ1Z2/E(Z2)
2. If Z1 = cZ2, then the inequality

obviously holds with equality (by direct calculation). Conversely, if the equality holds, then for
α as above, (Z1 − αZ2)

2 = 0, which implies that Z1 = αZ2 (at least with probability 1) as
claimed. �

Taking Z1 = X − EX and Z2 = Y − EY we deduce that ρXY ∈ [−1, 1]. If |ρXY | = 1, then
Y = aX + b for some constants a and b, which means that Y is a linear function of X (and
hence there is a strong dependence between X and Y ).

Independence implies ρXY = 0, since cov(X,Y ) = 0 for independent X and Y (check!). The
converse does not have to be true in general, i.e. uncorrelated r.v. may be dependent:

Example 2b5. Let X ∼ N(0, 1) and Y := ξX, where ξ is a r.v. taking values {1,−1} with
probabilities 1/2 and independent of X. Then

cov(X,Y ) = EXY = EξX2 = EξEX2 = 0.

However, X and Y are not independent:

EX2Y 2 = EX4ξ2 = EX4 = 3EX2 = 3,

while
EX2EY 2 = EX2EX2 = 1.

�
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The covariance matrix of the vector X =

(
X1

X2

)
is by definition6

Cov(X,X) = E(X − EX)(X − EX)⊤ =

(
cov(X1, X1) cov(X1, X2)
cov(X2, X1) cov(X2, X2)

)
.

A particularly important class of random vectors is Gaussian.

Definition 2b6. A random vector X = (X1, X2) is Gaussian with mean µ = (µ1, µ2) and
the covariance matrix

S =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
if it has a j.p.d.f. of the form

fX(x) =
1

2πσ1σ2
√

1− ρ2
·

exp
{
− 1

2

1

1− ρ2

((x1 − µ1)
2

σ21
− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ22

)}
, (2b1)

for x ∈ R2.

By a direct (but tedious) calculation, one can verify that indeed EX = µ =

(
µ1
µ2

)
and

Cov(X,X) = S as above. ρ is the correlation coefficient between X1 and X2. The marginal
p.d.f.’s areN(µ1, σ

2
1) andN(µ2, σ

2
2). Remarkably, for Gaussian vectors lack of correlation implies

independence

Proposition 2b7. Let X = (X1, X2) be a Gaussian random vector in R2. Then X1 and X2

are independent if and only if they are uncorrelated.

Proof. Independence implies lack of correlation in general. Suppose that X1 and X2 are
uncorrelated, i.e. ρ = 0. Then the j.p.d.f. factors into product of the individual p.d.f.’s as can
be readily seen from (2b1). �

Remark 2b8. The Example 2b5 also demonstrates that (X,Y ) with Gaussian marginals7

and uncorrelated entries may not be a Gaussian vector!

Try to imagine how various ingredients of the Gaussian j.p.d.f. affect its shape (look at its
counters, sections etc.).

A calculation yields the formula for Gaussian j.m.g.f:

Lemma 2b9. Let X be a Gaussian vector as above, then

MX(t) = exp
{
µ⊤t+

1

2
t⊤St

}
, t ∈ R2.

Proof. direct (tedious) calculation �

6Note that Cov(X,X) is a symmetric matrix.
7Note that MY (t) = EetξX = 1

2
EetX + 1

2
Ee−tX = 1

2
et

2/2 + 1
2
et

2/2 = et
2/2, which is an m.g.f. of N(0, 1)
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Remark 2b10. In fact, the above expression for m.g.f. is well defined even if ρ = ±1 (i.e.
the covariance matrix S is singular). In these cases, the j.p.d.f does not exist and the Gaussian
vector is referred to as degenerate. Do not think, however, that this is a pathology: e.g. if
X ∼ N(0, 1), the vector (X,X) is a degenerate Gaussian vector.

Gaussian distribution is stable under linear transformations, namely

Lemma 2b11. Let X be a Gaussian vector as above, A be a 2× 2 matrix and b a vector in
R2. Then AX + b is a Gaussian vector with mean Aµ+ b and covariance matrix ASA⊤.

Proof. By definition,

MAX+b(t) = E exp
{
t⊤(AX + b)

}
= exp

{
t⊤b
}
E exp

{
(A⊤t)⊤X

}
=

exp
{
t⊤b
}
exp

{
µ⊤A⊤t+

1

2
(A⊤t)⊤SAt

}
= exp

{
(Aµ+ b)⊤t+

1

2
t⊤ASA⊤t

}
.

Since the j.m.g.f. uniquely determines the probability law, X ∼ N(Aµ+ b, ASA⊤). �

Remark 2b12. Note that we haven’t required that A is a nonsingular matrix. If A is in
fact nonsingular (i.e. det(A) ̸= 0) then the vector Y = AX + b has a j.p.d.f. Otherwise, it is a
degenerate vector (see the Remark 2b10 above). For example, if X1 and X2 are i.i.d. N(0, 1)
and

A =

(
1 −1
−1 1

)
, b =

(
0
1

)
,

then by the Lamma 2b11, the vector Y = AX + b is Gaussian with mean

EY = AEX + b = b,

and covariance matrix

SY = ASXA
⊤ =

(
1 −1
−1 1

)(
1 0
0 1

)(
1 −1
−1 1

)
=

(
2 −2
−2 2

)
.

The latter means that Y1 ∼ N(0, 2) and Y2 ∼ N(1, 2) and ρ(Y1, Y2) = −1 (think why). Hence
the j.p.d.f. is not well defined (as S−1

Y doesn’t exist). Hence Y is a degenerate Gaussian vector.
This, of course, should be anticipated since Y1 = X1 −X2 and Y2 = −X1 +X2 + 1 and hence
Y2 = −Y1 + 1.

Example 2b13. Let X be a Gaussian random vector in R2 with i.i.d. standard components
and let θ be a deterministic (non-random) angle in [0, 2π]. Recall that

U(θ) =

(
cos θ − sin θ
sin θ cos θ

)
is the rotation matrix, i.e.8 the vector y = U(θ)x has the same length as x and the angle between
x and y is θ. The vector Y = U(θ)X, i.e. the rotation of X by angle θ, is Gaussian with zero
mean and covariance matrix U(θ)U⊤(θ) = I. This means that standard Gaussian distribution
in R2 is invariant under deterministic rotations. �

8convince yourself by a planar plot
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c. Several random variables

The probabilistic description of a random vector X = (X1, ..., Xn) in Rn for n > 2 is
completely analogous to the two dimensional case. The probabilities are assigned by the j.c.d.f

P(X1 ≤ x1, ..., Xn ≤ xn) := FX(x1, ..., xn) = FX(x), x = (x1, ..., xn) ∈ Rn.

The j.c.d.f FX(x), x ∈ Rn, should satisfy the usual properties. The random vector X can
be either discrete, in which case its j.c.d.f is determined by the j.p.m.f pX(k), k ∈ Nn, or
continuous, when j.c.d.f is given by an n-fold integral of j.p.d.f. fX(x), x ∈ Rn. j.p.m.f./j.p.d.f.
should sum/integrate to 1.

The one-dimensional marginals are defined for all the quantities as in the two-dimensional
case, e.g.

fX2(x2) =

∫
Rn−1

fX(x1, x2, ..., xn)dx1dx3...dxn.

Hence once again, the probability law of each individual component is completely determined
by the probability law of the vector. In addition, one can recover the joint probability law of
any subset of r.v.: for example, the j.p.d.f. of (X1, Xn) is given by

fX1Xn(x1, xn) =

∫
Rn−2

fX(x1, x2, ..., xn−1, xn)dx2...dxn−1.

or, equivalently,

FX1Xn(x1, x2) = FX(x1,∞, ...,∞, xn).

Similarly, the k-dimensional marginals are found. Expectation of a function g : Rn 7→ R of a
continuous random vector is

Eg(X) =

∫
Rn

g(x)fX(x)dx1...dxn

and of a discrete r.v. (with e.g. integer values components)

Eg(X) =
∑
x∈Nn

g(x)pX(x).

The j.m.g.f is

MX(t) = Ee
∑n

i=1 tiXi , t ∈ D ⊆ Rn,

where D is an open vicinity of the origin in Rn. The joint moments can be extracted from
j.m.g.f. similarly to the two dimensional case. The covariance matrix is defined if all the entries
of X have finite second moments:

Cov(X,X) = E(X − EX)(X − EX)⊤.

The r.v. (X1, ..., Xn) are independent if their j.c.d.f. (j.p.d.f., etc.) factors into the product
of individual c.d.f’s (p.d.f.’s, etc.) analogously to the corresponding properties (1)-(4) above.
Independence of all the components of the vector clearly implies independence of any subset
of its components. However, a random vector may have dependent components, which are e.g.
pairwise (or triplewise, etc.) independent.
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In statistics, n independent samples from p.d.f. f means a realization of the random vector
X = (X1, ..., Xn), with the j.p.d.f. of the form:

fX(x) =

n∏
i=1

f(xi), x ∈ Rn.

Example 2c1. Suppose X = (X1, ..., Xn) is a vector of i.i.d. random variables, where X1

takes values in {x1, ..., xk} with positive probabilities p1, ..., pk. Let Yi be the number of times
xi appeared in the vector X, i.e. Yi =

∑n
m=1 I(Xm = xi) and consider the random vector

Y = (Y1, ..., Yk). Clearly each Yi takes values in {0, ..., n}, i.e. it is a discrete r.v. Hence the
random vector Y is also discrete. The j.p.m.f. of Y is given by

pY (n1, ..., nk) =

{
0 n1 + ...+ nk ̸= n

n!
n1!...nk!

pn1
1 ...p

nk
k n1 + ...+ nk = n

.

The corresponding distribution is called multinomial. The particular case k = 2, is readily
recognized as the familiar binomial distribution. One dimensional marginals are binomial, since
each Yi is a sum of n Bernoulli i.i.d. random variables I(Xm = xi), m = 1, ..., n. (this can
also be seen by the direct and more tedious calculation of the marginal). Similarly, the two
dimensional marginals are trinomial, etc.

Let’s check dependence between the components. Clearly Y1, ..., Yk are not independent,

since Y1 = n −
∑k

i=2 Yk and hence e.g. Y1 and
∑k

i=2 Yk are fully correlated, which would be
impossible, were Y1, ..., Yn independent. What about pairwise independence: e.g. are Y1 and Y2
independent ...? Intuitively, we feel that they are not: after all if Y1 = n, then Y2 = 0 ! This is
indeed the case:

P(Y1 = n, Y2 = 0) = P(Y1 = n) = pn1 ,

while

P(Y1 = n)P(Y2 = 0) = pn1 (1− p2)
n.

�

Gaussian vectors in Rn play an important role in probability theory.

Definition 2c2. X is a Gaussian random vector with mean µ and nonsingular9 covariance
matrix S, if it has j.p.d.f. of the form:

fX(x) =
1

(2π)n/2
√

det(S)
exp

{
− 1

2
(x− µ)⊤S−1(x− µ)

}
, x ∈ Rn.

It is not hard to see that the two-dimensional density from Definition 2b6 is obtained di-
rectly from the latter general formula. If S is a diagonal matrix, i.e. all the entries of X are
uncorrelated, X1, ..., Xn are independent. Furthermore, if µ = 0 and S is an identity matrix,
then X1, ..., Xn are i.i.d. standard Gaussian r.v.’s.

Both Lemmas 2b9 and 2b11 remain valid in the general multivariate case, i.e. the j.m.g.f. of
a Gaussian vector is an exponential of a quadratic form and Gaussian multivariate distribution
is stable under linear transformations.

9positive definite
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Exercises

Problem 2.1. A pair of fair dice is thrown. Let X be the sum of outcomes and Y be the
Bernoulli r.v. taking value 1 if the first dice comes up even.

(1) Show that (X,Y ) is discrete and find its j.p.m.f. (present your answer as a table)
(2) Calculate the marginal p.m.f.’s
(3) Calculate the moments EX, EY and EXY

Problem 2.2. Answer the questions from the previous problem for the r.v. (X,Y ), defined
by the following experiment. Two Hanukkah tops are spined: X and Y are the outcomes of the
first and the second tops respectively.

Problem 2.3. Let (X,Y ) be a random vector with the j.p.d.f

fXY (x, y) =
1

2
xyI(y ∈ [0, x])I(x ∈ [0, 2]).

(1) Verify that fXY is a legitimate j.p.d.f.
(2) Find the support of fXY , i.e. D := {(x, y) ∈ R2 : fXY (x, y) > 0}
(3) Find the j.c.d.f of (X,Y )
(4) Find the marginals of j.p.d.f
(5) Are X and Y independent ?
(6) Find the marginals of j.c.d.f.

Problem 2.4. Let (X,Y ) be a random vector distributed uniformly on the triangle with
the corners at (−2, 0), (2, 0), (0, 2).

(1) Find the j.p.d.f.
(2) Find the marginal p.d.f.’s
(3) Are X and Y independent ?
(4) Calculate the correlation coefficient between X and Y

Problem 2.5. Let (X,Y ) be a random vector with j.p.d.f fXY (x, y) = 12(x−y)2I((x, y) ∈ A)
where A = {(x, y) : 0 ≤ x ≤ y ≤ 1}.

(1) find the marginal p.d.f.’s
(2) Calculate P(1/2 ≤ X + Y ≤ 1), P(X + Y ≤ 1/2)

Problem 2.6. Let F be a one dimensional c.d.f.. Are the following functions legitimate two-
dimensional j.c.d.f’s ? Prove, if your answer is positive and give a counterexample if negative.

(1) F (x, y) := F (x) + F (y)
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(2) F (x, y) := F (x)F (y)
(3) F (x, y) := max{F (x), F (y)}
(4) F (x, y) := min{F (x), F (y)}

Problem 2.7. Let X and Y be Bernoulli r.v. with parameter p ∈ (0, 1). Show that if X
and Y are uncorrelated, they are also independent.

Hint: the j.p.m.f. of the vector (X,Y ) is supported on four vectors: (0, 0), (0, 1) (1, 0) and (1, 1).
Denote the corresponding probabilities by p00, p01, p10 and p11. Analyze the constraints imposed
on j.p.m.f. by the lack of correlation between X and Y and deduce that these constraints also
imply independence.

Problem 2.8. Let X and Y be independent random variables. Find P(X = Y ) when

(1) X,Y ∼ Geo(p)
(2) (X,Y ) is a non-degenerate Gaussian vector

Problem 2.9. Let (X,Y ) be a Gaussian vector with parameters µx, µy, σx and σy and ρ.

(1) Find the p.d.f. of the average (X + Y )/2
(2) Find the p.d.f. of (X − Y )/2
(3) Find the values of ρ so that the r.v. in (1) and (2) are independent

Problem 2.10. Let (X,Y ) be a random vector, whose components have finite nonzero
second moments and correlation coefficient ρ. Show that for a, b, c, d ∈ R

ρ(aX + b, cY + d) =
ac

|ac|
ρ(X,Y ).

Problem 2.11. Show that for a discrete random vector (X,Y ), the properties

Ef(X)g(Y ) = Ef(X)Eg(X), ∀g, f bounded

and
pXY (k,m) = pX(k)pY (m), ∀k,m ∈ N

are equivalent.

Problem 2.12. Show that the general formula for the Gaussian density from Definition 2c2
in two dimensions reduces to the one from Definition 2b6

Problem 2.13. Let X and Y be independent random vectors in Rk and Rm respectively
and let g : Rk 7→ R and h : Rm 7→ R be some functions. Show that ξ = g(X) and η = h(Y ) are
independent r.v.
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Problem 2.14. Let X be a standard Gaussian vector in Rn (i.e. with i.i.d. N(0, 1) entries)

(1) Show that the empirical mean X̄ = 1
n

∑n
i=1Xi is a Gaussian random variable and find

its mean and variance
(2) Argue that the vector (X1, X̄) is a Gaussian vector in R2, find its mean and covariance

matrix
(3) Argue that the vector R := (X1 − X̄, ...,Xn − X̄) is a Gaussian vector, find its mean

and covariance matrix
(4) Show that X̄ and R are independent

Problem 2.15. Let X and Y be i.i.d. N(0, 1) r.v.’s Show that X2 − Y 2 and 2XY have the
same probability law.

Hint: Note that X2 − Y 2 = 2X−Y√
2

X+Y√
2

Problem 2.16. Let X = (X1, X2, X3) be a random vector with j.p.d.f.

fX(x) =
1

(2π)3/2
exp

(
− 1

2
x21 −

1

2
(x2 − x1)

2 − 1

2
(x3 + x2)

2
)
, x ∈ R3

(1) Check that fX is indeed a legitimate j.p.d.f
(2) Find all the one dimensional marginal p.d.f’s
(3) Find all the two dimensional marginal j.p.d.f’s. Are (X1, X2), (X2, X3), (X1, X3) Gauss-

ian vectors in R2 ? If yes, find the corresponding parameters.
(4) Verify that fX can be put in the following form:

fX(x) =
1

(2π)3/2
√
det(S)

exp
(
− 1

2
(x− µ)⊤S−1(x− µ)

)
, x ∈ R3,

where

S =

 1 1 −1
1 2 −2
−1 −2 3



Problem 2.17. Consider f : Rn 7→ R

f(x) =
1

(2π)n/2
√∏n

i=1 σ
2
i

exp
(
− 1

2

n∑
i=1

(xi − µi)
2

σ2i

)
, x ∈ Rn

(1) Prove that f is a j.p.d.f
(2) Let X = (X1, ..., Xn) be a random vector with j.p.d.f. f . Show that its entries are

independent and specify the conditions for µi and σi’s such that X1, ..., Xn are i.i.d
(3) Find the probability law of S =

∑n
i=1Xn

(4) Suppose that n is even and find the probability law of

Se =

n/2∑
i=1

X2i and So =

n/2∑
i=1

X2i−1.
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Are Se and So independent ? Identically distributed ?
(5) Suppose that n ≥ 2 and find the probability law of Y =

∑n−1
i=1 Xi and Z =

∑n
i=2Xi.

Are Z and Y independent ? Identically distributed ?

Problem 2.18. LetX = (X1, ..., Xn) be i.i.d. N(0, 1) r.v. and ξ = (ξ1, ..., ξn) i.i.d. Ber(1/2).
Assuming that X and ξ are independent, find the probability law of

Z =

n∑
i=1

(1− 2ξi)Xi.





CHAPTER 3

Conditional expectation

a. The definition and the characterization via orthogonality

Recall the definition of the conditional probability of an event A, given event B:

P(A|B) =
P(A ∩B)

P(B)
, (3a1)

where P(B) > 0. If we know that B occurred, i.e. the experiment outcome ω is known to belong
to B, the event A occurs, i.e. ω ∈ A, if and only if ω ∈ A∩B. Hence the conditional probability
in (3a1) is proportional to P(A∩B) and is normalized so that P(A|B) is a legitimate probability
measure with respect to A, for any fixed B.

Consider a pair of random variables (X,Y ) and suppose we want to calculate the conditional
probability of an event A, generated by X, say of A := {X ≤ 0}, having observed the realization
of the random variable Y . If Y takes a countable number of values, Y ∈ {y1, y2, ...}, and
P(Y = yi) > 0, then we can use the formula (3a1):

P(A|Y = yi) =
P(A, Y = yi)

P(Y = yi)
.

However, how do we define the probability P(A|Y = y), if Y is a continuous random vari-
able and hence P(Y = y) = 0 for all y’s ...? An intuitively appealing generalization is the
“infinitesimal” definition

P(A|Y = y) := lim
ε→0

P(A, |Y − y| ≤ ε)

P(|Y − y| ≤ ε)
.

While conceptually simple (and, in fact, correct - see Remark 3d8 below), this definition turns
to have a somewhat limited scope and does not easily reveal some of the important sides of
conditioning with respect to random variables1. Below we shall take a different approach to
conditional probabilities, based on its variational characterization.

Let X = (X1, ..., Xn) be a random vector and suppose that we have sampled (i.e. obtained
the realizations of) X2, ..., Xn and would like to guess the realization of X1. If for example, X
had multinomial distribution, this would be simple and precise, namely n−

∑n
i=2Xi would be the

only possible realization of X1. On the other hand, if the components of X were all independent,
then, intuitively, we feel that any guess, based on X2, ..., Xn would be as bad as a guess, not
utilizing any information, gained from observing X2, ..., Xn. The problem we want to address
in this chapter is the following: for a random vector X = (X1, ..., Xn) with known distribution,

1at its ultimate modern form, the basic conditioning is with respect to σ-algebras of events. Hence condi-
tioning with respect to random variables is defined as conditioning with respect to the σ-algebra of events, they
generate. Again, this truth is beyond the scope of these lecture notes

35
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how do we guess the realization of X1, given the realizations of X2, ..., Xn - preferably in the
best possible way ?

To formulate this problem of prediction in rigorous terms, we have to define what we mean
by “guess” and what is “best” for us. It is natural to consider the guesses of X1 of the form
g(X2, ..., Xn), where g is an Rn−1 7→ R function: this means that each time we get a realization
of X2, ..., Xn, we plug it into g and thus generate a real number, which we interpret as the guess
of X1. How do we compare different guesses ? Clearly, looking at the error X1 − g(X2, ..., Xn)
would be meaningless, since it varies randomly from realization to realization (or experiment
to experiment). Instead we shall measure the quality of the guess g by the mean square error
(MSE)

E
(
X1 − g(X2, ..., Xn)

)2
.

The best guess for us will be the one which minimizes the MSE over all guesses, i.e. we aim to
find g∗ so that

E
(
X1 − g∗(X2, ..., Xn)

)2 ≤ E
(
X1 − g(X2, ..., Xn)

)2
for all g’s (3a2)

Finding such g∗ does not seem to be an easy problem, since the space of potential candidates
for g - all2 functions on Rn−1 - is vast and apparently it doesn’t have any convenient structure to
perform the search3. However, things are not as hopeless as they may seem, due to the following
simple observation:

Lemma 3a1 (Orthogonality property). g∗ satisfies (3a2) if and only if

E
(
X1 − g∗(X2, ..., Xn)

)
h(X2, ..., Xn) = 0, for all functions h. (3a3)

Proof. Assume that (3a3) holds, then

E
(
X1 − g(X2, ..., Xn)

)2
=

E
(
X1 − g∗(X2, ..., Xn) + g∗(X2, ..., Xn)− g(X2, ..., Xn)

)2
=

E
(
X1 − g∗(X2, ..., Xn)

)2
+ E

(
g∗(X2, ..., Xn)− g(X2, ..., Xn)

)2
+

2E
(
X1 − g∗(X2, ..., Xn)

)(
g∗(X2, ..., Xn)− g(X2, ..., Xn)

) †
=

E
(
X1 − g∗(X2, ..., Xn)

)2
+ E

(
g∗(X2, ..., Xn)− g(X2, ..., Xn)

)2 ≥
E
(
X1 − g∗(X2, ..., Xn)

)2
,

where we used (3a3) in †. This verifies (3a2). Conversely, assume that g∗ satisfies (3a2), then
in particular it holds for g := g∗ + εh, where ε > 0 is a constant and h is an arbitrary function
of X2, ..., Xn:

E
(
X1 − g∗

)2 ≤ E
(
X1 − g∗ − εh

)2
,

2of course, the functions g must be such that the expectations are well defined
3if for example, we would have to find the optimal g∗ from a finite collection of candidate functions {g1, ..., gℓ},

the task would be simple: just calculate all the corresponding MSE’s and choose the minimal one. Also it would be
simple if we were looking for g∗ within certain family of candidates: e.g. of the form g(X2, ..., Xn) =

∑n
i=2 aiXi+b,

where ai’s and b are real numbers. Then we could derive an expression for MSE, which depends only on ai’s and
b. In this case we could find the minimal MSE by the tools from calculus: derivatives, etc. But this is not what
we want: we are searching for g∗ among all (not too weird) functions !
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or equivalently

E
(
X1 − g∗

)2 − E
(
X1 − g∗ − εh

)2
= 2εE(X1 − g∗)h− ε2Eh2 ≤ 0.

Dividing by ε and passing to the limit ε→ 0, we get E(X1 − g∗)h ≤ 0. If we replace h with −h,
the converse conclusion E(X1 − g∗)h ≥ 0 is obtained, which implies E(X1 − g∗)h = 0 for all h.

�
Remark 3a2. (3a3) means that the prediction error X1 − g∗(X2, ..., Xn) should be orthog-

onal4 to any function of the conditioning random vector (X2, ..., Xn).

The optimal predictor g∗(X1, ..., Xn) is called the conditional expectation of X1 given X2, ..., Xn

and is denoted by E(X1|X2, ..., Xn). Do not be tricked by the name: the conditional expectation
is a random variable by itself! It is customary to denote the optimal function g∗ : Rn−1 7→ R by
E(X1|X2 = x2, ..., Xn = xn) := g∗(x2, ..., xn), which will be referred to as the function, realizing
the conditional expectation.

Since the conditions (3a3) and (3a2) are equivalent, both can be used to define the conditional
expectation: for example, any r.v. which is a function ofX2, ..., Xn and satisfies the orthogonality
property (3a3) is by definition the conditional expectation. Simple as it is, this definition is quite
powerful as we shall see shortly. In particular, it can be actually used to find the conditional
expectations: one immediate way is to suggest a candidate and to check that it satisfies (3a3)!
Here are some simple examples:

Example 3a3. Let X be a random variable and let Y = X3. What is E(X|Y ) ? Let’s

try g∗(Y ) = 3
√
Y . This is certainly a function of the condition, and (3a3) holds trivially:

E(X− 3
√
Y )h(Y ) = E(X− 3

√
X3)h(Y ) = E(X−X)h(Y ) = 0 for all h. Hence E(X|Y ) = 3

√
Y . Of

course, this is also clear from the definition of g∗ as the minimizer: the MSE corresponding to
the predictor 3

√
Y is zero and hence is minimal. Note that along the same lines E(X|X) = X.�

Example 3a4. Suppose that X1 and X2 are independent. What would be E(X1|X2) ?
The natural candidate is E(X1|X2) = EX1. EX1 is a constant and hence is a (rather simple)
function of X2. Moreover, by independence, Eh(X2)(X1 − EX1) = Eh(X2)E(X1 − EX1) = 0,
which verifies (3a3). Let’s see now that e.g. g(x) = EX1 − 1 is a bad candidate: let’s check
whether

E
(
X1 − g(X2)

)
h(X2) = 0, ∀h ...?

To this end, we have:

E
(
X1 − EX1 + 1

)
h(X2) = E

(
X1 − EX1 + 1

)
Eh(X2) = Eh(X2).

Clearly, the latter does not vanish for all h: e.g. not for h(x) = x2. �
But how do we find the conditional expectation in less trivial situations, when finding the

right candidate is less obvious ? In fact, it is even not clear whether or when the conditional
expectation exists! Before addressing these questions, let us note that if it exists, it is essentially
unique: i.e. if one finds a right candidate it is the right candidate !

Lemma 3a5. If g∗ and g̃∗ satisfy (3a3), then P(g∗ = g̃∗) = 1.

Proof. Subtracting the equalities E(X1 − g∗)(g∗ − g̃∗) = 0 and E(X1 − g̃∗)(g∗ − g̃∗) = 0,
we get E(g∗ − g̃∗)2 = 0 and the claim (think why?). �

4two random variables ξ and η are said to be orthogonal, if Eξη = 0



38 3. CONDITIONAL EXPECTATION

b. The Bayes formulae

There is no general formula for conditional expectation and in certain situations the compu-
tations are challenging. For discrete or continuous random vectors, the conditional expectation
can be calculated by means of the Bayes formula. Let’s demonstrate the idea on the familiar
grounds

Example 3b1. Let (X,Y ) be a random vector in N2 with the j.p.m.f. pXY (k,m), k,m ∈ N.
The Bayes formula from the basic course of probability tells that the conditional distribution
(or more precisely, the conditional p.m.f.) of X given Y is

pX|Y (k;m) = P(X = k|Y = m) =
pXY (k,m)

pY (m)

and

E(X|Y = m) =
∑
k

kpX|Y (k;m) =

∑
k kpXY (k,m)

pY (m)
.

The latter is nothing but the optimal function g∗(m) and the corresponding conditional expec-
tation is

E(X|Y ) =
∑
k

kpX|Y (k;Y ) =

∑
k kpXY (k, Y )

pY (Y )
.

Let’s see how these formulae are obtained from the orthogonality property: we are looking for
a function g∗, such that

E
(
X − g∗(Y )

)
h(Y ) = 0, ∀h.

On one hand,

EXh(Y ) =
∑
k,m

kh(m)pXY (k,m)

and on the other hand,

Eg∗(Y )h(Y ) =
∑
k,m

g∗(m)h(m)pXY (k,m).

Hence

E
(
X − g∗(Y )

)
h(Y ) =

∑
k,m

kh(m)pXY (k,m)−
∑
k,m

g∗(m)h(m)pXY (k,m) =

∑
m

h(m)
(∑

k

kpXY (k,m)− g∗(m)
∑
k

pXY (k,m)
)
.

The latter expression should equal zero for any function h: this would be the case if we choose∑
k

kpXY (k,m)− g∗(m)
∑
k

pXY (k,m) = 0, ∀m ∈ N,

which is precisely the Bayes formula as above:

g∗(m) =

∑
k kpXY (k,m)∑
k pXY (k,m)

=

∑
k kpXY (k,m)

pY (m)
.

Note that any other essentially different choice of g∗ such that (3a3) holds, is impossible, by
uniqueness of the conditional expectation. �
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Following the very same steps we can derive various other Bayes formulae:

Proposition 3b2 (The discrete Bayes formula ). Let X be a discrete random vector and let
pX(k), k ∈ Nn be its j.p.m.f. Then for a function φ : Rm 7→ R

E
(
φ(X1, ..., Xm)|Xm+1 = km+1, ..., Xn = kn

)
=∑

k1,...,km
φ(k1, ..., km)pX(k1, ..., kn)∑
k1,...,km

pX(k1, ..., kn)
, (km+1, ..., kn) ∈ Nn−m. (3b1)

Remark 3b3. The conditional expectation is obtained by evaluating the function

(km+1, ..., kn) 7→ E
(
φ(X1, ..., Xm)|Xm+1 = km+1, ..., Xn = kn

)
,

at km+1 := Xm+1, ..., kn := Xn.

Proof. The claim is proved by verifying the characterizing properties of the conditional ex-
pectation. First, note that the suggested candidate (3b1) is clearly a function of the coordinates
appearing in the condition. Thus it is left to establish the orthogonality property (3a3): for an
arbitrary h we should check

E
(
φ(X1, ..., Xm)− g∗(Xm+1, ..., Xn)

)
h(Xm+1, ..., Xn) = 0

To this end:

Eg∗(Xm+1, ..., Xn)h(Xm+1, ..., Xn) =∑
x1,...,xn

g∗(xm+1, ..., xn)h(xm+1, ..., xn)pX(x1, ..., xn) =

∑
x1,...,xn

∑
k1,...,km

φ(k1, ..., km)pX(k1, ...km, xm+1, ..., xn)∑
ℓ1,...,ℓm

pX(ℓ1, ..., ℓm, xm+1, ..., xn)
×

h(xm+1, ..., xn)pX(x1, ..., xn) =∑
xm+1,...,xn

∑
k1,...,km

φ(k1, ..., km)pX(k1, ...km, xm+1, ..., xn)∑
ℓ1,...,ℓm

pX(ℓ1, ..., ℓm, xm+1, ..., xn)
×

h(xm+1, ..., xn)
∑

x1,...,xm

pX(x1, ..., xn) =∑
xm+1,...,xn

∑
k1,...,km

φ(k1, ..., km)pX(k1, ...km, xm+1, ..., xn)h(xm+1, ..., xn) =∑
x1,...,xn

φ(x1, ..., xm)h(xm+1, ..., xn)pX(x1, ..., xn) =

Eφ(X1, ..., Xm)h(Xm+1, ..., Xn),

which verifies the claim. �
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Note that

E
(
φ(X1, ..., Xm)|Xm+1 = km+1, ..., Xn = kn

)
=∑

x1,...,xm

φ(x1, ..., xm)pX1,...,Xm|Xm+1,...,Xn
(x1, ..., xm; km+1, ..., kn),

where

pX1,...,Xm|Xm+1,...,Xn
(x1, ..., xm;xm+1, ..., xn) :=

pX(x1, ..., xn)∑
x1,...,xm

pX(x1, ..., xn)

is the conditional j.p.m.f. of X1, ..., Xm, given Xm+1, ..., Xn. The corresponding conditional
j.m.g.f. and j.p.g.f are defined in the usual way.

Remark 3b4. In particular, for φ(x) = I(X1 = j), we recover the familiar expression for
conditional probabilities: e.g.

E
(
I(X1 = j)|X2 = x2, X3 = x3

)
=

pX(j, x2, x3)∑
i pX(i, x2, x3)

= P(X1 = j|X2 = x2, X3 = x3).

Example 3b5. Consider Y1, ..., Yk from Example 2c1 with multinomial distribution. The
conditional p.m.f. of Y1, given Yk is found by means of the Bayes formula

pY1|Yk(x; y) =
pY1Yk(x; y)∑
j pY1Yk(j, y)

=
pY1Yk(x; y)

pYk(y)
=

n!
x!y!(n−x−y)!p

x
1p
y
k(1− p1 − pk)

n−x−y

n!
y!(n−y)!p

y
k(1− pk)n−y

=

(n− y)!

x!(n− x− y)!

px1(1− p1 − pk)
n−x−y

(1− pk)n−y
=(

n− y
(n− y)− x

)( p1
1− pk

)x(
1− p1

1− pk

)(n−y)−x
for x = 0, ..., n − y and zero otherwise. This is easily recognized as the Binomial distribution
Bin(p1/(1− pk), n− y). Hence e.g. the conditional expectation of Y1, given Yk is

E(Y1|Yk) = (n− Yk)
p1

1− pk
.

Again, note that the latter is a random variable ! �
Similarly, the conditional expectation is calculated in the continuous case:

Proposition 3b6 (The continuous Bayes formula). Let X be a continuous random vector
taking values in Rn with j.p.d.f. fX(x), x ∈ Rn. Then for any φ : Rm 7→ R

E
(
φ(X1, ..., Xm)|Xm+1 = xm+1, ..., Xn = xn

)
=∫

Rm

φ(x1, ..., xm)fX1,...,Xm|Xm+1,...,Xn
(x1, ..., xm;xm+1, ..., xn)dx1...dxm,

where

fX1,...,Xm|Xm+1,...,Xn
(x1, ..., xm;xm+1, ..., xn) =

fX(x)∫
Rm fX(x)dx1...dxm

,
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is the conditional j.p.d.f. of X1, ..., Xm, given Xm+1, ..., Xn. The conditional expectation is
obtained by plugging Xm+1, ..., Xn into the function E

(
φ(X1, ..., Xm)|Xm+1 = xm+1, ..., Xn =

xn
)
.

Proof. Similar to the discrete case �
For n = 2, the latter reads

Corollary 3b7. Let X1 and X2 be jointly continuous r.v.’s with the j.p.d.f. fX1X2(u, v).
Then for a function ϕ : R 7→ R

E(ϕ(X1)|X2) =

∫
R
ϕ(u)fX1|X2

(u;X2)du,

where

fX1|X2
(u; v) =

fX1X2(u, v)

fX2(v)
=

fX1X2(u, v)∫
R fX1X2(s, v)ds

, (3b2)

is the conditional p.d.f. of X1, given X2.

Example 3b8. Let (X,Y ) be a random vector with the p.d.f.

fXY (x, y) = (x+ y)I(x ∈ (0, 1))I(y ∈ (0, 1)).

Let’s calculate E(X|Y ). To apply the Bayes formula we need the marginal p.d.f. fY :

fY (y) =

∫
R
(x+ y)I(x ∈ (0, 1))I(y ∈ (0, 1))dx = I(y ∈ (0, 1))(1/2 + y).

Hence for x, y ∈ (0, 1), the conditional p.d.f. of X given Y is

fX|Y (x; y) =
fXY (x, y)

fY (y)
=

x+ y

y + 1/2
,

and zero otherwise. The conditional c.d.f. of X given Y is

FX|Y (x; y) =

∫ x

0
fX|Y (s; y)ds =

∫ x

0

s+ y

y + 1/2
ds =

x2/2 + yx

y + 1/2
, x, y ∈ (0, 1),

FX|Y (0−; y) = 0 and FX|Y (1; y) = 1. Further, for y ∈ (0, 1)

E(X|Y = y) =

∫ 1

0
xfX|Y (x; y)dx =

∫ 1

0
x
x+ y

y + 1/2
dx =

1/3 + y/2

y + 1/2
.

Finally, the best MSE predictor of X given Y is given by the conditional expectation:

E(X|Y ) =
1/3 + Y/2

Y + 1/2
.

What if X is neither discrete nor continuous, but e.g. of a mixed type? Pay attention, that
so far we haven’t discussed the existence of the conditional expectation in general: perhaps,
in certain situations there is no g∗ which satisfies (3a3) ...? It turns out that the conditional
expectation exists under very mild conditions 5 and, moreover, is often given by an abstract Bayes
formula. However, the actual calculation of conditional expectations can be quite involved. In

5the conditional expectation of X given Y exists, if e.g. E|X| < ∞. Note that nothing is mentioned of the
conditioning r.v. Y .
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some cases, which do not fit neither of the propositions above, the conditional expectation can
be found directly from the property (3a3). Here is an example:

Example 3b9. Let X ∼ exp(λ) and Y = ξX, where ξ ∼ Ber(1/2), independent of X. We
are interested to calculate E(X|Y ). Note that (X,Y ) is neither jointly continuous (since Y is
not continuous) nor jointly discrete vector (since X is continuous) and hence formally all the
Bayes formulae derived above are not applicable. In fact, using (3a3) to find E(X|Y ) can be
viewed as deriving the Bayes formula for this particular situation.

We are looking for a function g∗ : R 7→ R, such that

E(X − g∗(Y ))h(Y ) = 0, ∀h.

We have

EXh(Y ) = EXh(ξX) = EXh(ξX)I(ξ = 0) + EXh(ξX)I(ξ = 1) =

EXh(0)I(ξ = 0) + EXh(X)I(ξ = 1) = h(0)
1

2
EX +

1

2
EXh(X) =

h(0)
1

2

1

λ
+

1

2

∫
R
uh(u)fX(u)du

Similarly,

Eg∗(Y )h(Y ) = Eg∗(ξX)h(ξX) =
1

2
g∗(0)h(0) +

1

2

∫
R
g∗(u)h(u)fX(u)du.

Hence

E(X − g∗(Y ))h(Y ) = h(0)
1

2

1

λ
+

1

2

∫
R
uh(u)fX(u)du

− 1

2
g∗(0)h(0)− 1

2

∫
R
g∗(u)h(u)fX(u)du =

1

2
h(0)(1/λ− g∗(0)) +

1

2

∫
R
h(u)(u− g∗(u))fX(u)du

The latter equals zero for any h if we choose g∗(0) = 1/λ and g∗(u) = u for u ̸= 0. Hence

E(X|Y = u) =

{
u u ̸= 0
1
λ u = 0

and

E(X|Y ) = Y I(Y ̸= 0) +
1

λ
I(Y = 0).

The latter confirms the intuition: it is optimal predict X by the value of Y , whenever it is not 0,
and predict EX = 1

λ when Y = 0 (i.e. when Y doesn’t tell anything about X). Think, however,
how could you possibly get this answer by means of the Bayes formulae derived above ...?! �

c. Conditioning of Gaussian vectors

Of a particular importance and simplicity are the formulae for conditional expectation for
Gaussian random vectors.



D. PROPERTIES 43

Proposition 3c1 (Normal Correlation Theorem). Let X be a Gaussian r.v. in R2 as in
Definition 2b6. Then fX1|X2

(x1;x2) is Gaussian with the (conditional) mean:

E(X1|X2 = x2) = µ1 +
ρσ1
σ2

(x2 − µ2)

and the (conditional) variance:

var(X1|X2 = x2) = σ21(1− ρ2).

Remark 3c2. In the Gaussian case the optimal predictor is a linear function of the condi-
tion and the conditional variance does not depend on the condition at all. These remarkable
properties make the Gaussian vectors very special in statistics.

Proof. Direct application of the Bayes formula (3b2) to the Gaussian j.p.d.f. fX(x). �

Here is how the formulae look like in the general multivariate case:

Proposition 3c3. Let (X,Y ) be a Gaussian vector with values in Rk+m, where the first k
coordinates are denoted by X and the rest n−m coordinates are denoted by Y . Let µ = (µX , µY )
be the expectation vector and the covariance matrix

S =

(
SX SXY
SY X SY

)
.

Assume that SY is nonsingular. Then the conditional distribution of X given Y is Gaussian
with the mean

E(X|Y ) = µX + SXY S
−1
Y (Y − µY )

and the covariance

cov(X|Y ) = SX − SXY S
−1
Y SY X .

Proof. (a direct tedious calculation) �

d. Properties

Not less important than the computational techniques of the conditional expectation, are
its properties listed below.

Proposition 3d1. Let X,Y, Z be random vectors, a, b be real constants and ψ, ϕ functions
with appropriate domains of definition

(1) linearity:

E(aX + bY |Z) = aE(X|Z) + bE(Y |Z).
(2) X ≥ Y =⇒ E(X|Z) ≥ E(Y |Z)
(3) E

(
E(X|Y, Z)

∣∣Z) = E(X|Z)

(4) E
(
E(X|Z)

∣∣Y,Z) = E(X|Z)
(5) E(X|a) = EX
(6) EE(X|Y ) = EX
(7) E(c|Y ) = c
(8) E(ϕ(X)ψ(Y )|Y ) = ψ(Y )E(ϕ(X)|Y )
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(9) if X and Y are independent, then

E(ψ(X,Y )|Y ) =

∫
ψ(x, Y )dFX(x)

Proof. All the properties are conveniently checked by applying the characterization by
(3a3).

(1) Clearly aE(X|Z)+bE(Y |Z) is a legitimate candidate for E(aX+bY |Z) as it is a function
of Z. Let h be an arbitrary function, then

E
(
aX + bY − aE(X|Z)− bE(Y |Z)

)
h(Z) =

aE
(
X − E(X|Z)

)
h(Z) + bE

(
Y − E(Y |Z)

)
h(Z) = 0,

where we used linearity of the expectation 2a2 in the first equality and (3a3), applied
to E(X|Z) and E(Y |Z) individually.

(2) by linearity, it is enough to show that ξ ≥ 0 implies E(ξ|Z) ≥ 0 (with ξ = X − Y ).
Note that(

ξ − E(ξ|Z)
)
I
(
E(ξ|Z) ≤ 0

)
=

ξI
(
E(ξ|Z) ≤ 0

)
− E(ξ|Z)I

(
E(ξ|Z) ≤ 0

)
≥ ξI

(
E(ξ|Z) ≤ 0

)
≥ 0,

where we used ξ ≥ 0 in the latter inequality. On the other hand, by the orthogonality
property (3a3),

E
(
ξ − E(ξ|Z)

)
I
(
E(ξ|Z) ≤ 0

)
= 0,

and hence with probability one(
ξ − E(ξ|Z)

)
I
(
E(ξ|Z) ≤ 0

)
= 0,

i.e.
E(ξ|Z)I

(
E(ξ|Z) ≤ 0

)
= ξI

(
E(ξ|Z) ≤ 0

)
≥ 0.

But then

E(ξ|Z) = E(ξ|Z)I
(
E(ξ|Z) > 0

)
+ E(ξ|Z)I

(
E(ξ|Z) ≤ 0

)
≥ 0,

as claimed.
(3) we have to check that

E
(
E(X|Y, Z)− E(X|Z)

)
h(Z) = 0

for an arbitrary h. Indeed,

E
(
E(X|Y, Z)−X +X − E(X|Z)

)
h(Z) =

E
(
E(X|Y,Z)−X

)
h(Z) + E

(
X − E(X|Z)

)
h(Z) = 0,

where we applied (3a3) to each term separately (note that h(Z) can be seen as a
function of (Z, Y )).

(4) holds since E(X|Z) is a function of (X,Y ) and certainly

E
(
E(X|Z)− E(X|Z)

)
h(Z, Y ) = 0.
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(5) holds since
E(X − EX)h(a) = 0

for an arbitrary h.
(6) follows from E(X − E(X|Y ))h(Y ) = 0 for h(y) := 1
(7) E(c− c)h(Y ) = 0 for all h
(8) By (3a3)

E
(
ϕ(X)ψ(Y )− ψ(Y )E(ϕ(X)|Y )

)
h(Y ) = E

(
ϕ(X)− E(ϕ(X)|Y )

)
ψ(Y )h(Y ) = 0,

and the claim follows from (3a3) by arbitrariness of h.
(9) (straightforward)

�
Remark 3d2. Some of the properties are intuitive, in view of the optimality property (3a2)

of the conditional expectation. For example, the best guess of a deterministic constant given
anything is the constant itself (this choice yields zero MSE), which is the claim in (7).

Remark 3d3. Verifying the above properties by means of the Bayes formulae is more cum-
bersome (if at all possible): try e.g. to check (3).

Remark 3d4. As follows from the proofs, conditioning with respect to an arbitrary number
of random variables enjoys the same properties.

These properties play the central role in calculations involving the conditional expectations.
Here is one cute application:

Example 3d5. Let X1, ..., Xn be i.i.d. r.v. (not necessarily continuous or discrete!) and
Sn =

∑n
i=1Xi. We would like to calculate E(X1|Sn). To this end, note that

Sn = E(Sn|Sn) =
n∑
i=1

E(Xi|Sn).

Set Sn\i =
∑

j ̸=iXj and notice that Xi and Sn\i are independent (why?) and Sn\i and Sn\j
have the same distribution (as Xi’s are identically distributed). Then for a bounded function h
and any i,

EXih(Sn) = EXih(Sn\i +Xi) =

∫
R
xh(s+ x)dFXi(x)dFSn\i(s) =∫

R
xh(s+ x)dFX1(x)dFSn\1(s) = EX1h(Sn)

and, consequently,

E
(
Xi − E(X1|Sn)

)
h(Sn) = E

(
X1 − E(X1|Sn)

)
h(Sn) = 0

which implies that E(Xi|Sn) = E(X1|Sn) by (3a3). Hence

Sn =
n∑
i=1

E(Xi|Sn) = nE(X1|Sn)

and E(X1|Sn) = Sn/n. �
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Example 3d6. Let X1, X2 and X3 be i.i.d N(0, 1) r.v’s and let

Y :=
X1 +X2X3√

1 +X2
3

.

We would like to find the distribution of Y .
Since (X1, X2, X3) is a Gaussian vector, the conditional distribution of (X1, X2), given X3

is also Gaussian with the (conditional) mean(
E(X1|X3)
E(X2|X3)

)
=

(
EX1

EX2

)
=

(
0
0

)
,

where we used the independence of X1 and X3, and X2 and X3. The conditional covariance
matrix of (X1, X2) given X3 is(

var(X1|X3) cov(X1, X2|X3)
cov(X1, X2|X3) var(X2|X3)

)
=

(
var(X1) cov(X1, X2|X3)

cov(X1, X2|X3) var(X2)

)
=

(
1 0
0 1

)
,

where we again used independence of X1 and X3, and X2 and X3 to conclude that e.g.

var(X1|X3) = E(X2
1 |X3)−

(
E(X1|X3)

)2
= E(X2

1 )−
(
EX1

)2
= var(X1)

and independence of (X1, X2, X3) to get

cov(X1, X2|X3) = E(X1X2|X3)− E(X1|X3)E(X2|X3) =

EX1X2 − EX1EX2 = cov(X1, X2) = 0.

To recap, the conditional distribution of (X1, X2) given X3 is Gaussian with zero mean and unit
covariance matrix. Hence

MY (t) =E exp(tY ) = E exp
(
t
X1 +X2X3√

1 +X2
3

)
=

EE
(
exp

(
t
X1 +X2X3√

1 +X2
3

)∣∣∣X3

)
=

EE
(
exp

(
tX1

1√
1 +X2

3

)∣∣∣X3

)
E
(
exp

(
tX2

X3√
1 +X2

3

)∣∣∣X3

)
=

E exp
(1
2
t2

1

1 +X2
3

)
exp

(1
2
t2

X2
3

1 +X2
3

)
=

E exp
(1
2
t2

1

1 +X2
3

+
1

2
t2

X2
3

1 +X2
3

)
= E exp

(1
2
t2
)
= exp

(1
2
t2
)
.

The latter is identified as the m.g.f. of an N(0, 1) r.v. �
Example 3d7. Consider X from Example 2b13 and suppose that θ is a random variable on

[0, 2π] (rather than a deterministic angle) with arbitrary distribution, independent of X. For
t ∈ R2,

E exp
{
tU(θ)X

}
= EE

(
exp

{
tU(θ)X

}
|θ
)
.

By the property 9,

E
(
exp

{
tU(θ)X

}
|θ
)
= exp

{
t⊤U(θ)U⊤(θ)t

}
= exp(∥t∥2),
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and hence

E exp
{
tU(θ)X

}
= exp(∥t∥2),

which means that the standard Gaussian distribution is invariant under independent random
rotations. �

Remark 3d8. Let (X,Y ) be a continuous random vector. What do we mean by P(X ∈
[1, 2]|Y = 5) ...? Certainly this cannot be interpreted as the conditional probability of the
event A = {X ∈ [1, 2]}, given the event B = {Y = 5}, since P(B) = 0 and thus P(A|B) =
P(A ∩ B)/P(B) = 0/0 is not well defined ! One natural way to deal with this is to define
P(X ∈ [1, 2]|Y = 5) by the limit

P(X ∈ [1, 2]|Y = 5) = lim
ε→0

P(X ∈ [1, 2], |Y − 5| ≤ ε)

P(|Y − 5| ≤ ε)
.

This approach actually works whenX and Y are random variable taking real values, and yielding
the aforementioned Bayes formulae. This approach, however, has serious disadvantages: (1) it
doesn’t work in a greater generality 6 and, more importantly for this course, it is not easy to
derive the properties of the obtained object.

The standard modern approach is through conditional expectation: by definition, P(X ∈
[1, 2]|Y ) = E

(
I(X ∈ [1, 2])

∣∣Y ) and the latter makes perfect sense: it is the essentially unique
random variable, which is defined either by (3a2) or equivalently by (3a3). Moreover, P(X ∈
[1, 2]|Y = u), u ∈ R is the function (called g∗(u) above), which realizes the conditional expecta-
tion.

The following example is an illuminating manifestation7

Example 3d9. Let U and V be i.i.d. r.v.’s with uniform distribution over the interval
(0, 1). Define D := U − V and R := U/V . We shall calculate E(U |D) and E(U |R) by the Bayes
formulae. To this end, that the random vector (U,D) has the joint density

fUD(x, y) = fU (x)fV (x− y) = I(x ∈ [0, 1])I(x− y ∈ [0, 1]), x ∈ (0, 1), y ∈ (−1, 1)

and the p.d.f. of D is given by

fD(y) =

∫ 1

0
fUD(x, y)dx =

∫ 1

0
I(x− y ∈ [0, 1])dx = 1− |y|.

Hence by the Bayes formula

E(U |D) =

∫ 1
0 xfUD(x,D)dx

fD(D)
=

∫ 1
0 xI(x−D ∈ [0, 1])dx

1− |D|
=

1

1− |D|

{
1
2(D + 1)2 D ∈ (−1, 0]
1
2 − 1

2D
2 D ∈ [0, 1)

=
1

2
(1 +D).

6particularly, for random processes, etc.
7a folklore example, communicated to the author by Y.Ritov
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To find E(U |R) we shall use the orthogonality characterization. To this end, for a bounded
function h

EUh(R) =
∫ 1

0
x
(∫ 1

0
h(x/y)dy

)
dx =

∫ 1

0
x
(∫ ∞

x
h(z)

x

z2
dz
)
dx =∫ ∞

0
h(z)

1

z2

(∫ 1∧z

0
x2dx

)
dz =

∫ ∞

0
h(z)

1

z2
1

3
(1 ∧ z)3dz.

Similarly,

Eg∗(R)h(R) =
∫ 1

0

∫ 1

0
g∗(x/y)h(x/y)dydx =∫ ∞

0
g∗(z)h(z)

1

z2

(∫ 1∧z

0
xdx

)
dz =

∫ ∞

0
g∗(z)h(z)

1

z2
1

2
(1 ∧ z)2dz.

Hence the requirement

E
(
U − g∗(R)

)
h(R) = 0, ∀h

is met by the choice

g∗(z) =
1
3(1 ∧ z)

3

1
2(1 ∧ z)2

=
2

3
(1 ∧ z),

i.e.

E(U |R) = 2

3
(1 ∧R).

Consequently,

E(U |D = 0) = 1/2, and E(U |R = 1) =
2

3
.

This may seem counterintuitive, since {R = 1} = {D = 0} = {U = V }, but we shall predict U
differently on {R = 1} and {D = 0}! This is no paradox, since we measure the quality of the
prediction of U by the mean square error and not the individual errors for particular realization
of R or D. In fact, for an arbitrary number a ∈ R,

E(U |D) =

{
1
2(1 +D), D ̸= 0

a, D = 0
, with prob. 1,

and hence comparing E(U |D) and E(U |R) for individual realizations of U and R is meaningless.
To get an additional insight into the mysterious numbers 1/2 and 2/3, explore the limits

lim
ε→0

EUI(|D| ≤ ε)

P(|D| ≤ ε)
=

1

2
, and lim

ε→0

EUI(|R− 1| ≤ ε)

P(|R− 1| ≤ ε)
=

2

3
.

Geometrically, the first limit suggests to calculate the area of the linear strip

{(x, y) ∈ (0, 1)× (0, 1) : |x− y| ≤ ε},
whose “center of mass” is at its mid point, corresponding to 1/2, while the second limit has to
do with the area of the sector

{(x, y) ∈ (0, 1)× (0, 1) : |x/y − 1| ≤ ε},
whose “center of mass” is shifted towards the “thick” end, yielding 2/3.
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Exercises

Problem 3.1. Find FX|Y (x; y), fX|Y (x; y), FY |X(y;x) and fY |X(y;x) for the random vector
from Problem 2.3

Problem 3.2. Let (X,Y ) be a random vector, such that E(Y |X = x) is in fact not a function
of x. Show that var(Y ) = Evar(Y |X).

Problem 3.3 (The law of total variance). For a pair of random variables X and Y , show
that

var(X) = Evar(X|Y ) + var(E(X|Y )),

if EX2 <∞.

Problem 3.4. Let X ∼ U([0, 1]) and suppose that the conditional law of Y given X is
binomial Bin(n,X).

(1) Calculate EY
(2) Find the p.m.f. of Y for n = 2
(3) Generalize to n > 2 (Leave your answer in terms of the so called β-function:

β(a, b) =

∫ 1

0
xa−1(1− x)b−1dx,

which reduces to β(a, b) = (a−1)!(b−1)!
(a+b−1)! for integer a and b)

Problem 3.5. Let X,Y be a random variables with finite second moments and var(Y ) > 0.
Show that

E(Y − aX − b)2 ≥ var(X)− cov2(X,Y )

var(Y )
, a, b ∈ R,

and that the minimum is attained by the optimal linear predictor:

a∗ =
cov(X,Y )

var(Y )
, b∗ = EX − a∗EY.

Explain how the latter can be used to predict X, given Y .

Problem 3.6. Alice wants to transmit a message to Bob via a noisy communication channel.
Let X be Alice’s message and assume that it is a symmetric Bernoulli r.v. Bob gets Y = X +Z
at the output of the channel, where Z ∼ N(0, 1), independent of X.

(1) Find the optimal linear predictor X̂ of X given Y . Calculate the expectation of the

error X − X̂ and the MSE E(X − X̂)2. Suppose that Alice sent 1 and Bob obtained
1/2: what guess would Bob generate by the linear predictor ?

(2) Find the joint probability law of (X,Y ). Is (X,Y ) a Gaussian r.v. ?
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(3) Find the optimal predictor X̃ of X given Y , among the nonlinear predictors of the form

ϕ(Y ) for some function ϕ. Calculate the expectation of the error X − X̃ and the MSE

E(X − X̃)2. Suppose that Alice sent 1 and Bob obtained 1/2: what guess would Bob
generate by the linear predictor ?

Problem 3.7. Answer the question from the previous problem, assuming X ∼ N(1/2, 1/4)
(instead of X ∼ Ber(1/2)).

Problem 3.8. Let (X,Y ) be a Gaussian vector in R2 with the parameters µX = 5, µY = 10,
σX = 1, σY = 5.

(1) Find ρ(X,Y ) if ρ(X,Y ) > 0 and P(4 < Y < 16|X = 5) = 0.954...
(2) If ρ(X,Y ) = 0, find P(X + Y < 16)

Problem 3.9. Let (X,Y ) be a Gaussian vector with the parameters µx,µY ,σ
2
X ,σ

2
Y ,ρ

(1) Is E(X|Y ) a Gaussian r.v. ? Find its mean and variance
(2) Is (X,E(X|Y ) a Gaussian vector ? Find its mean and covariance matrix.
(3) Calculate E

(
E(X|Y )|X

)
(4) Calculate E

(
X|E(X|Y )

)
Hint: remember that E(X|Y ) is a linear function of Y

Problem 3.10. Let X ∼ U([0, 1]) and Y = XI(X ≥ 1/2). Find E(X|Y ).

Problem 3.11. n i.i.d. experiments with the success probability p > 0 are performed. Let
X be the number of successes in the n experiments and Y be the number of successes in the
first m experiments (of course, m ≤ n).

(1) Find the j.p.m.f of (X,Y )
(2) Calculate the conditional p.m.f of Y , given X and identify it as one of the standard

p.m.f.’s

Problem 3.12. (*) Let X be a r.v. with the p.d.f. f(x) and let Y := g(X), where g is
a piecewise strictly monotonous differentiable function (so that the set of roots g−1(y) = {x :
g(x) = y} is a finite or countable set). Prove that the conditional law of X, given Y , is discrete
and its p.m.f. is given by:

P(X = x|Y ) =
f(x)/|g′(x)|∑

s∈g−1(Y ) f(s)/|g′(s)|
, x ∈ g−1(Y ),

where g′ is the derivative of g. Think what changes if g has zero derivative on a nonempty
interval ...?

Problem 3.13. Let X ∼ Exp(λ) with λ > 0 and set Z = I(X ≥ s) for some s > 0.
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(1) Find the conditional law of X, given Z
(2) Calculate E(X|Z)

Problem 3.14. Consider the j.p.d.f.

fX,Y (x, y) =
1

y
e−x/ye−yI(x ∈ (0,∞))I(y ∈ (0,∞)).

(1) Find fY (y) and identify it with one of the standard p.d.f.’s (Hint: no calculation is
required)

(2) Find fX|Y (x; y) and identify it with one of the standard p.d.f.’s (Hint: no calculation
is required) Find E(X|Y )

(3) Verify that fXY is indeed a j.p.d.f.
(4) Are X and Y independent ?

Problem 3.15. Consider the j.p.d.f.

fXY (x, y) = 2xyI
(
(x, y) ∈ A

)
, A = {(x, y) ∈ R2 : 0 ≤ x ≤ 2y ≤ 2}

(1) Find fX ,fY , fX|Y and fY |X
(2) Find E(Y |X) and E(X|Y )

(3) Find var(X), E(X2|Y ) and var(X|Y ) := E
((
X − E(X|Y )

)2∣∣Y )
(4) Calculate cov(X,Y )

Problem 3.16. Let X and Y be real valued r.v.’s and ϕ a R 7→ R function.

(1) Show that E(X|Y ) = E(X|ϕ(Y )), if ϕ is one-to-one
(2) Give an example of X,Y and ϕ so that the claim in (1) fails to hold





CHAPTER 4

Transformations of random vectors

Let X be a random vector in Rn with known distribution. Then for a function g : Rn 7→ Rm,
Y := g(X) is a random vector. How can we deduce the distribution of Y (in any convenient
form, e.g. p.d.f., p.m.f. etc.) ? Such question arises for example if we are able to sample from
one distribution and would like to obtain a sample from another. Another typical application is
when we form an estimate of a parameter from a sample of large dimension and would like to
have a compact probabilistic description of our estimator.

The answer to this question in general can be quite complicated, and we shall focus on a
number of simple, but frequently encountered situations.

a. R 7→ R transformations

Let’s explore the possible situations through a number of simple examples

Example 4a1. Let X ∼ U([0, 1]) and Y = I(X ≤ 1/2) (i.e. g(x) = I(x ≤ 1/2)). Clearly
Y ∼ Ber(p) where

p = P(Y = 1) = P(X ≤ 1/2) = 1/2.

�
This example demonstrates how a discrete r.v. is obtained from a continuous r.v. if g takes

a countable (or finite) number of values. Here is a generalization:

Proposition 4a2. Let p(k) be a p.m.f (supported on integers) and X ∼ U([0, 1]), then

Y := min
{
k ≥ 0 :

k∑
i=0

pi ≥ X
}

has p.m.f. p(k).

Proof.

P(Y = j) = P
( j∑
i=0

p(i) ≥ X,

j−1∑
i=0

< X
)
=

∫ ∑j
i=0 p(i)∑j−1

i=0 p(i)
dx =

j∑
i=0

p(i)−
j−1∑
i=0

p(i) = p(j).

�
Can we get a continuous r.v. from a discrete one ? Obviously not:

Proposition 4a3. Let X be a r.v. with p.m.f. pX and g : R 7→ R, then Y = g(X) is
discrete, and

pY (i) =
∑

j:g(xj)=yi

pX(j).

53
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Proof. Let {x1, x2, ...} be the set of values of X, then Y takes values in the discrete set
{g(x1), g(x2), ...}. Moreover,

pY (i) = P(Y = yi) = P(X ∈ {xj : g(xj) = yi}) =

P

 ∪
xj :g(xj)=yi

{X = xj}

 =
∑

j:g(xj)=yi

pX(j)

�

Here is a particular, but important, example of a different flavor:

Proposition 4a4. Let F and G be continuous and strictly increasing c.d.f ’s and let X be a
r.v. sampled from F , then U = F (X) has uniform distribution on [0, 1] and Y := G−1

Y (FX(X))
is a sample from G.

Proof. If X is a r.v. with a strictly increasing c.d.f. F (x), then for U := F (X)

P(U ≤ x) = P(F (X) ≤ x) = P(X ≤ F−1(x)) = F (F−1(x)) = x, x ∈ [0, 1]

and F (0−) = 0 and F (x) = 1, x ≥ 1.
Further, if U is a r.v. with uniform distribution on [0, 1] and G(x) is a strictly increasing

continuous c.d.f., then

P(Y ≤ v) = P(G−1(U) ≤ v) = P(U ≤ G(v)) =

∫ G(v)

0
ds = G(v).

�

Remark 4a5. The typical application of this Proposition 4a4 is the following: suppose we
can generate r.v. X with a particular distribution FX (e.g. uniform or normal etc.) and we want
to generate r.v. Y with a different distribution FY . If FX and FY satisfy the above conditions,
this can be done by setting Y := F−1

Y (FX(X)).

Let’s now consider the setting, when a r.v. with p.d.f. is mapped by a differentiable one-to-
one function g:

Proposition 4a6. Let X be a r.v. with p.d.f. fX(x) and let Y = g(X), where g is a
differentiable and strictly monotonous function on the interior1 of the support of fX . Then Y
has the p.d.f.

fY (v) =
fX
(
g−1(v)

)∣∣g′(g−1(v)
)∣∣ , v ∈ R.

Proof. Suppose g increases, then

FY (v) := P(Y ≤ v) = P(g(X) ≤ v) = P(X ≤ g−1(v)) = FX(g
−1(v)), (4a1)

1Recall that the interior of a subset A ⊆ R, denoted by A◦, is the set of all internal points of A, whereas a
point x ∈ A is internal, if there is an open interval Vx, such that x ∈ Vx ⊆ A. For example, 0.5 is an interval
point of [0, 1), while 0 and 1 are not.
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where the last equality follows from the strict monotonicity of g. Since g is invertible, i.e.
g(g−1(x)) = x, x ∈ R and as g is differentiable and strictly increasing, taking derivative of the
latter identity we get g′

(
g−1(x)

)
d
dxg

−1(x) = 1 and hence

d

dx
g−1(x) =

[
g′
(
g−1(x)

)]−1
.

Now differentiating (4a1) w.r.t. v, we get

fY (v) :=
d

dv
FY (v) = fX

(
g−1(v)

)[
g′
(
g−1(v)

)]−1
.

Notice that the latter expression is indeed positive as it should be. For strictly decreasing g we
get the same answer with minus (so that the obtained expression is again positive). �

Example 4a7. Let X ∼ U([0, 1]), i.e. fX(x) = I(x ∈ [0, 1]) and define Y = 1/X. Note that
the function g(x) = 1/x is strictly decreasing and differentiable on (0, 1). Moreover, g′(x) =
(1/x)′ = −1/x2 and g−1(v) = 1/v, v ∈ (1,∞), hence

fy(v) =
1

v2
I(g−1(v) ∈ [0, 1]) =

1

v2
I(v > 1).

Check e.g. that
∫∞
1 fY (v)dv = 1 and EY = ∞. �

The following generalizes the latter proposition to the setting, when the transformation g is
only piecewise monotone

Proposition 4a8. Let X be a r.v. with p.d.f fX(x) and g is a function of the form

g(x) =

m∑
i=1

I(x ∈ Ai)gi(x), m ≥ 1

where Ai, i = 1, ...,m are pairwise disjoint intervals partitioning the support of fX , and where
gi(x) are differentiable and strictly monotonous2 functions on A◦

i (the interiors of Ai) respec-
tively. Then Y = g(X) has the p.d.f.

fY (v) =

m∑
i=1

fX
(
g−1
i (v)

)∣∣g′i(g−1
i (v)

)∣∣I(g−1
i (v) ∈ A◦

i ), v ∈
m∪
i=1

A◦
i . (4a2)

Remark 4a9. Note that Proposition 4a6 is a particular case of the latter proposition, cor-
responding to m = 1, i.e when g is monotonous on all the support.

Remark 4a10. Note that fY in (4a2) remains undefined outside the open set ∪mj=1A
◦
j , which

consists of a finite number of points. At these points fY can be defined arbitrarily without
affecting any probability calculations, it is involved in (why?)

Proof. Since gi is a monotonous function and Ai is an interval, say Ai := [ai, bi], the image
of Ai under gi is the interval [gi(ai), gi(bi)], if gi increases and [g(bi), g(ai)], if g decreases. For a
fixed i and v ∈ R, consider the quantity

P(Y ≤ v,X ∈ Ai) = P(gi(X) ≤ v,X ∈ Ai),

2for simplicity, we shall assume that g′(x) > 0, if g is increasing and g′(x) < 0 if it is decreasing, for all x ∈ R
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and suppose for definiteness that gi increases on Ai. Then

P(Y ≤ v,X ∈ Ai) =


0 v ≤ g(ai)∫ g−1

i (v)
ai

fX(x)dx v ∈
(
g(ai), g(bi)

)
P(X ∈ Ai) v ≥ g(bi)

and hence

d

dv
P(Y ≤ v,X ∈ Ai) =

{
fX(g

−1
i (v)) ddvg

−1
i (v) v ∈

(
g(ai), g(bi)

)
0 otherwise

=fX(g−1
i (v))

[
g′i
(
g−1
i (v)

)]−1
v ∈

(
g(ai), g(bi)

)
0 otherwise

Similar non-negative expression is obtained, if gi decreases on Ai. The claimed formula now
follows from the total probability decomposition:

P(Y ≤ v) =
∑
i

P(Y ≤ v,X ∈ Ai)

�

Example 4a11. In many cases it is convenient to bypass the general formula and act directly.
Let X ∼ N(0, 1) and let Y = X2. Then obviously P(Y ≤ v) = 0 if v ≤ 0 and for v > 0

FY (v) = P(Y ≤ v) = P(X2 ≤ v) = P(X ≥ −
√
v,X ≤

√
v) = FX(

√
v)− FX(−

√
v).

Differentiating w.r.t v we get

fY (v) =
d

dv
FY (v) = fx(

√
v)

1

2

1√
v
+ fX(−

√
v)

1

2

1√
v
.

Now with fX(x) =
1√
2π
e−x

2/2 we obtain:

fY (v) =
1√
v
fX(

√
v) =

1√
v

1√
2π
e−v/2I(v > 0). (4a3)

Now let’s get the same answer by applying the general recipe from the last proposition. The
function g(x) = x2 is decreasing on (−∞, 0] and increasing on (0,∞) (note that inclusion of
{0} to either intervals is not essential, since we deal only with the interiors of Ai’s). We have
g−1
1 (v) = −

√
v and g−1

2 (v) =
√
v and g′i(x) = 2x. For v < 0, fY (v) = 0 since v does not belong

neither to g(A1) = [0,∞) nor to g(A2) = (0,∞). For v > 0 the formula yields

fY (v) = fX(−
√
v)

1

2
√
v
I(v ∈ (0,∞)) + fX(

√
v)

1

2
√
v
I(v ∈ (0,∞)),

which is the same p.d.f. as in (4a3). �
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b. Some special Rn 7→ R transformations

min and max.

Proposition 4b1. Let (X1, ..., Xn) be i.i.d. r.v. with common c.d.f F and let X(1) :=
min(X1, ..., Xn) and X(n) := max(X1, ..., Xn). Then

FX(n)
(x) = Fn(x), FX(1)

(x) = 1−
(
1− F (x)

)n
.

If F has p.d.f. f , then

fX(n)
(x) = nf(x)Fn−1(x), fX(1)

(x) = nf(x)
(
1− F (x)

)n−1
.

Proof. We have

FX(n)
(x) = P(X(n) ≤ x) = P(X1 ≤ x, ...,Xn ≤ x) =

n∏
i=1

P(Xi ≤ x) = Pn(X1 ≤ x) = Fn(x),

and

1− FX(1)
(x) = P(X(1) > x) = P(X1 > x, ...,Xn > x) =

∏
i

P(Xi > x) =
(
1− F (x)

)n
.

The expressions for the corresponding p.d.f.’s are obtained by differentiating. �

Example 4b2. Let X1 ∼ U([0, 1]), i.e. f(x) = I(x ∈ [0, 1]). Then by the above formulae

fX(n)
(x) = nxn−1I(x ∈ [0, 1])

and

fX(1)
(x) = n

(
1− x

)n−1
I(x ∈ [0, 1]).

Note that the p.d.f. of min concentrates around 0, while p.d.f. of max is more concentrated
around 1 (think why).

Sum.

Proposition 4b3. For a pair of real valued random variables X and Y with the joint p.d.f.
fXY (x, y), the sum S = X + Y has the p.d.f., given by the convolution integral

fS(u) =

∫
R
fXY (x, u− x)dx =

∫
R
fXY (u− x, x)dx.

Proof. For u ∈ R

P(S ≤ u) = P(X + Y ≤ u) =

∫∫
R2

I(s+ t ≤ u)fXY (s, t)dsdt =∫
R

(∫
R
I(s ≤ u− t)fXY (s, t)ds

)
dt =

∫
R

(∫ u−t

−∞
fXY (s, t)ds

)
dt =∫

R

(∫ u

−∞
fXY (s

′ − t, t)ds′
)
dt =

∫ u

−∞

(∫
R
fXY (s

′ − t, t)dt
)
ds′.

Taking the derivative w.r.t. u, we obtain the claimed formula. �
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Remark 4b4. If X and Y take integer values, S = X +Y is an integer valued r.v. with the
p.m.f. given by the convolution

pS(k) =
∑
m

pXY (k −m,m).

Remark 4b5. If X and Y are i.i.d. with common p.d.f. f (or p.m.f), then fS(u) =∫
R f(u−x, x)dx =: f ∗f . By induction, if X1, ..., Xn are i.i.d. fS = f∗n is the n-fold convolution
of f .

Example 4b6. Let X and Y be i.i.d. r.v. with common uniform distribution U([0, 1]).
Then

fS(u) =

∫
R
I(u− x ∈ (0, 1))I(x ∈ (0, 1))dx =∫ 1

0
I(u− x ∈ (0, 1))dx =

∫ 1

0
I(x ∈ (u− 1, u))dx.

If u < 0, then (u−1, u)∩(0, 1) = ∅ and hence the integral is zero. If u ∈ [0, 1), (u−1, u)∩(0, 1) =
(0, u) and the integral yields u. If u ∈ [1, 2), then (u− 1, u)∩ (0, 1) = (u− 1, 1) and the integral
gives 2 − u. Finally, for u ≥ 2, (u − 1, u) ∩ (0, 1) = ∅ and the integral is zero again. Hence we
get:

fS(u) = (1− |u− 1|)I(u ∈ [0, 2]).

Calculating the convolution integral (sum) can be tedious. Sometimes it is easier to tackle
the problem by means of the m.g.f.:

Proposition 4b7. Let X1, ..., Xn be i.i.d. r.v. with the common m.g.f M(t). Then S =∑n
i=1Xi has the m.g.f.

MS(t) =Mn(t).

Proof.

MS(t) = EeSt = Ee
∑n

i=1Xit = E
n∏
i=1

eXit =
n∏
i=1

EeXit =
(
EeX1t

)n
=Mn(t),

where we used independence and identical distribution of Xi’s. �
Remark 4b8. Similarly, if X1 is a discrete r.v. with p.g.f. GX(s), the sum S is also discrete

with the p.g.f. GS(s) = GnX(s).

In many cases Mn(t) can be identified with some standard known m.g.f. Here are some
examples:

Example 4b9. Let X1 ∼ Ber(p). Then

GS(s) =
(
ps+ 1− p

)n
.

Hence

pS(0) = GS(0) = (1− p)n

pS(1) = G′
S(0) = np

(
ps+ 1− p

)n−1

|s=0
= np(1− p)n−1

...
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which recovers the familiar Bin(n, p).

Example 4b10. Let X1 ∼ Poi(λ). The corresponding m.g.f. is

M(t) = exp
{
λ(et − 1)

}
.

Hence

MS(t) =Mn(t) = exp
{
nλ(et − 1)

}
,

which is recognized as the m.g.f. of the Poisson distribution Poi(nλ). Hence S ∼ Poi(nλ).

Similarly, if X1, ..., Xn are independent r.v. with Xi ∼ Poi(λi), then S ∼ Poi
(∑

i λi

)
.

Example 4b11. If X1, ..., Xn are independent Gaussian random variables Xi ∼ N(µi, σ
2
i ),

then S ∼ N(
∑
µi,
∑

i σ
2
i ) (which can also be deduced from the fact that Gaussian distribution

in Rn is stable under linear transformations).

c. Differentiable Rn 7→ Rn transformations

Let X = (X1, ..., Xn) be a random vector with j.p.d.f fX(x), x ∈ Rn and let g : Rn 7→ Rn be
a given function. The following proposition gives the formula for the j.p.d.f. of Y = g(X) for
appropriate g’s.

Proposition 4c1. Let X1, ..., Xn be a random vector with continuous joint p.d.f. fX(x),
x ∈ Rn. Denote by D the support of fX in Rn:

D := cl
{
x ∈ Rn : fX(x) > 0

}
,

and consider a function3 g : D 7→ Rn. Suppose that there are pairwise disjoint subsets Di,
i = 1, ...,m, such that the set D \ ∪mi=1Di has probability zero:∫

...

∫
D\∪m

i=1Di

fX(x)dx = 0

and the function g is one-to-one on all Di’s. Let g−1
i be the inverse of g on Di and define the

corresponding Jacobians

Ji(y) = det


∂
∂y1

g−1
i1 (y) ∂

∂y2
g−1
i1 (y) ... ∂

∂yn
g−1
i1 (y)

∂
∂y1

g−1
i2 (y) ∂

∂y2
g−1
i2 (y) ... ∂

∂yn
g−1
i2 (y)

... ... ... ...
∂
∂y1

g−1
in (y) ∂

∂y2
g−1
in (y) ... ∂

∂yn
g−1
in (y)

 , y ∈ Di, i = 1, ...,m.

Assume that all the partial derivatives above are continuous on4 g(Di)’s and Ji(y) ̸= 0 for all
y ∈ g(Di), for all i = 1, ...,m. Then

fY (y) =
m∑
i=1

|Ji(y)|fX(g−1
i (y)), y ∈ ∪ig(Di).

Proof. A change of variable for n-fold integrals (tools from n-variate calculus). �

3the domain of g might differ from D by a set of points in Rn with zero probability - see the examples below.
4for a subset C ⊆ Rn and a function h : Rn 7→ R, g(C) denotes the image of C under g, i.e. g(C) := {g(x), x ∈

C}
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Remark 4c2. Pay attention that for n = 1, the latter reduces to the claim of Proposition
4a8.

Example 4c3. Let X1 and X2 be i.i.d. r.v. with N(0, 1) distribution. We would like to find
the j.p.d.f. of Y1 = X1 +X2 and Y2 = X1/X2. In terms of the ingredients of the proposition,

fX(x) = 1
πe

−x21/2−x22/2, x ∈ R2, D = R2 and g(x) = (x1 + x2, x1/x2) : R2 7→ R2. Note that

the domain of g is R2 \ {(x1, x2) ∈ R : x2 = 0}, i.e. g is defined on the plane off the line
α := {x2 = 0} (which has probability zero). The inverse function can be found from the system
of equations

y1 = x1 + x2

y2 = x1/x2

These yield x1 = y2x2 and y1 = (y2 + 1)x2. If y2 ̸= −1, then

x2 = y1/(y2 + 1)

x1 = y2y2/(y2 + 1).

If y2 = −1, i.e. x1 = −x2, then y1 = 0: the whole line ℓ := {(x1, x2) : x1 = −x2} is mapped to
a single point (0,−1). Hence g is invertible on R2 \ (ℓ ∪ α) with

g−1(y) =
(
y1y2/(y2 + 1), y1/(y2 + 1)

)
.

Since
∫
ℓ fX(x)dx = 0, the natural choice of the partition is just D1 = R2 \ (ℓ ∪ α) and g1(y) :=

g(y). The range of D1 under g1 is R \ {(0,−1)}. Let’s calculate the Jacobian:

J = det

(
∂
∂y1

g−1
1 (y) ∂

∂y2
g−1
1 (y)

∂
∂y1

g−1
2 (y) ∂

∂y2
g−1
2 (y)

)
= det

(
∂
∂y1

y1y2/(y2 + 1) ∂
∂y2

y1y2/(y2 + 1)
∂
∂y1

y1/(y2 + 1) ∂
∂y2

y1/(y2 + 1)

)
=

det

(
y2/(y2 + 1) y1/(1 + y2)

2

1/(y2 + 1) −y1/(y2 + 1)2

)
= −y2y1/(y2 + 1)3 − y1/(1 + y2)

3 =
−y1

(1 + y2)2
.

Now we are prepared to apply the formula: for y ∈ R \ (0,−1)

fY (y) = |J(y)|fX(g−1(y)) =

|y1|
(1 + y2)2

1

2π
exp

{
− 1

2

(
y1y2/(y2 + 1)

)2
− 1

2

(
y1/(y2 + 1)

)2}
=

|y1|
2π(1 + y2)2

exp
{
− 1

2

y21(y
2
2 + 1)

(y2 + 1)2

}
.

One can check that the Y1 marginal is N(0, 2). Let’s calculate the Y2 marginal p.d.f.:

fY2(y2) =

∫
R
fY1Y2(y1, y2)dy1 =

∫
R

|y1|
2π(1 + y2)2

exp
{
− 1

2

y21(y
2
2 + 1)

(y2 + 1)2

}
dy1 =

1

2π(1 + y2)2
2

∫ ∞

0
y1 exp

{
− 1

2

y21(y
2
2 + 1)

(y2 + 1)2

}
dy1 = ... =

1

π

1

1 + y22
,

i.e. Y2 has standard Cauchy distribution. �
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Exercises

Problem 4.1. Let FXY (u, v), u, v ∈ R2 be a continuous j.c.d.f., such that both v 7→ FY (v)
and u 7→ FX|Y (u; v), v ∈ R are strictly increasing. Suggest a way to produce a sample from
FXY , given a sample of i.i.d. r.v’s U and V with uniform distribution on [0, 1].

Problem 4.2. Let X1, ..., Xn be i.i.d. random variables with the common distribution F .
Let X(1), ..., X(n) be the permutation of X1, ..., Xn, such that X(1) ≤ ... ≤ X(n). X(i) is called
the i-th order statistic of X1, ..., Xn.

(1) Show that the c.d.f. of X(i) is given by

FX(i)
(x) =

n∑
j=i

F (x)j
(
1− F (x)

)n−j
.

(2) Show that if F has the p.d.f. f , then X(i) has the p.d.f.

fX(i)
(x) =

n!

(i− 1)!(n− i)!
F (x)i−1(1− F (x))n−if(x).

(3) Discuss the cases i = 1 and i = n.
(4) Assuming that F has the p.d.f. f , show that X ′ := (X(1), ..., X(n)) has the j.p.d.f. given

by

fX′(x) =

{
n!
∏n
i=1 f(xi), x1 < ... < xn

0 otherwise

Hint: define the sets Si, i = 1, ..., n!,

S1 := {x ∈ Rn : x1 < x2 < ... < xn}
S2 = {x ∈ Rn : x2 < x1 < ... < xn}

and so on. Use the Jacobian formula.

Problem 4.3. Let X and Y be r.v. and define Z = X − Y .

(1) Find the p.d.f. of X, assuming that (X,Y ) has j.p.d.f.
(2) Find the p.m.f. of X, assuming that (X,Y ) has j.p.m.f.

Problem 4.4. Find the p.d.f. of Z = X/Y , if X and Y are r.v. with j.p.d.f. f(x, y),
(x, y) ∈ R2
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Problem 4.5. Let X ∼ N(0, σ21) and Y ∼ N(0, σ22) be independent r.v. Show that the p.d.f.
of Z = X/Y is Cauchy:

fZ(x) =
1

πγ(1 + (t/γ)2)
, x ∈ R,

and find the corresponding scaling parameter γ.
Hint: Introduce X̃ = X/σ1 and Ỹ = Y/σ2, show that X̃/Ỹ has standard Cauchy density

(i.e. with γ = 1) and deduce the claim

Problem 4.6. Let X1, ..., Xn be i.i.d. r.v. with the common exponential distribution of rate
λ > 0.

(1) Show that X(1) = min(X1, ..., Xn) has exponential distribution and find its rate.

(2) Show that S =
∑n

i=1Xi has Γ distribution and find its parameters

Problem 4.7. Let X and Y be i.i.d. standard Gaussian r.v. Define R :=
√
X2 + Y 2, the

distance of the random point (X,Y ) from the origin and ϕ := arctan(Y/X), the angle formed
by the vector (X,Y ) and the x-axis.

(1) Prove that R and ϕ are independent, ϕ ∼ U([0, 2π]) and R has the Rayleigh p.d.f.:

fR(x) = re−r
2/2I(r ≥ 0).

Hint: the function g(x, y) =
(√

x2 + y2, arctan(y/x)
)
is invertible and its inverse is

given by
g−1(r, ϕ) = (r cosϕ, r sinϕ), (r, ϕ) ∈ R+ × [0, 2π)

(2) Let R and ϕ be independent r.v. with Rayleigh and U([0, π]) distributions. Show that
(X,Y ) are i.i.d. standard Gaussian r.v.

Hint: the transformation is one-to-one and onto.

Problem 4.8. Let U and V be i.i.d. r.v. with the common distribution U, V ∼ U([0, 1]).
Show that

Y =
√
−2 lnU sin(2πV ), X =

√
−2 lnU cos(2πV ),

are i.i.d. standard Gaussian r.v.5

Hint: define R =
√
X2 + Y 2 and ϕ = arctan(X/Y ) and show that R and ϕ are independent

and have the Rayleigh and U([0, 2π]) distributions. Refer to the previous problem.

Problem 4.9. Let X ∼ U([0, 1]). Find an appropriate function g, so that Y = g(X) has
each of the following distributions:

(1) U([a, b]), b > a ∈ R.
(2) uniform distribution on the points {x1, ..., xn} ⊆ R
(3) Poi(λ)

5this suggests a way to generate a pair of i.i.d. Gaussian r.v. from a pair of i.i.d. uniformly distributed r.v.



EXERCISES 63

(4) exponential distribution with rate λ
(5) standard Cauchy distribution
(6) N(µ, σ2) (express your answer in terms of the standard Gaussian c.d.f. Φ(x))

Problem 4.10. Let X be a r.v. with c.d.f. F . Express the c.d.f. of Y = max(X, 0) in terms
of F

Problem 4.11. Let X and Y be r.v. with finite expectations. Prove or disprove6:

(1) Emax(X,Y ) ≥ max(EX,EY )
Hint: note that max(X,Y ) ≥ X and max(X,Y ) ≥ Y

(2) Emax(X,Y ) + Emin(X,Y ) = E(X + Y )

Problem 4.12. Let X and Y be i.i.d. standard Gaussian r.v. Show that 2XY and X2−Y 2

have the same probability laws.
Hint: X2 − Y 2 = 2X−Y√

2
X+Y√

2

Problem 4.13. Let X1, ..., Xn be independent r.v., Xi ∼ Poi(λi). Show that the conditional
p.m.f. of X1, given S =

∑n
i=1Xi is Binomial and find the corresponding parameters.

6this problem demonstrates that sometimes a trick is required to avoid heavy calculations ;)





CHAPTER 5

A preview: first applications to Statistics

a. Normal sample

Consider the following classic example of statistical inference: suppose a statistician observes
the realizations of i.i.d. Gaussian r.v. X1, ..., Xn with the common law N(µ, σ2) and would like
to estimate µ, while σ2 is also unknown, but is not of immediate interest (such parameters are
called nuisance parameters). A natural estimator of µ is the empirical mean

µ̂n = X̄n =
1

n

n∑
i=1

Xi.

This type of estimator is known as point estimator, as it generates a point in R, viewed as
the guess (estimate) of the value of µ. We shall study such estimators in depth in the next
chapter. Often one would also like to have some quantitative measure of confidence about the
obtained estimate. This is achieved by the confidence interval estimator [a(X), b(X)], where
a(X) and b(X) are functions of the sample. The interval estimator is said to attain confidence
of 1 − α ∈ [0, 1], if the actual value of the parameter µ belongs to it with probability not less
than 1− α:

P
(
µ ∈ [a(X), b(X)]

)
≥ 1− α.

For example, if you buy a lamp in the supermarket next door, typically the mean time to
failure will be specified on the package: this is the point estimator of the mean lifetime of the
lamp, produced by the manufacturer in the lab, prior to sending the lamps for sale. If you want
to build a radio and need to buy an electronic component (say, resistor), you would typically
find its specification in the form 10±1% [ohm], which means that its nominal value is estimated
to be 10 [ohm] (this is again the point estimate) and it is very likely to be somewhere in the
interval [9.9 : 10.1], more precisely with confidence level 0.96 (which is a common standard in
electronics). The price of the resistor increases with the precision of the confidence interval,
which is controlled by the confidence probability or its length (per same confidence).

As we shall see shortly (Proposition 5a1 below), in the Gaussian setting as above the quantity

√
n− 1

X̄n − µ

σ̂n(X)
,

where σ̂n(X) =
√

1
n

∑n
i=1(Xi − X̄n)2, has certain p.d.f., call it f for the moment, which depends

only on n - but not on µ or σ2! This provides a convenient way to construct a confidence interval
with any required confidence 1− α ∈ (0, 1). Namely, let

C(X; z) :=
[
X̄n − zσ̂n, X̄n + zσ̂n

]
,

65
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where z > 0 is chosen to fit the required confidence level 1− α:

P(µ ∈ C(X; z)) = P
(
X̄n − zσ̂n ≤ µ ≤ X̄n + zσ̂n

)
=

P
(∣∣∣√n− 1

X̄n − µ

σ̂n

∣∣∣ ≤ √
n− 1z

)
=

∫ z
√
n−1

−z
√
n−1

f(x)dx.

Now if we require the confidence level of 1−α, we have to solve the equation
∫ z√n−1

−z
√
n−1

f(x)dx =

1 − α for z. It is clear that this equation has a unique solution, z∗(α), which can be found
numerically. Thus we have constructed an interval estimator for µ with confidence 1−α. Notice
also that for a given confidence level 1 − α, smaller z would emerge for large n, i.e. the 1 − α
confidence interval, so constructed, shrinks as n → ∞. This is plausible, since the uncertainty
about the location of µ should decrease as the number of observations grow.

Of course, the latter procedure is possible and makes sense only if f does not depend on the
unknown quantities. Unfortunately, in general this would be rarely the case. One famous and
practically very popular exception is the Gaussian i.i.d. setting as above:

Proposition 5a1. Let X = (X1, ..., Xn) be i.i.d. r.v. with the common distribution
N(µ, σ2), and let X̄n = 1

n

∑n
i=1Xi and σ̂2n(X) = 1

n

∑n
i=1(Xi − X̄n)

2 be the empirical mean
and variance. Then for any n ≥ 2,

(1) X̄n ∼ N(µ, σ2/n)
(2) X̄n and the vector of residuals R = (X1−X̄n, ..., Xn−X̄n) are independent; in particular

X̄n and σ̂2n(X) are independent r.v.
(3) nσ̂2n(X)/σ2 ∼ χ2(n − 1), where χ2(k) is the χ-square distribution with k degrees of

freedom, which has the p.d.f.

fχ
2

k (x) =
(1/2)k/2

Γ(k/2)
xk/2−1e−x/2, x ∈ [0,∞), (5a1)

where Γ(x) is the Γ-function (generalization of the factorial to non-integer values).
(4)

√
n− 1

X̄n − µ√
σ̂2(X)

=
X̄n − µ√

1
n(n−1)

∑n
i=1(Xi − X̄n)2

∼ Stt(n− 1)

where Stt(k) is the Student t-distribution with k degrees of freedom, which has the p.d.f.

fSk (x) =
Γ
(
k+1
2

)
√
kπΓ

(
k
2

) (1 + x2

k

)−(k+1)/2

, x ∈ R. (5a2)

(5) Let X ′ = (X ′
1, ..., X

′
m) be i.i.d. r.v.’s with the common distribution N(µ′, σ′2), indepen-

dent of X introduced above. Let X̄ ′
m = 1

m

∑m
i=1X

′
i and σ̂

2
m(X

′) = 1
m

∑m
i=1(X

′
i − X̄ ′

m)
2.

Then

σ̂2m(X
′)/σ′2

σ̂2n(X)/σ2
∼ Fis(m− 1, n− 1),
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where Fis(k, ℓ) is the Fisher F-distribution, which has the p.d.f.

fFis(x) =
Γ
(
k+ℓ
2

)
Γ
(
k
2

)
Γ
(
ℓ
2

)(k
ℓ

)k/2 xk/2−1(
1 + k/ℓ x

)(k+ℓ)/2 , x ∈ (0,∞).

Remark 5a2. The confidence interval construction for i.i.d. Gaussian sample described
above is based on (4). The property (5) is useful in other statistical applications (some to be
explored later).

Remark 5a3. The Student distribution has a history:

http://en.wikipedia.org/wiki/William_Sealy_Gosset

Proof.

(1) the claim holds, since X̄ is a linear transformation of the Gaussian vector and EX̄n =
1
n

∑
i EXi = µ and

var(X̄n) = E(X̄n − µ)2 = E
( 1
n

∑
i

(Xi − µ)
)2

=

1

n2

∑
i

∑
j

E(Xi − µ)(Xj − µ)
†
=

1

n2
nσ2 = σ2/n,

where † holds by independence of Xi’s.
(2) Note that the vector (X̄n, R) is a linear map of (X1, ..., Xn) and hence is a Gaussian

vector as well (in Rn+1). Hence to show that X̄n is independent of R, it is enough
to check that X̄n and Xi − X̄n are uncorrelated for all i = 1, ..., n. EXn = µ and
E(Xi − X̄n) = 0 and hence

cov(X̄n, Xi − X̄n) = E(X̄n − µ)(Xi − X̄n) = σ2EZ̄n(Zi − Z̄n),

where we have defined Zi := (Xi− µ)/σ, which are i.i.d. N(0, 1) r.v. Since EZiZj = 0,
EZ̄nZi = 1/n and, as we have already seen, E(Z̄n)2 = var(Z̄n) = 1/n, which implies

cov(X̄n, Xi − X̄n) = 0, ∀i

and in turn that X̄n is independent of R. Since σ̂2n(X) is in fact a function of R, X̄n

and σ̂2n(X) are independent as well. Note that the Gaussian property played the crucial
role in establishing independence!

(3) First note that σ̂2n(X)/σ2 = σ̂2n(Z) (where Zi’s are defined above)

σ̂2n(X)/σ2 =
1

n

∑
i

(Xi − X̄n)
2/σ2 =

1

n

∑
i

(
(Xi − µ)/σ − 1

n

∑
j

(Xj − µ)/σ
)2

=
1

n

∑
i

(
Zi − Z̄n

)2
= σ̂2n(Z),
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hence it is enough to check that nσ̂2n(Z) =
∑

i(Zi − Z̄n)
2 ∼ χ2(n − 1). Note that∑

i(Zi − Z̄n)
2 =

∑
i Z

2
i − n(Z̄n)

2 and hence

E exp
{
t
∑
i

Z2
i

}
= E exp

{
t
∑
i

(Zi − Z̄n)
2 + tn(Z̄n)

2
} †
=

E exp
{
t
∑
i

(Zi − Z̄n)
2
}
E exp

{
tn(Z̄n)

2
}
,

where † holds since Z̄n and Zi − Z̄n, i = 1, ..., n are independent. So the m.g.f. of
nσ̂2n(Z) is given by

E exp
{
t
∑
i

(Zi − Z̄n)
2
}
=

E exp
{
t
∑

i Z
2
i

}
E exp

{
tn(Z̄n)2

} =

(
E exp

{
tZ2

1

})n
E exp

{
tn(Z̄n)2

} ,
where the latter equality holds by independence of Zi’s. Now we shall need the following
fact: for ξ ∼ N(0, 1) and t ∈ (−1/2, 1/2),

Eetξ
2
=

∫
R
etx

2 1√
2π
e−x

2/2dx =

∫
R

1√
2π
e−

1
2
x2(1−2t)dx =

1√
1− 2t

∫
R

1√
2π
√

(1− 2t)−1
e
− x2

2(1−2t)−1 dx =
1√

1− 2t
.

Recall that Z̄n ∼ N(0, 1/n) and thus ξ :=
√
nZ̄n ∼ N(0, 1), so

E exp
{
tn(Z̄n)

2
}
= E exp

{
tξ2
}
=

1√
1− 2t

, |t| < 1/2.

Similarly

E exp
{
tZ2

1

}
=

1√
1− 2t

, |t| < 1/2.

Assembling all parts together we obtain:

E exp
{
t
∑
i

(Zi − Z̄n)
2
}
=

1

(1− 2t)(n−1)/2
, |t| < 1/2.

The latter expression is the m.g.f. of the density given in (5a1) with k := n− 1 degrees
of freedom, as can be verified by a direct (tedious) calculation.

(4) Once again, it is enough to verify the claim for Zi’s:

X̄n − µ√
σ̂2n(X)

=
(X̄n − µ)/σ√
σ̂2n(X)/σ2

=
Z̄n√
σ̂2n(Z)

.

Note that

√
n− 1

Z̄n√
σ̂2n(Z)

=
√
n− 1

Z̄n√
1
n

∑n
i=1(Zi − Z̄n)2

=

√
nZ̄n√

1
n−1

∑n
i=1(Zi − Z̄n)2

=:
V√

U/(n− 1)
.



EXERCISES 69

By the preceding calculations, V ∼ N(0, 1) and U ∼ χ2
n−1 and hence the claim holds

by the following lemma:

Lemma 5a4. Let U ∼ χ2(k) and V ∼ N(0, 1) be independent r.v. Then V/
√
U/k ∼

Stt(k).

Proof. Define Ũ := U and Ṽ := V/
√
U/k, i.e. Ũ = g1(V,U) and Ṽ = g2(V,U)

with g1(x, y) = x and g2(x, y) = y/
√
x/k Obviously, the j.p.d.f. of (U, V ) is supported

on (R+,R), on which g is invertible:

g−1(x̃, ỹ) = (x̃, ỹ
√
x̃/k),

whose Jacobian is

J =

(
1 0

1
2 ỹ/

√
x̃k

√
x̃/k

)
, =⇒ det J =

√
x̃/k.

Hence the j.p.d.f. of (Ũ , Ṽ ) is given by:

fŨ Ṽ (x̃, ỹ) =
√
x̃/k

(1/2)k/2

Γ(k/2)
x̃k/2−1e−x̃/2

1√
2π
e−(ỹ

√
x̃/k)2/2 =

1√
k
√
2π

(1/2)k/2

Γ(k/2)
x̃(k−1)/2e−x̃/2

(
1+ỹ2/k

)
for (x̃, ỹ) ∈ (R+,R) and zero otherwise. Now the distribution of V = Ṽ /

√
U/k is

obtained as the marginal:

fṼ (ỹ) =

∫
R+

fŨ Ṽ (x̃, ỹ)dx̃ =
1√
k
√
2π

(1/2)k/2

Γ(k/2)

∫
R+

x̃(k−1)/2e−x̃/2
(
1+ỹ2/k

)
dx̃ =

... =
Γ
(
k+1
2

)
√
kπΓ

(
k
2

) (1 + x2

k

)−(k+1)/2

�
(5) The claim follows from the following fact: if U ∼ χ2(m) and V ∼ χ2(n), then

U/m

V/n
∼ Fis(m,n).

The proof is a straightforward (tedious) calculation, which we shall omit.

�

Exercises

Problem 5.1. Let X1 and X2 be i.i.d. standard Gaussian r.v.’s. Find the probability laws
of the following r.v.’s:

(1) (X1 −X2)/
√
2

(2) (X1 +X2)
2/(X1 −X2)

2
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(3) (X1 +X2)/|X1 −X2| = (X1 +X2)/
√

(X1 −X2)2

(4) X2
1/X

2
2

Hint: make use of the Fisher F -distribution and the Student t-distribution

Problem 5.2. Let X1, ..., Xn be a sample from N(µ, σ2) distribution. Find the mean1 and

and the variance of
√

1
n−1

∑n
i=1(Xi − X̄n)2

Hint: make use of the χ2 distribution

Problem 5.3. Let X1, ..., Xn be independent r.v., Xi ∼ N(µ, σ2i ). Define:

U :=

∑
iXi/σ

2
i∑

j 1/σ
2
j

, V :=
∑
i

(Xi − U)2/σ2i .

(1) Show that U and V are independent
(2) Show that U is Gaussian and find its mean and variance
(3) Show that V ∼ χ2

n−1

Hint: Recall the proof in the special case σ2i = σ2, i = 1, ..., n

Problem 5.4.

(1) Show that if U ∼ χ2
n and V ∼ χ2

m, then U + V ∼ χ2
n+m

Hint: use the connection between the Gaussian distribution and χ2

(2) Show that if X1, ..., Xn are i.i.d. Exp(λ) r.v.’s then T := 2λ
∑

iXi has χ
2
2n distribution

Hint: Prove for n = 1 and use the answer in (1)

1the expression for the mean should explain the often use of the normalizing factor 1/(n− 1) instead of 1/n



Part 2

Statistical inference





CHAPTER 6

Statistical model

a. Basic concepts

Generally and roughly speaking the statistical inference deals with drawing conclusions about
objects which cannot be observed directly, but are only known to have influence on apparently
random observable phenomena. It is convenient to view statistical inference as consisting of
three steps:

(Step 1) Modeling: postulating the statistical model, i.e. the random mechanism which pre-
sumably had produced the observed data. The statistical model is specified up to an
unknown parameter to be inferred from the data. Once a model is postulated, the
statistician defines the scope of inference, i.e. poses the questions of interest. The three
canonical problems are:

* point estimation: guessing the value of the parameter

* interval estimation: constructing an interval, to which the value of the parameter
belongs with high confidence

* hypothesis testing: deciding whether the value of the parameter belongs to a specific
subset of possible values

The main tool in statistical modeling is probability theory.

(Step 2) Synthesis/Analysis: deriving a statistical procedure (an algorithm), based on the pos-
tulated model, which takes the observed data as its input and generates the relevant
conclusions. This is typically done by methodologies, which rely on the optimization
theory and numerical methods. Once a procedure is chosen, its quality is to be assessed
or/and compared with alternative procedures, if such are available.

(Step 3) Application: predicting/or taking decisions on the basis of the derived conclusions

Remark 6a1. The order is by no means canonical. For example, often the choice of the
model is motivated by the question under consideration or the methodological or computational
constraints.

Remark 6a2. The above scheme corresponds to the inferential statistics, distinguished from
the descriptive statistics. The latter is concerned with data exploration by means of various
computational tools (e.g. empirical means, histograms, etc.) without presuming or modeling
randomness of the data. The quality assessment in descriptive statistics is often subjective and
non-rigorous.
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Here is an (almost) real life example:

Example 6a3. Suppose that you are offered the following game in a casino: a coin is tossed
and you either lose your bet, if it comes up tails, or double it, if it comes up heads. You play n
games and would like to decide whether to stop or continue playing. The data available to you
is the record of outcomes of the n games, i.e. a binary string x = (x1, ..., xn) ∈ {0, 1}n.

One reasonable way to model the data is to assume that the tosses are independent in the
probabilistic sense and the probability of getting heads in each toss is a number θ ∈ [0, 1],
which is left unspecified. Our hope now is that on the basis of the data x, we can produce an
accurate guess of θ and then base our decision of whether to stop or to continue playing. The
suggested model is one of many alternatives: for example, why not to assume that each toss has
its own probability of success ? Or furthermore, also discard the assumption of independence,
etc. Making the model more flexible (sophisticated, detailed) we potentially allow more accurate
predictions regarding the outcomes of the future games. On the other hand, we feel that we
might not be able to produce accurate estimates of the parameters in the detailed model on the
basis of just n observations. Yet on the third hand, simpler inference algorithms are anticipated
to emerge for simpler models. These are just examples of the reasoning for choosing a statistical
model. To a large extent, this process is subjective, being based on the experience with the
data.

Suppose that we decided to stick to the simple i.i.d. model: we presume that the obtained
data is an i.i.d. sample from X ∼ Ber(θ). What kind of conclusions would we like to derive ?
One obvious and natural goal would be to guess the value of θ, i.e. to estimate the true value of
the unknown parameter. Perhaps, having an estimated value is not enough and we would like to
get a whole range of values to which the true value belongs with a high probability. Or in view
of our further intentions, we might pose a more modest question: is it true that θ ∈ [0, 1/2) ? If
the answer is yes, then we shall not want to continue playing as in the long run we are going to
lose.

Suppose we nevertheless chose to estimate the value of θ. A natural way to proceed would
be to calculate the empirical frequency of wins x̄n = 1

n

∑n
i=1 xi and to accept it as our guess

θ̂n := x̄n. This choice is intuitively plausible, since if we indeed believe that the data has been
produced by the presumed model, then by the Law of Large Numbers (to be explored in details
below), x̄n should be close to the true value of θ, at least for large n’s. While this simple
algorithm is the first thing, which comes to mind, other options are possible: for example, the
estimator1

θ̃n :=

√√√√ 1

⌊n/2⌋

⌊n/2⌋∑
i=1

x2ix2i−1 (6a1)

will also yield an estimate close to the true value of θ for large n (think why). Clearly none of
the procedures (and in fact no procedure) would yield the exact value of the parameter with
probability 1. How do we measure precision then ? Which algorithm is more precise ? Is there
an algorithm which gives the best possible precision ? How large n should be to guarantee
the desired precision ? These and many more interesting questions is the main subject of
mathematical statistics and of this course.

1⌊x⌋ is the largest integer smaller or equal to x
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Finally, when we generate an estimate of θ and e.g. decide to continue playing, we may use
θ̂n to calculate various predictions regarding the future games: e.g. how much time it should
take on average till we either bankrupt or win certain sum, etc. �

Now that we have a rough idea of what the statistical inference problem is, let’s give it an
exact mathematical formulation.

Definition 6a4. A statistical model (or an experiment) is a collection of probabilities P =
(Pθ), parameterized by θ ∈ Θ, where Θ is the parameter space.

If the available data is a vector of real numbers, the probabilities Pθ can be defined by means
of j.c.d.f’s (or j.p.d.f’s, j.p.m.f.’s if exist) and the data is thought of as a realization of a random
vector X with the particular j.c.d.f., corresponding to the actual value θ0 of the parameter. This
value is unknown to the statistician and is to be inferred on the basis of the observed realization
of X and the postulated model.

Example 6a3 (continued) In this case Pθ is the j.p.m.f. of i.i.d. X = (X1, ..., Xn) with
X1 ∼ Ber(θ):

Pθ(X = x) = pX(x; θ) = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi , x ∈ {0, 1}n.

The parameter space is Θ = [0, 1]. �

Example 6a5. A plant produces lamps and its home statistician believes that the lifetime
of a lamp has exponential distribution. To estimate the mean lifetime she chooses n lamps
sporadically, puts them on test and records the corresponding lifetimes. In this setting, Pθ is
given by the j.p.d.f.

fX(x; θ) = θn
n∏
i=1

e−θxiI(xi ≥ 0), x ∈ Rn.

The parameter space Θ = R+.

Example 6a6. Suppose that we want to receive a shipment of oranges and suspect that part
of them rot off. To check the shipment, we draw (sample) oranges from it at random without
replacements. Denote by N the number of oranges in the shipment and by n ≤ N the size of
the sample (the number of oranges drawn). Suppose that a percentage θ of all the oranges rot
off. A combinatorial calculation reveals that the number of rotten oranges in the sample has
Hyper Geometric p.m.f.

pθ(k) =

(
θN
k

)(
(1− θ)N
n− k

)
(
N
n

) , k ∈
{
max

(
0, n− (1− θ)N

)
, ...,min(n, θN)

}
.

Since θN should be an integer, the natural choice of the parametric space is Θ =
{
0, 1

N , ...,
N
N

}
.

�

In these examples, the parameter space was one-dimensional. Here are examples with higher
dimensional parameter spaces.
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Example 6a7. Suppose we produce a coffee machine, which accepts coins of all values as
payment. The machine recognizes different coins by their weight. Hence prior to installing the
machine in the campus, we have to tune it. To this end, we shall need to estimate the typical
(mean) weight of each type of coin and the standard deviation from this typical weight. For
each type, this can be done by e.g. n weighings. A reasonable 2 statistical model would be e.g.
to assume that the measured weights Xi’s are i.i.d. and X1 ∼ N(µ, σ2), where both µ and σ2

are unknown. Hence Pθ is given by the j.p.d.f.:

fX(x) =

n∏
i=1

1√
2πσ

exp
{
− 1

2

(xi − µ)2

σ2

}
, x ∈ Rn. (6a2)

The unknown parameter is two dimensional θ = (µ, σ2) and the natural choice of the parameter
space is Θ = R× R+. �

Example 6a8. Suppose that instead of assuming i.i.d. model in the Example 6a3, there is a
reason to believe that the tosses are independent, but not identically distributed (e.g. tosses are
done by different people to avoid fraud, but each person actually cheats in his/her own special
way). This corresponds to the statistical model

pX(x; θ) =

n∏
i=1

θxii (1− θi)
1−xi , x ∈ {0, 1}n, θ = (θ1, ..., θn) ∈ [0, 1]n.

Hence the parameter space Θ is n-dimensional. �
Roughly speaking, models with parameter space of a finite dimension are called parametric.

Here is a natural example of a nonparametric model:

Example 6a5 (continued) Instead of presuming exponential distribution, one can assume
that the data is still i.i.d. but with completely unknown p.d.f. In this case the probability laws
Pθ are parameterized by the space of all functions, which can serve as legitimate p.d.f.’s:

Θ =

{
u 7→ θ(u) : θ(u) ≥ 0,

∫
R
θ(u)du = 1

}
.

Θ is an infinite dimensional space, in the sense that each element in it - a function of u - is
specified by its values at an infinite number of points (all points in R!). �

Remark 6a9. In many situations the choice of the parameter space Θ is based on some a
priori knowledge of the unknown parameter. For example, if you are pretty sure that the heads
probability of the coin does not deviate from 1/2 by more than ±ε (known to you at the outset),
then Θ = (1/2− ε, 1/2 + ε) would be the natural choice.

In this course we shall mainly be concerned with parametric models and, moreover, assume
that Θ ⊆ Rd for some d <∞. Let’s start with some statistical slang:

2Strictly speaking the Gaussian model is inappropriate, since it allows coins with negative weight with,
perhaps very small, but nonzero probability. Nevertheless, we expect that σ2 is very small, compared to µ and
hence the tiny probabilities of absurd events would not alter much the conclusions derived on the basis of Gaussian
model. This is an example of practical statistical thinking. As we do not go into modeling step in this course we
shall ignore such aspects bravely and thoughtlessly: we shall just assume that the model is already given to us
and focus on its analysis, etc.
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Definition 6a10. An arbitrary function of the data (but not of the unknown parameter!) is
called statistic.

In Example 6a3, both X̄ = 1
n

∑n
i=1Xi and T (X) :=

√
1
n/2

∑⌊n/2⌋
i=1 X2iX2i−1 are statistics.

Remark 6a11. If Pθ is a probability on Rn, X ∼ Pθ and T (x) is a function on Rn, we shall
refer both to T (x), x ∈ Rn (i.e. to the function x 7→ T (x)) and to T (X) (i.e. to the random
variable T (X), obtained by plugging X into T ) as statistic. The precise intention should be
clear from the context.

In our course, typically we shall be given a statistical model and will be mostly concerned
with two questions: how to construct a statistical procedure and how to assess its performance
(accuracy). Hence we focus on Step 2 in the above program, assuming that Step 1 is already
done and it is known how to carry out Step 3, after we come up with the inference results.

b. The likelihood function

In what follows we shall impose more structure on the statistical models, namely we shall
consider models which satisfy one of the following conditions

(R1) Pθ is defined by a j.p.d.f. f(x; θ) for all θ ∈ Θ
(R2) Pθ is defined by a j.p.m.f. p(x; θ), such that

∑
i p(xi; θ) = 1 for a set {x1, x2, ...} which

does not depend on θ.

We shall refer to these assumptions as regularity3. It will allow us to define 4 the likelihood
function

Definition 6b1. Let Pθ, θ ∈ Θ be a model satisfying either (R1) or (R2). The function

L(x; θ) :=

{
fX(x; θ), if Pθ satisfies (R1)

pX(x; θ), if Pθ satisfies (R2)
,

is called likelihood.

All the models considered above satisfy either (R1) or (R2).

Example 6a7 (continued) Pθ is defined by the Gaussian j.p.d.f. (6a2) for any θ ∈ Θ and
hence satisfies (R1). �

Example 6a3 (continued) Pθ is defined by the j.p.m.f:

pX(x; θ) = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi , x ∈ {0, 1}n,

and ∑
x∈Ω

pX(x; θ) = 1,

for the set of all 2n binary strings, Ω = {0, 1}n (which does not depend on θ), i.e. (R2) is
satisfied. �

3In statistics, the term “regularity” is not rigid and may have completely different meanings, depending on
the context, sometimes, even on subdiscipline, author, book, etc.

4without going into more involved probability theory, usually required to define the likelihood
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Example 6b2. Let X be a random variable distributed uniformly on the set {1, ..., θ},
θ ∈ Θ = N (think of a real life experiment supported by this model):

p(k; θ) =

{
1
θ k = 1, ..., θ

0 otherwise
.

Since
∑

i∈N p(i; θ) = 1 for all θ ∈ Θ, (R2) holds. �
Here are models which do not fit our framework:

Example 6b3. Consider a sample X ∼ N(θ, 1), θ ∈ R and set Y = max(0, X). Let Pθ be
the probability law of Y . The model (Pθ)θ∈Θ doesn’t satisfy neither (R1) nor (R2), since the
c.d.f. which defines Pθ, i.e. the c.d.f. of Y , has both continuous and discrete parts. �

Example 6b4. Let X be a binary random variable which takes two values {0, θ}, with
probabilities Pθ(X = 0) = 1−θ and Pθ(X = θ) = θ, θ ∈ Θ = (0, 1). Clearly, (R1) does not hold.
(R2) does not hold, since the p.m.f. is supported on {0, θ}, which depends5 on θ. Note that if
we observe the event X > 0, we can determine the value of θ exactly: θ = X. �

Do not think that the statistical models which do not fit our framework, are of no interest.
On the contrary, they are often even more fun, but typically require different mathematical
tools.

c. Identifiability of statistical models

Intuitively, we feel that T (X) = X̄ in the Example 6a3 is a reasonable guess of θ, since it is
likely to be close to the actual value at least when n is large. On the other hand, if Xi = θZi
with unknown θ ∈ Θ = R and i.i.d. N(0, 1) r.v.’s Zi, any guess of the sign of θ, based on the
observation of X1, ..., Xn will be as bad as deciding it by tossing an independent coin, discarding
all the data. On the third hand, if we were not interested in the signed value of θ, but only in

its absolute value, e.g.
√

1
n

∑n
i=1(Xi − X̄n)2 would be a decent guess (again, intuitively).

This simple consideration leads us to the following notion

Definition 6c1. A model Pθ, θ ∈ Θ is identifiable if

θ, θ′ ∈ Θ, θ ̸= θ′ =⇒ Pθ ̸= Pθ′ .

This definition requires an elaboration: what do we mean by Pθ ̸= Pθ′ , i.e. one probability
is different from another probability? This means that there is an event A, such that Pθ(A) ̸=
Pθ′(A). When Pθ has a discrete support, this is equivalent to the corresponding p.m.f.’s being
different (think why?):

p(x; θ) ̸= p(x; θ′), for some x.

For Pθ, θ ∈ Θ define by a p.d.f. identifiability amounts to existence of an open ball B, such that6

f(x; θ) ̸= f(x; θ′), ∀x ∈ B.

Here is a handy shortcut:

5more precisely is not a subset of any countable set for all θ ∈ (0, 1)
6in the continuous case, requiring e.g. f(x; θ) ̸= f(x; θ′) at an isolated point x ∈ R whenever θ ̸= θ′ is clearly

not enough.
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Proposition 6c2. The model (Pθ)θ∈Θ is identifiable if there exists a statistic T (X), X ∼ Pθ,
whose expectation is a one-to-one function of θ ∈ Θ, i.e. such that

θ ̸= θ′ =⇒ EθT (X) ̸= Eθ′T (X).

Proof. Suppose that the model is not identifiable, i.e. there is a pair of parameters θ ̸= θ′,
for which Pθ = Pθ′ . Then, in particular, EθT (X) = Eθ′T (X), which is a contradiction and hence
the model is identifiable. �

Remark 6c3. Estimation of parameters for non identifiable models is meaningless 7. If the
constructed model turns to be nonidentifiable, a different parametrization (model) is to be found
to turn it into an identifiable one.

Example 6a3 (continued) Recall that Pθ is the probability law of i.i.d. r.v. X1, ..., Xn with
X1 ∼ Ber(θ), θ ∈ [0, 1]. Since

EθX1 = θ

is a one-to-one function of θ ∈ Θ, the model is identifiable.
An alternative way to get to the same conclusion is to consider the p.m.f. p(x; θ) at e.g. x

with xi = 1, i = 1, ..., n:

p
(
(1...1), θ

)
= θn ̸= θ′n = p

(
(1...1), θ′

)
, ∀θ ̸= θ′ ∈ Θ.

�
Example 6a7 (continued) If X1, ..., Xn are i.i.d. N(µ, σ2) and θ = (θ1, θ2) = (µ, σ2) ∈ Θ =

R× R+, the model is identifiable:

EθX1 = θ1 = µ, EθX2
1 = θ2 + θ21 = σ2 + µ2.

The function g(θ) = (θ1, θ2+θ
2
1) is one-to-one on Θ: indeed, suppose that for θ ̸= θ′, g(θ) = g(θ′)

which means θ1 = θ′1 and θ2 + θ21 = θ′2 + θ′21 . The latter implies θ1 = θ′1 and θ2 = θ′2, which is a
contradiction. Hence the model is identifiable.

Now let’s check what happens if we would have chosen a different parametrization, namely
θ = (θ1, θ2) = (µ, σ) ∈ R × R. Let θ = (0, 1) and θ′ = (0,−1). Since θ′2 = σ appears in the
Gaussian density only with an absolute value, it follows that Pθ = Pθ′ for the specific choice
of θ ̸= θ′ and hence the model with such parametrization is not identifiable, confirming our
premonitions above. �
Here is a less obvious example:

Example 6c4. Let X = (X1, ..., Xn) be an i.i.d. sample from N(µ, σ2) and suppose that we
observe Y = (Y1, ..., Yn), where Yi = X2

i . Let Pθ be the probability law of Y , where θ = (µ, σ) ∈
R+ × R+ (note that µ is known to be nonnegative). Is this model identifiable8 ? Note that

EθY1 = EθX2
1 = varθ(X1) + (EθX1)

2 = σ2 + µ2

7Running a bit ahead, suppose that we have a statistic T (X), which we use as a point estimator of θ. A good
estimator of θ should be close to the values of θ for all (!) θ ∈ Θ. For non-identifiable models this is impossible.
Suppose that θ ̸= θ′ (think of θ = θ′+d, where d is a large number) and Pθ = Pθ′ , i.e. the model is not identifiable.
If T (X) is a good estimator of θ, then its probability distribution should be highly concentrated around θ, when
X ∼ Pθ. But Pθ = Pθ′ and hence it is also highly concentrated around θ, when X ∼ Pθ′ . But since the distance
between θ and θ′ is large, the latter means that the distribution of T (X) is poorly concentrated around θ′, when
X ∼ Pθ′ - i.e. it is a bad estimator of θ′ !

8we have seen already, in Example 6a7, that it is identifiable with a different parameter space. Think why
this implies identifiability for the new parameter space under consideration.
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and

EθY 2
1 = EθX4

1 = Eθ(X1 − µ+ µ)4 =

Eθ(X1 − µ)4 + 4Eθ(X1 − µ)3µ+ 6Eθ(X1 − µ)2µ2 + 4Eθ(X1 − µ)µ3 + µ4 =

3σ4 + 6σ2µ2 + µ4 = 3(σ2 + µ2)2 − 2µ4.

The function g(θ) := (σ2+µ2, 3(σ2+µ2)2− 2µ4) is invertible on (µ, σ) ∈ R+×R+ (check!) and
hence the model is identifiable.

Now suppose we observe only the signs of Xi’s, i.e. ξ = (ξ1, ..., ξn) with

ξi = sign(Xi) :=

{
1 Xi ≥ 0

−1 Xi < 0
.

Let Pθ be the law of ξ with the same parametrization as before. Is this model identifiable ...?
In this case, Pθ is given by its j.p.m.f., namely for u ∈ {1,−1}n and θ as above

pξ(u; θ) =

n∏
i=1

{
I(ui = 1)Pθ(ξi = 1) + I(ui = −1)Pθ(ξi = −1)

}
=

n∏
i=1

{
I(ui = 1)Pθ(Xi ≥ 0) + I(ui = −1)Pθ(Xi < 0)

}
Further,

Pθ(X1 < 0) = Pθ
(X1 − µ

σ
< −µ/σ

)
= Φ(−µ/σ),

and hence pξ(u; θ) depends on θ = (µ, σ) only through the ratio µ/σ. Clearly this model is
not identifiable: for example, θ = (1, 1) and θ′ = (2, 2) yield the same distribution of the data:
pξ(u; θ) = pξ(u; θ

′) for all u ∈ {1,−1}n. This means that the observation of ξ cannot be used to
construct a reasonable estimate of (µ, σ).

�

d. Sufficient statistic

Consider the following simple model: we observe the realizations ofX1 = θ+Z1 andX2 = Z2,
where Z1, Z2 are i.i.d. N(0, 1) r.v.’s and would like to infer θ ∈ R. It is intuitively clear that X2

is irrelevant as far as inference of θ is concerned, since it is just noise, not affected in any way
by the parameter value. In particular, the statistic T (X) = X1 is “sufficient” for the purpose
of e.g. guessing the value of θ. On the other hand, if Z1 and Z2 were dependent, then such
“sufficiency” would be less apparent (and in fact false as we shall be able to see shortly).

Definition 6d1. A statistic T is sufficient for the model (Pθ)θ∈Θ if the conditional distri-
bution of X ∼ Pθ, given T (X), does not depend on θ.

The meaning of the latter definition is made particularly transparent through the following
two-stage procedure. Suppose that we sample from Pθ once, call this sample X, and calculate
T (X). Discard X and keep only T (X). Since T is sufficient, by definition the conditional
distribution of X, given T (X), does not depend on the unknown value of θ. Hence we are able
to sample from the conditional distribution of X, given T (X), without knowing the value of θ!
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Let X ′ be a sample from this conditional distribution9. Typically, the obtained realizations of
X and X ′ will not be the same and hence we would not be able to restore the original discarded
realization of X. However X and X ′ will have the same probability distribution Pθ and hence
bear the very same statistical “information” about θ. Indeed, by the very definition of X ′

Pθ
(
X ′ = x|T (X)

)
= Pθ

(
X = x|T (X)

)
where we assumed for definiteness that all the random vectors involved are discrete. Since T (X)
is sufficient, the latter doesn’t in fact depend on θ and

Pθ
(
X ′ = x

)
= EθPθ

(
X ′ = x|T (X)

)
= EθPθ

(
X = x|T (X)

)
=

EθpX|T
(
x;T (X)

)
= EθPθ

(
X = x|T (X)

)
= Pθ(X = x), ∀x.

To recap, no matter what kind of inference we are going to carry out on the basis of the sample
X, the value of a sufficient statistic T (X) is all we need to keep, to be able to sample from the
original distribution without knowing the parameter and hence to attain the very same accuracy
in the statistical analysis, we would be able to attain should we have kept the original sample
X! In this sense, the sufficient statistic is a “summary” statistic.

Example 6a3(continued) Let’s show that T (X) =
∑n

i=1Xi is a sufficient statistic for i.i.d
X = (X1, ..., Xn), X1 ∼ Ber(θ), θ ∈ Θ = (0, 1) r.v.’s The conditional j.p.m.f. of X given
T (X) is given by the Bayes formula: let x ∈ {0, 1}n and t ∈ {0, ..., n}; if t ̸=

∑n
i=1 xi, then

P(X = x, T (X) = t) = 0 and hence P(X = x|T (X) = t) = 0. Otherwise, i.e. for t =
∑

i xi,

Pθ
(
X = x|T (X) = t

)
=

Pθ
(
X = x, T (X) = t

)
Pθ
(
T (X) = t

) =
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=
1(
n
t

) ,
where we used the fact that T (X) ∼ Bin(n, θ). Hence X conditionally on T (X) is distributed
uniformly on the set of binary vectors{

x ∈ {0, 1}n :

n∑
i=1

xi = t
}
,

and thus the conditional distribution X given T (X) doesn’t depend on θ. Hence T (X) is indeed
a sufficient statistic.

Let’s see how the aforementioned hypothetic experiment works out in this particular case.
Suppose we tossed the coin n = 5 times and obtained {X = (11001)}, for which T (X) = 3.
Now sample from the uniform distribution on all the strings which have precisely 3 ones (you
can actually easily list all of them). Notice that this is feasible without the knowledge of θ.
The obtained sample, say {X ′ = (00111)}, is clearly different from X, but is as relevant to any
statistical question regarding θ as the original data X, since X ′ and X are samples from the
very same distribution.

The statistic S(X) =
∑n−1

i=1 Xi is intuitively not sufficient, since it ignores Xn, which might
be useful for inference of θ. Let’s verify the intuition by a contradiction. Suppose it is sufficient.
Then the conditional distribution of X given S(X) doesn’t depend on θ. On the other hand, Xn

9you might need to enlarge the probability space to do this, but we keep the same notations for brevity
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and S(X) are independent and thus Eθ(Xn|S(X)) = EXn = θ, which contradicts the assumption
of sufficiency. Hence S(X) is not sufficient as expected. �

Example 6d2. Suppose X = (X1, ..., Xn) are i.i.d. N(θ, 1) r.v., with θ ∈ R. Let’s check
that X̄ = 1

n

∑n
i=1Xi is sufficient. Note that X and X̄ are jointly Gaussian (since X̄ is a linear

transformation of a Gaussian vector X). Hence the conditional distribution of X given X̄ is
Gaussian as well and it is enough to check that Eθ(Xi|X̄) and covθ

(
Xi, Xj |X̄

)
do not depend

on θ for any i and j (think why!). Using the explicit formulae for conditional expectations in
the Gaussian case, we find

Eθ(Xi|X̄) = EθXi +
covθ(Xi, X̄)

varθ(X̄)
(X̄ − EθX̄) = θ +

1/n

1/n
(X̄ − θ) = X̄

and

covθ(Xi, Xi|X̄) = varθ(Xi|X̄)
†
= varθ(Xi)−

cov2θ(Xi, X̄)

varθ(X̄)
= 1− 1/n2

1/n
= 1− 1/n,

where the equality † is the formula from the Normal Correlation Theorem 3c1. To calculate
covθ(Xi, Xj |X̄) when i ̸= j,

covθ(Xi, Xj |X̄) = Eθ
(
Xi − X̄

)(
Xj − X̄

)∣∣X̄) = Eθ(XiXj |X̄)− X̄2,

we shall use the following trick. Notice that

1

n

n∑
j=1

Eθ(XiXj |X̄) = Eθ(XiX̄|X̄) = X̄Eθ(Xi|X̄) = X̄2, (6d1)

and on the other hand

1

n

n∑
j=1

Eθ(XiXj |X̄) =
1

n
Eθ(X2

i |X̄) +
1

n

∑
j ̸=i

Eθ(XiXj |X̄).

Moreover, by the i.i.d. property (similarly to Example 3d5),

Eθ(XiXj |X̄) = Eθ(XiXℓ|X̄), ∀j ̸= ℓ,

and, also Eθ(X2
i |X̄) = varθ(Xi|X̄) + X̄2 = 1− 1/n+ X̄2, and hence

1

n

n∑
j=1

Eθ(XiXj |X̄) =
1

n

(
1− 1

n

)
+

1

n
X̄2 +

n− 1

n
Eθ(XiXj |X̄). (6d2)

Combining (6d1) and (6d2) we get

1

n

(
1− 1

n

)
+

1

n
X̄2 +

n− 1

n
Eθ(XiXj |X̄) = X̄2

or

Eθ(XiXj |X̄) = X̄2 − 1

n
and finally

covθ(Xi, Xj |X̄) = Eθ(XiXj |X̄)− X̄2 = X̄2 − 1

n
− X̄2 = − 1

n
.

Thus the conditional probability distribution of X given X̄ is the same for all θ, verifying the
sufficiency of X̄.
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Let’s simulate the procedure, demonstrating sufficiency in action: suppose we obtained an
i.i.d. X1, ..., Xn sample from N(θ, 1) and calculated X̄n. Discard X and keep only X̄n. Sample
from the Gaussian distribution with the mean vector

µ(X) :=

X̄n
...
X̄n


and covariance matrix with the entries

Sij = cov(Xi, Xj) =

{
1− 1

n i = j

− 1
n i ̸= j

.

The obtained new sample, call it X ′, is a realization of a random vector with n i.i.d. N(θ, 1)
components. Note that in this case the event {X = X ′} has zero probability, i.e. we shall never
get the very same realization back. However, as far as inference of θ is concerned, it is enough
to keep just one real number X̄ instead of n real numbers X1, ..., Xn!

�

As you can see, verifying that a given statistic is sufficient for a given model may be quite
involved computationally. Moreover, it is not apparent neither from the definition nor from the
examples, how a nontrivial sufficient statistic can be found for a given model. The main tool
which makes both of these tasks straightforward is

Theorem 6d3 (Fisher-Neyman factorization theorem). Let Pθ, θ ∈ Θ be a model with like-
lihood L(x; θ) and let X ∼ Pθ. Statistic T (X) is sufficient if and only if there exist functions
g(u, t) and h(x) (with appropriate domains), so that

L(x; θ) = g(θ, T (x))h(x) ∀x, θ. (6d3)

Proof. We shall give the proof for the discrete case, leaving out the more technically
involved (but similar in spirit) continuous case. When X is discrete, the likelihood equals the
p.m.f., call it pX(x; θ), x ∈ {x1, x2, ...}. Suppose (6d3) holds, i.e.

pX(x; θ) = g(θ, T (x))h(x)

for some functions g and h. We shall show that T is sufficient, by checking that the conditional
law of X given T (X) doesn’t depend on θ. For any x and t ̸= T (x),

pX|T (X)(x; t, θ) = Pθ(X = x|T (X) = t) = 0,

which certainly doesn’t depend on θ. Further, for t = T (x), by the Bayes formula

pX|T (X)(x; t, θ) = Pθ(X = x|T (X) = t) =
Pθ(X = x, T (X) = t)

Pθ(T (x) = t)
=

Pθ(X = x)

Pθ(T (x) = t)

g(θ, t)h(x)∑
x′ g(θ, t)h(x

′)
=

g(θ, t)h(x)

g(θ, t)
∑

x′ h(x
′)

=
h(x)∑
x′ h(x

′)
,

which does not depend on θ as well.
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Conversely, suppose that T (X) is a sufficient statistic. To prove the claim we shall exhibit
functions g and h such that (6d3) holds. To this end, note that since T (X) is a function of X,

pX,T (X)(x, t; θ) = Pθ(X = x, T (X) = t) = Pθ(X = x, T (x) = t) =

{
pX(x; θ) t = T (x)

0 t ̸= T (x)
,

and hence pX|T (X)(x; t) = 0 for t ̸= T (x). Then

pX(x; θ) =
∑
t

pX|T (X)(x; t)pT (X)(t; θ) = pX|T (X)(x;T (x))pT (X)(T (x); θ)

and (6d3) holds with

g(θ, T (x)) := pT (X)(T (x); θ) and h(x) := pX|T (X)(x;T (x)),

where h(x) does not depend on θ by sufficiency of T . �

Let’s apply the F-N theorem to the preceding examples:

Example 6a3 (continued) The likelihood function is

L(x; θ) = pX(x; θ) = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi = θT (x)(1− θ)n−T (x), x ∈ {0, 1}n, θ ∈ Θ,

where T (x) =
∑n

i=1 xi. Hence (6d3) holds with h(x) = 1 and g(θ, t) = θt(1− θ)n−t. �

Example 6d2 (continued) The likelihood is the j.p.d.f. in this case:

L(x; θ) =fX(x; θ) =
1

(2π)n/2
exp

(
− 1

2

n∑
i=1

(xi − θ)2
)
=

1

(2π)n/2
exp

(
− 1

2

n∑
i=1

x2i + θ

n∑
i=1

xi −
n

2
θ2
)
=

1

(2π)n/2
exp

(
− 1

2

n∑
i=1

x2i

)
exp

(
θnx̄− n

2
θ2
)
.

(6d4)

By F-N theorem, T (X) = X̄ is sufficient, since (6d3) is satisfied with

h(x) =
1

(2π)n/2
exp

(
− 1

2

n∑
i=1

x2i

)

and g(θ, t) = exp
(
θnt − n

2 θ
2
)
. Compare this to the calculations, required to check that X̄ is

sufficient directly from the definition! �
Let’s demonstrate the power of F-N theorem by slightly modifying the latter example:

Example 6a7 (continued)
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Let X1, ..., Xn be i.i.d. N(µ, σ2) r.v.’s. If σ2 is known, then we are in the same situation as
in the previous example. If however both µ and σ2 are unknown, i.e. θ = (µ, σ2) ∈ Θ = R×R+

L(x; θ) =
1

(2πσ2)n/2
exp

(
− 1

2

1

σ2

n∑
i=1

(xi − µ)2
)
=

1

(2πσ2)n/2
exp

(
− 1

2

1

σ2

n∑
i=1

x2i +
µ

σ2

n∑
i=1

xi −
1

2

1

σ2
nµ)2

)
=:

1

(2πσ2)n/2
exp

(
− 1

2

1

σ2
nx2 +

µ

σ2
nx̄− 1

2

1

σ2
nµ2

)
.

(6d5)

The statistic X̄ is no longer sufficient, since it is impossible to factorize the likelihood to match
(6d3), so that h will be only a function of x: the first term in the latter exponent depends both on

x and on σ2, which is now the unknown parameter. A sufficient statistic here is T (X) = (X̄,X2).
Note that it is a two dimensional vector10.

Suppose now that µ = θ and σ =
√
θ, where θ ∈ R+ is the unknown parameter. Then by

F-N theorem and (6d5), the statistic T (X) = X2 is sufficient. �
Example 6d4. Let X1 ∼ U([0, θ]), θ ∈ Θ = (0,∞) and X1, ..., Xn be i.i.d. r.v.’s. The

likelihood is the j.p.d.f. :

L(x; θ) =

n∏
i=1

1

θ
I(xi ∈ [0, θ]) = θ−nI(max

i
xi ≤ θ), ∀x ∈ Rn+.

Hence by the F-N theorem maxiXi is a sufficient statistic. �
Note that neither the definition nor F-N Theorem do not say anything on the uniqueness of

the sufficient statistic: the factorization of the likelihood can be done in many different ways to
yield different sufficient statistics. In fact a typical statistical model has many quite different
sufficient statistics. In particular, the original data, i.e. X sampled from Pθ, is trivially a
sufficient statistic: indeed, Pθ(X ≤ u|X) = I(X ≤ u) for any u ∈ R and I(X ≤ u) doesn’t
depend on θ. Of course, this is also very intuitive: after all the original data is all we have!

This suggests the following relation between statistics:

Definition 6d5. T (X) is coarser11 than T ′(X) if T (X) = f(T ′(X)) for some function f .

“Coarser” in this definition means “revealing less details on the original data”: one can
calculate T (X) from T ′(X) but won’t be able to calculate T ′(X) from T (X) (unless f is one-
to-one). Hence some “information” will be possibly lost. In the Example 6a7, the statistic

T (X) = (X̄,X2) is coarser than X itself: clearly, one can calculate T (X) from X, but not vise
versa (if n ≥ 2). The trivial statistic T ′(X) ≡ 17 is coarser than both T and X: it is so coarse
that it is useless for any inference (and of course not sufficient).

Definition 6d6. Two statistics T and T ′ are equivalent, if there is a one-to-one function f
such that T (X) = f(T ′(X)).

10more precisely, (x̄, x2) is two dimensional since, x̄ does not determine x2 and vise versa (check!). Compare
e.g. with (x̄, x̄) which takes values in R2, but in fact takes values only in a one dimensional manifold, namely on
the diagonal {(x, y) ∈ R2 : x = y}

11a bit more precisely, Pθ

(
T (X) = f(T ′(X))

)
= 1 for all θ is enough.



86 6. STATISTICAL MODEL

The statistics are equivalent if they reveal the same details about the data.

Remark 6d7. If S is coarser than (or equivalent to) T and S is sufficient, then T is sufficient
as well (convince yourself, using the F-N factorization).

Example 6a7 (continued) The statistics T (X) =
(
X̄, 1n

∑n
i=1X

2
i

)
=: (T1(X), T2(X)) and

S(X) =
(
X̄, 1n

∑n
i=1(Xi − X̄)2

)
=: (S1(X), S2(X)) are equivalent. Indeed S can be recovered

from T :
S1(X) = T1(X)

and

S2(X) =
1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

X2
i − X̄2 = T2(X)− T 2

1 (X).

and vise versa. Clearly T andX are not equivalent: T is coarser thanX as previously mentioned.
�

This discussion leads us to the question: is there coarsest (“minimal”) sufficient statistic ?
And if there is, how it can be found ?

Definition 6d8. The sufficient statistic T is minimal if it is coarser than any other sufficient
statistic.

It can be shown that the minimal sufficient statistic exists (at least for our type of models).
The proof is beyond the scope of our course. Finding minimal statistic does not appear at the
outset an easy problem: in principle, if one tries to find it via the definition, she would have to
perform a search among all sufficient statistics (or at least all nonequivalent statistics), which is
practically impossible. Remarkably, checking that a particular sufficient statistic is minimal is
easier, as suggested by the following lemma. Note that in practice candidates for the minimal
sufficient statistic are offered by the F-N factorization theorem.

Lemma 6d9. A sufficient statistic S is minimal sufficient if

L(x; θ)

L(y; θ)
doesn’t depend on θ =⇒ S(x) = S(y). (6d6)

Remark 6d10. Note that by F-N factorization theorem, S(x) = S(y) implies that
L(x; θ)

L(y; θ)
does not depend on θ.

Proof. Suppose that (6d6) holds and let T (X) be a sufficient statistic. Then by the F-N
theorem

L(x; θ) = g(θ, T (x))h(x)

for some g and h and
L(x; θ)

L(y; θ)
=
g(θ, T (x))h(x)

g(θ, T (y))h(y)
.

Let x and y be such that T (x) = T (y), then the latter equals h(x)/h(y), which doesn’t depend
on θ. But then by (6d6) it follows that S(x) = S(y). Hence T (x) = T (y) implies S(x) = S(y),
which means12that S(x) = f(T (x)) for some f . Since T was an arbitrary sufficient statistic and
S is sufficient, S is by definition minimal sufficient. �
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Example 6a7 (continued) Suppose that σ2 is known (say σ2 = 1) and we would like to infer
µ ∈ R. Applying the F-N factorization theorem to (6d4), we see that X̄ is a sufficient statistic.
Is it minimal ?

L(x; θ)

L(y; θ)
=

1
(2π)n/2 exp

(
− 1

2

∑n
i=1 x

2
i

)
exp

(
θnx̄− n

2 θ
2
)

1
(2π)n/2 exp

(
− 1

2

∑n
i=1 y

2
i

)
exp

(
θnȳ − n

2 θ
2
) =

exp
(
− 1

2

n∑
i=1

(x2i − y2i )
)
exp

(
θn(x̄− ȳ)

)
.

The latter is independent of θ if and only if x̄ = ȳ (check!). Hence x̄ is minimal sufficient by the
preceding Lemma. Remarkably, keeping just X̄ and discarding all the observations is enough
for all the purposes of inference of θ and any coarser statistic won’t be sufficient!

The whole data X is, of course, sufficient but is not minimal, as it is finer than X̄ and we

should expect that the conditions of the Lemma cannot be satisfied. Indeed, if L(x;θ)
L(y;θ) doesn’t

depend on θ, it is still possible to have x ̸= y.
�

Example 6d4 (continued) In this case,

L(x; θ)

L(y; θ)
=
I(maxi xi ≤ θ)

I(maxi yi ≤ θ)
.

Using the conventions13 0/0 = 1, 1/0 = ∞ we see that if S(x) := maxi xi < maxi yi =: S(y),
then

L(x; θ)

L(y; θ)
=


1, θ ≤ S(x)

0, θ ∈ (S(x), S(y)]

1, θ > S(y)

,

which is a nontrivial (nonconstant) function of θ. Similarly, it is a nonconstant function of θ in
the case S(x) > S(y):

L(x; θ)

L(y; θ)
=


1, θ ≤ S(y)

∞, θ ∈ (S(y), S(x)]

1, θ > S(x)

,

Hence S(x) ̸= S(y) implies that L(x;θ)
L(y;θ) is a nonconstant function of θ, which confirms (6d6) by

negation. Consequently, S(X) = maxiXi is the minimal sufficient statistic. �

12Lemma: Let ϕ and ψ be real functions on Rd. There is a real function f , such that ϕ(x) = f
(
ψ(x)

)
if and

only if for all x, y ∈ Rd, ψ(x) = ψ(y) implies ϕ(x) = ϕ(y).
Proof: Suppose ψ(x) = ψ(y) implies ϕ(x) = ϕ(y). Then f(z) := ϕ

(
ψ−1(z)

)
is uniquely defined (why?) and

f(ψ(x)) = ϕ(x) by construction. The other direction is obvious.
13if you use other conventions, you will still deduce that maxi xi is minimal sufficient.
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Exercises

Problem 6.1 (Problem 2.1.1, page 80 [1]). Give a formal statement of the following models
identifying the probability laws of the data and the parameter space. State whether the model
in question is parametric or nonparametric.

(1) A geologist measures the diameters of a large number n of pebbles in an old stream bed.
Theoretical considerations lead him to believe that the logarithm of pebble diameter is
normally distributed with mean µ and variance σ2. He wishes to use his observations
to obtain some information about µ and σ2, but has in advance no knowledge of the
magnitudes of the two parameters.

(2) A measuring instrument is being used to obtain n independent determinations of a
physical constant µ. Suppose that the measuring instrument is known to be biased
to the positive side by 0.1 units. Assume that the errors are otherwise identically
distributed normal random variables with known variance.

(3) In part (2) suppose that the amount of bias is positive but unknown. Can you perceive
any difficulties in making statements about µ for this model?

(4) The number of eggs laid by an insect follows a Poisson distribution with unknown mean
λ. Once laid, each egg has an unknown chance p of hatching and the hatching of one
egg is independent of the hatching of the others. An entomologist studies a set of n
such insects observing both the number of eggs laid and the number of eggs hatching
for each nest.

Problem 6.2 (Problem 2.1.2, page 80 [1]). Are the following parametrizations identifiable?
(Prove or disprove.)

(1) The parametrization of Problem 6.1 (3).
(2) The parametrization of Problem 6.1 (4).
(3) The parametrization of Problem 6.1 (4) if the entomologist observes only the number

of eggs hatching but not the number of eggs laid in each case.

Problem 6.3 (Problem 2.1.3, page 80 [1]). Which of the following parametrizations are
identifiable ? (Prove or disprove.)

(1) X1, ..., Xp are independent r.v. with Xi ∼ N(αi + ν, σ2). θ =
(
α1, ..., αp, ν, σ

2
)
and Pθ

is the distribution of X = (X1, ..., Xn)
(2) Same as (1) above with α = (α1, ..., αp) restricted to {α :

∑p
i=1 αi = 0}.

(3) X and Y are independent N(µ1, σ
2) and N(µ2, σ

2), θ = (µ1, µ2) and we observe Y −X
(4) Xij , i = 1, ..., p; j = 1, ..., b are independent with Xij ∼ N(µij , σ

2) where µij = ν+αi+
λj , θ = (α1, ..., αp, λ1, ..., λb, ν, σ

2) and Pθ is the distribution of X11, ..., Xpb.
(5) Same as (4) with (α1, ..., αp) and (λ1, ..., λb) restricted to sets where

∑p
i=1 αi = 0 and∑b

j=1 λj = 0.
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Problem 6.4 (Problem 2.1.4, page 81 [1]). 5. The number n of graduate students entering a
certain department is recorded. In each of k subsequent years the number of students graduating
and of students dropping out is recorded. LetNi be the number dropping out andMi the number
graduating by the end of year i, i = 1, ..., k. The following model is proposed.

Pθ
(
N1 = n1,M1 = m1, ..., Nk = nk,Mk = mk

)
=

n!

n1!...nk!m1!...mk!r!
µn1
1 ...µ

nk
k ν

m1
1 ...νmk

k ρr

where
k∑
i=1

µi +

k∑
j=1

νj + ρ = 1, µi, ν∈(0, 1), i = 1, ..., k

n1 + ...+ nk +m1 + ...+mk + r = n

and θ = (µ1, ..., µk, ν1, ..., νk) is unknown.

(1) What are the assumptions underlying the model ?
(2) θ is very difficult to estimate here if k is large. The simplification µi = π(1 − µ)i−1µ,

νi = (1−π)(1−ν)i−1ν for i = 1, .., k is proposed where 0 < π < 1, 0 < µ < 1, 0 < ν < 1
are unknown. What assumptions underline the simplification ?

Problem 6.5 (Problem 2.1.6 page 81, [1]). Which of the following models are regular ?
(Prove or disprove)

(1) Pθ is the distribution of X, when X is uniform on (0, θ), Θ = (0,∞)
(2) Pθ is the distribution of X when X is uniform on {0, 1, ..., θ}, Θ = {1, 2, ...}
(3) Suppose X ∼ N(µ, σ2). Let Y = 1 if X ≤ 1 and Y = X if X > 1. θ = (µ, σ2) and Pθ

is the distribution of Y
(4) Suppose the possible control responses in an experiment are 0.1 , ... , 0.9 and they

occur with frequencies p(0.1),...,p(0.9). Suppose the effect of a treatment is to increase
the control response by a fixed amount θ. Let Pθ be the distribution of a treatment
response.

Problem 6.6 (based on Problem 2.2.1, page 82, [1]). Let X1, ..., Xn be a sample from Poi(θ)
population with θ > 0.

(1) Show directly that
∑n

i=1Xi is a sufficient statistic
(2) Establish the same result by the F-N theorem
(3) Which one of the following statistics is sufficient:

T1(X) =
( n∑
i=1

Xi

)2
T2(X) =

(
X1, ..., Xn−1

)
T3(X) =

(
T1(X), T (X)

)
T4(X) =

(
T1(X), T2(X)

)
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(4) Order the statistics above according to coarseness relation
(5) Which statistic is minimal among the statistics mentioned above ?
(6) Show that T (X) is minimal sufficient (among all sufficient statistics)

Problem 6.7 (based on Problem 2.2.2, page 82, [1]). Let n items be drawn in order without
replacement from a shipment of N items of which θN are bad. Let Xi = 1 if the i-th item drawn
is bad, and Xi = 0 otherwise.

(1) Show directly that T (X) =
∑n

i=1Xi is sufficient
(2) Show that T (X) is sufficient applying the F-N theorem
(3) Which of the following statistics is sufficient ?

T1(X) =

√√√√ n∑
i=1

Xi

T2(X) =
n−1∑
i=1

Xi

T3(X) =
(
T1(X),min

i
Xi

)
T4(X) =

(
T1(X), T2(X)

)
(4) Order the statistics above according to coarseness relation
(5) Which statistic is minimal among the statistics mentioned above ?
(6) Show that T (X) is minimal sufficient (among all sufficient statistics)

Problem 6.8 (Problem 2.2.3, page 82, [1]). Let X1, ..., Xn be an i.i.d. sample from one of
the following p.d.f.’s

(1)

f(x; θ) = θxθ−1, x ∈ (0, 1), θ > 0

(2) the Weibull density

f(x; θ) = θaxa−1 exp(−θxa), x, a, θ ∈ (0,∞)

(3) the Pareto density

f(x; θ) = θaθ/xθ+1, x, a, θ ∈ (0,∞)

where a is a fixed constant and θ is the unknown parameter. Find a real valued sufficient statistic
for θ.

Problem 6.9 (Problem 2.2.6 page 82 [1]). Let X take the specified values v1, ..., vk+1

with probabilities θ1, ..., θk+1 respectively. Suppose that X1, ..., Xn are i.i.d. with the same
distribution as X. Suppose that θ = (θ1, ..., θk+1) is unknown and may range over the set

Θ = {(θ1, ..., θk+1) : θi ≥ 0,
∑k+1

i=1 θi = 1}. Let Nj be the number of Xi which equal vj
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(1) Show that N = (N1, ..., Nk) is sufficient for θ
(2) What is the distribution of (N1, ..., Nk+1) ?

Problem 6.10 (Problem 2.2.7 page 83 [1]). Let X1, ..., Xn be an i.i.d. sample from the p.d.f.

f(x; θ) =
1

σ
exp

{
− x− µ

σ

}
I(x− µ ≥ 0).

Let θ = (µ, σ) ∈ R× R+

(1) Show that miniXi is sufficient for µ when σ is fixed (known)
(2) Find a one dimensional sufficient statistic for σ when µ is fixed
(3) Exhibit a two dimensional sufficient statistic for θ

Problem 6.11 (Problem 2.2.9 page 83 [1]). Let X1, ..., Xn be an i.i.d. sample from the p.d.f.

f(x; θ) = a(θ)h(x)I(x ∈ [θ1, θ2]),

where h(x) ≥ 0 ,
∫
R h(x) < ∞, θ = (θ1, θ2) with Θ = {(θ1, θ2) ∈ R2 : θ1 < θ2} and a(θ) =( ∫ θ2

θ1
h(x)dx

)−1
. Find the two dimensional statistic for this problem and apply your result to

the family of uniform distributions on [θ1, θ2].





CHAPTER 7

Point estimation

Point estimation deals with estimating the value of the unknown parameter or a quantity,
which depends on the unknown parameter (in a known way). More precisely, given a statistical
model (Pθ)θ∈Θ, the observed data X ∼ Pθ and a function q : Θ 7→ R, an estimator of q(θ) is a
statistic T (X), taking values in q(Θ) := {q(θ), q ∈ Θ}. Estimating the value of the parameter
itself, fits this framework with q(θ) := θ. The realization of the estimator for a particular set of
data is called the estimate.

a. Methods of point estimation

In this section we shall introduce the basic methods of point estimation. Typically different
methods would give different estimators. The choice of the particular method in a given problem
depends on various factors, such as the complexity of the emerging estimation procedure, the
amount of available data, etc. It should be stressed that all of the methods in this section,
originated on a heuristic basis and none of them guarantees to produce good or even reasonable
estimators at the outset: an additional effort is usually required to assess the quality of the
obtained estimators and thus to refute or justify their practical applicability.

Remark 7a1. If θ̂ is a point estimator of θ, the quantity q(θ) can be estimated by the

“plug-in” q̂(X) := q
(
θ̂(X)

)
. Usually this yields reasonable results (being well justified in some

situations - as e.g. in Lemma 7a15 below). Below we shall mainly focus on estimating θ itself,
keeping in mind this remark.

Substitution principles. The methods, known collectively as substitution principles, are
typically (but not exclusively) used for large i.i.d. samples Xi ∼ Pθ, i = 1, ..., n and, in the
simplest form, are based on the following heuristics. Suppose that for a given statistical model
Pθ, θ ∈ Θ, we manage to find a function ϕ : R 7→ R, such that ψ(θ) := Eθϕ(X1) is a one-to-one
function of θ ∈ Θ. When the number of observed data points is large, motivated by the law of
large numbers, we anticipate that the empirical average of ϕ would be close to its expectation.
This suggests the following estimator of θ:

θ̂n(X) := ψ−1

(
1

n

n∑
i=1

ϕ(Xi)

)
.

Frequently (but not always), polynomials or indicator functions ϕ are used in practice, in which
cases, this approach is known as the method of moments or frequency substitution respectively.

Example 6a3 (continued) For X1 ∼ Ber(θ),

EθX1 = θ, ∀θ ∈ Θ.

93
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In this case the method of moments can be formally applied with ϕ(x) = x and ψ(θ) = θ,
suggesting the statistic X̄n as the estimator of θ.

Here is another possibility: note that EθX1X2 = EθX1EθX2 = θ2, which is invertible on
θ ∈ [0, 1]. Hence by the method of moments

θ̃n :=

√√√√ 1

[n/2]

[n/2]∑
i=1

X2i−1X2i,

which is the estimator mentioned in (6a1).
The method of moments is well suited for estimation of functions of θ. For example, the

empirical variance of X1, ..., Xn, i.e.
1
n

∑n
i=1(Xi − X̄n)

2 is the method of moment estimator of
the function q(θ) = θ(1− θ). �

Example 7a2 (Hardy-Weinberg proportions). Consider (first generation of) a population in
which the alleles1 A and a are encountered with probabilities θ and 1− θ respectively, θ ∈ (0, 1).
If the alleles are chosen at random and independently for each individual in the next generation,
then the probability of having the AA genotype is θ2, the aa genotype is (1−θ)2 and Aa genotype
2θ(1− θ). Note that the probabilities of alleles A and a in the second generation is the same as
in the first: P(A) = P(AA) + 1

2P(Aa) = θ and P(a) = P(aa) + 1
2P(Aa) = 1− θ. This property is

known in genetics as equilibrium.
Suppose we sample n individuals from the population, observe their genotypes and would

like to estimate the probability (proportion) of A allele in the population. The corresponding
statistical model is an i.i.d. sample X1, ..., Xn, where X1 takes values in {AA,Aa,AA} with
probabilities θ2, 2θ(1 − θ) and (1 − θ)2 respectively. Define the empirical frequencies Nℓ :=∑n

i=1 I(Xi = ℓ), ℓ ∈ {AA,Aa, aa} and note that

EθNAA = θ2

EθNAa = 2θ(1− θ)

EθNaa = (1− θ)2

The frequency substitution estimators, based NAA and Naa: are

θ̂ =
√
NAA/n

θ̄ = 1−
√
Naa/n

Since EθNAa is not a one-to-one function of θ ∈ Θ, it doesn’t fit the frequency substitution
method as is. Having several different estimators of θ can be practically handy, since some
genotypes can be harder to observe than the others.

Here is another alternative: since E
(
I(X1 = AA) + 1

2I(X1 = Aa)
)
= θ2 + θ(1− θ) = θ, the

frequency substitution suggests the estimator:

θ̃(x) =
NAA

n
+

1

2

NAa

n
.

�

The substitution principle is applicable to parameter spaces with higher dimension:

1look up for “HardyWeinberg principle” in wikipedia for more details about this model
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Example 7a3. Let X1, ..., Xn be an i.i.d. sample from the Γ(α, β) distribution with the
p.d.f.

f(x;α, β) =
xα−1e−x/β

βαΓ(α)
I(x ≥ 0),

where the unknown parameter is θ := (α, β) ∈ R+ × R+ =: Θ.
A calculation reveals that

EθX1 = ... = αβ

and
EθX2

1 = ... = β2α(α+ 1).

Denote the empirical moments by

X̄n :=
1

n

n∑
i=1

Xi, X2
n :=

1

n

n∑
i=1

X2
i .

and

σ̂2n(X) =
1

n

n∑
i=1

(Xi − X̄n)
2 = X2

n − X̄2
n.

The method of moments estimator of θ is given by the solution of the equations:

X̄n = αβ

X2
n = β2α(α+ 1)

which gives

α̂(X) :=
X̄2
n

X2
n − X̄2

n

=
X̄2
n

σ̂2n(X)
, β̂(X) :=

X2
n − X̄2

n

X̄n
=
σ̂2n(X)

X̄n

Note that α̂ is well defined since σ̂2n(X) ≥ 0 and the equality holds with zero probability. �
Remark 7a4. The method of moments (and other substitution principles) does not require

precise knowledge of the distribution of the sample, but only of the dependence of moments on
the parameter. This can be a practical advantage, when the former is uncertain.

Least squares estimation. In many practical situations the observed quantities are known
to satisfy a noisy functional dependence, which itself is specified up to unknown parameters.
More precisely, one observes the pairs (Xi, Yi), i = 1, ..., n which are presumed to satisfy the
equations

Yi = gi(Xi, θ) + εi, i = 1, ..., n,

where gi’s are known functions, εi’s are random variables and θ is the unknown parameter. The
least squares estimator of θ is defined as

θ̂(X,Y ) := argminθ∈Θ

n∑
i=1

(
Yi − gi(Xi, θ)

)2
, (7a1)

where any of the minimizers is chosen, when the minimum is not unique. In other words the
least squares estimator is the best fit of a known curve to noisy measurements.

One classical example is the linear regression: one observes the pairs (Xi, Yi) i = 1, ..., n,
presumes that Yi = θ1Xi+ θ2+ εi and would like to estimate θ = (θ1, θ2) given the observations.
Working out the minimization in (7a1) yields the familiar regression formulae.
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Here is an example in the same spirit:

Example 7a5. An asteroid is detected by a radar and its position is measured at times
0 = t0 <= t1 < ... < tn. Let v = (vx, vy, vz) be the velocity vector of the asteroid at time 0 (the
first moment of detection). Assuming that the only force acting on the asteroid is gravitation2,
the position at any time t ≥ 0 is given by

x(t) = x0 + vxt

y(t) = y0 + vyt

z(t) = z0 + vzt− gt2/2,

where p(0) = (x0, y0, z0) is the asteroid position at time t = 0 and g is the Earth gravity constant
g = 9.78033... [m/s2]. To predict the location and the time of the impact we have to estimate
the vector of initial velocities v. Once the estimator v̂ is calculated the impact point is predicted
as the intersection of the curve

x̂(t) = x0 + v̂xt

ŷ(t) = y0 + v̂yt

ẑ(t) = z0 + v̂zt− gt2/2,

with the equation describing the surface of the Earth (an ellipsoid, to the first order of approx-
imation). Statistics is relevant in this problem for at least two reasons: (1) the position cannot
be measured without errors, (2) many forces (weaker than Earth gravity) acting on the asteroid
cannot be taken into account (and thus are modeled as noise). The relevant statistical model is

xi := x(ti) = x0 + vxti + εx(i)

yi := y(ti) = y0 + vyti + εy(i)

zi := z(ti) = z0 + vzti − gt2i /2 + εz(i),

where εx, εy, εz are random variables, which model the errors. Notice that we don’t have to
assume any particular distribution of ε’s to apply the LS method. Hence at this stage we don’t
really need the full description of statistical model (we shall need one to analyze the accuracy
of the emerging estimators).

The data in this problem is (xi, yi, zi, ti) and the corresponding least squares estimator is
given by:

v̂ = argminv∈R3

( n∑
i=1

(
xi − x0 − vxti

)2
+

n∑
i=1

(
yi − y0 − vyti

)2
+

n∑
i=1

(
zi − z0 − vzti +

1

2
gt2i
)2)

.

2this is an oversimplification: the trajectory of the asteroid is significantly affected by the drag force applied
by the atmosphere, which itself varies depending on the mass being evaporated, the effective area of asteroid body
and the material it is composed of. Moreover, the gravity of the Earth depends both on the instantaneous height
and longitude/latitude coordinates, etc.
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The latter is a quadratic function, whose minimum is found in the usual way by means of
differention:

v̂x =

∑
i xiti − x0

∑
i ti∑

i t
2
i

v̂y =

∑
i yiti − y0

∑
i ti∑

i t
2
i

v̂z =

∑
i ziti − z0

∑
i ti +

1
2g
∑

i t
3
i∑

i t
2
i

�

Remark 7a6. This example demonstrates that in some situations it is easier to postulate
the statistical model in the form, different from the canonical one, i.e. postulating a family of
probability distributions. The definition of Pθ in these cases is implicit: in the last example,
Pθ will be completely specified if we make the additional assumption that εi’s are i.i.d. and
sampled from3 N(0, σ2) with known or unknown σ2.

Maximum likelihood estimation.

Definition 7a7. For a regular model (Pθ)θ∈Θ and a sample X ∼ Pθ, the Maximum Likeli-
hood estimator (MLE) is

θ̂(X) := argmaxθ∈ΘL(x; θ) = argmaxθ∈Θ logL(x; θ),

assuming4 argmax exists and taking any of the maximizers, when it is not unique.

The heuristical basis behind the ML method is to choose the parameter, for which the
corresponding Pθ assigns maximal probability to the observed realization of X.

Remark 7a8. For many models, the likelihood function is a product of similar terms (e.g.
when Pθ corresponds to an i.i.d. sample), hence considering log-likelihood is more convenient.
Clearly, this does not affect the estimator itself (since log is a strictly increasing function). Also,
typically, the maximal value of the likelihood is not of immediate interest.

Example 6a3 (continued) For n independent tosses of a coin, the log-likelihood is (x ∈
{0, 1}n, θ ∈ Θ = [0, 1]):

logLn(x; θ) = Sn(x) log θ +
(
n− Sn(x)

)
log(1− θ),

with Sn(x) =
∑n

i=1 xi. If Sn(x) ̸∈ {0, n}, then

lim
θ→0

logLn(x; θ) = lim
θ→1

logLn(x; θ) = −∞

3the choice of N(µ, σ2) with unknown µ leads to a non-identifiable model - think why
4This assumption is sometimes shortly incorporated into the definition of the MLE:

θ̂(X) ∈ argmaxθ∈ΘL(x; θ),

i.e. θ̂(X) is any point in the set of maximizers.
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and hence the maximum is attained in the interior of Θ. As logLn(x; θ) is a smooth function of
θ on (0, 1), all local maximizers are found by differentiation:

Sn(x)
1

θ
−
(
n− Sn(x)

) 1

1− θ
= 0,

which gives

θ̂n(X) =
1

n
Sn(X) = X̄n, (7a2)

which is the familiar intuitive estimator. Since the local maximum is unique it is also the global
one and hence the MLE.

If Sn(x) = 0, logLn(x; θ) = n log(1 − θ), which is a decreasing function of θ. Hence in this
case, the maximum is attained at θ = 0. Similarly, for Sn(x) = n, the maximum is attained at
θ = 1. Note that these two solutions are included in the general formula (7a2). �

Example 7a2 (continued) The log-likelihood is

logLn(x; θ) = NAA(x) log θ
2 +NAa(x) log 2θ(1− θ) +Naa(x) log(1− θ)2 =(

2NAA(x) +NAa(x)
)
log θ +NAa(x) log 2 +

(
2Naa(x) +NAa(x)

)
log(1− θ).

The maximization, done as in the previous example, gives the following intuitive estimator:

θ̂(x) =
2NAA(x) +NAa(x)

2n
=
NAA(x)

n
+

1

2

NAa(x)

n
.

Note that it coincides with one of the frequency substitution estimators obtained before (but
not the others). �

Example 7a9. Let X1, ..., Xn be an i.i.d. sample from N(µ, σ2), θ = (µ, σ2) ∈ Θ = R×R+.
The log-likelihood is

logLn(x; θ) = log
n∏
i=1

1√
2πσ2

exp
(
− (xi − µ)2

2σ2

)
= −n

2
log(2π)− n

2
log θ2 −

n∑
i=1

(xi − θ1)
2

2θ2
.

This function is differentiable on R× R+ and its gradient vanishes at all the local maximizers:

∂

∂θ1
logLn(x; θ) =

n∑
i=1

(xi − θ1)

θ2
= 0

∂

∂θ2
logLn(x; θ) = −n

2

1

θ2
+

1

2θ22

n∑
i=1

(xi − θ1)
2 = 0.

Solving these equations for θ1 and θ2 gives the unique solution:

θ̂1(x) =
1

n

n∑
i=1

xi = x̄n

θ̂2(x) =
1

n

n∑
i=1

(xi − x̄n)
2
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To see that the obtained extremum is indeed a local maximum we shall examine the Hessian
matrix (of second order derivatives) and verify that it’s eigenvalues are negative at (θ̂1, θ̂2). A
calculation shows that it is indeed the case.

To see that the found local maximum is also global, we have to check the value of the log-
likelihood on the boundary, namely as θ2 approaches to zero. The case x1 = x2 = ... = xn
can be excluded from the consideration, since probability of getting such sample is zero. Hence∑

i(xi−θ1)2 is strictly positive uniformly over θ1 ∈ R. This in turn implies limθ2→0 logLn(x; θ) =
−∞ uniformly over θ1 ∈ R. Hence the found maximizer is the MLE of θ. �

Example 7a10. Let X1, ..., Xn be a sample from the uniform density on [0, θ], with the
unknown parameter θ ∈ Θ = (0,∞). The likelihood is

Ln(x; θ) =
n∏
i=1

1

θ
I(xi ∈ [0, θ]) = (1/θ)nI(max

i
xi ≤ θ) =

{
0 θ < maxi xi
1
θn θ ≥ maxi xi

, x ∈ Rn+.

Since 1/θn is a decreasing function, the unique maximum is attained at θ̂(x) = maxi xi. �
The computation of the MLE amounts to solving an optimization problem and hence neither

existence nor uniqueness of the MLE is clear in advance. Moreover, even when MLE exists and
is unique, its actual calculation may be quite challenging and in many practical problems is done
numerically (which is typically not a serious drawback in view of the computational power of
the modern hard/software).

Below are some examples, which demonstrate the existence and uniqueness issues.

Example 7a11. Let Y1, ..., Yn be an i.i.d. sample from U([0, 1]) and let Xi = Yi + θ, where
θ ∈ Θ = R. We would like to estimate θ given X1, ..., Xn. The corresponding likelihood is

Ln(x; θ) =

n∏
i=1

I(θ ≤ xi ≤ θ + 1) = I(min
i
xi ≥ θ,max

i
xi ≤ θ + 1) =

I(max
i
xi − 1 ≤ θ ≤ min

i
xi).

Note that for any fixed n, Pθ
(
miniXi−

(
maxiXi− 1

)
= 0
)
= Pθ

(
maxiXi−miniXi = 1

)
= 0

and hence with probability 1, the maximizer, i.e. the MLE, is not unique: any point in the
interval [maxiXi − 1,miniXi] can be taken as MLE. �

Here is a natural and simple example when MLE does not exist:

Example 7a12. Let X1, ..., Xn be sampled from Poi(θ), with unknown θ ∈ Θ = R+. The
log-likelihood is

logLn(x; θ) = −nθ +
( n∑
i=1

xi

)
log θ −

n∑
i=1

log xi!, x ∈ Nn.

If Sn(x) =
∑n

i=1 xi > 0, this expression maximized by θ̂(x) = Sn(x)/n = x̄n. If, however,
Sn(x) = 0, i.e. the sample was all zeros, logLn(x; θ) = −nθ, which does not have a maximum
on the open interval (0,∞) (it’s supremum is 0, which does not belong to the parametric space).
�

Here is a more vivid demonstration
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Example 7a13 (Kifer-Wolfovitz). Let ξ1 ∼ Ber(1/2) and define

X1 = Z1(σξ1 + 1− ξ1) + µ,

where Z1 ∼ N(0, 1), independent of ξ1. Hence, conditioned on {ξ1 = 0}, X1 ∼ N(µ, 1) and
conditioned on {ξ = 1}, X1 ∼ N(µ, σ2).

Suppose we observe5 the i.i.d. r.v.’s X1, ..., Xn and would like to estimate θ = (µ, σ) ∈ Θ =
R× R+. The likelihood is (φ is the standard Gaussian p.d.f. and x ∈ Rn)

Ln(x; θ) =

n∏
i=1

(
1

2

1

σ
φ
(xi − µ

σ

)
+

1

2
φ
(
xi − µ

))
≥ 1

2

1

σ
φ
(x1 − µ

σ

) n∏
i=2

1

2
φ
(
xi − µ

)
,

where the inequality is obtained by removing all the missing positive terms. The obtaned lower
bound can be made arbitrarily large by choosing µ := x1 and taking σ → 0. Hence the MLE
does not exist. �

Remark 7a14. Notice that MLE must be a function of a sufficient statistic, which immedi-
ately follows from the F-N factorization theorem. In particular, MLE can be constructed using
the minimal sufficient statistic. This is appealing from the practical point of view, since the
minimal sufficient statistic is all we need for the inference purpose in general (see also Remark
7d11).

Here is another useful property of MLE:

Lemma 7a15. MLE is invariant under reparametrization. More precisely, suppose θ̂ is the
MLE for the model (Pθ)θ∈Θ and let h be a one-to-one function, mapping the parameter space

onto a set E. Define (Pη)η∈E by Pη := Ph−1(η), η ∈ E. Then the MLE of η is given by η̂ = h(θ̂).

Proof. Let L̃(x; η) be the likelihood function for the reparameterized model:

L̃(x; η) = L(x;h−1(η)).

By the definition of MLE L(x; θ) ≤ L(x; θ̂) and hence

L̃(x; η) = L(x;h−1(η)) ≤ L(x; θ̂) = L̃(x;h(θ̂)),

which means that h(θ̂) maximizes the likelihood L̃(x; η), i.e. it is the MLE of η. �

Example 7a16. Let X1, ..., Xn be a sample from N(µ, σ2). It is required to calculate the
MLE of the first two moments, i.e. m1(µ) = µ and m2(µ, σ

2) = σ2 +µ2. The function (m1,m2)
is invertible and hence by the Lemma the MLE’s are

m̂1(X) = µ̂(X) = X̄n,

and

m̂2(X) = σ̂2(X) + µ̂(X) =
1

n

n∑
i=1

(Xi − X̄n)
2 + X̄2

n =
1

n

n∑
i=1

X2
i .

The direct calculation is more cumbersome (try!) �

5such sample is obtained by independent tossings of a fair coin, and sampling from N(µ, σ2) if it comes out
heads and from N(µ, 1) otherwise.
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In summary let us revisit:

Example 6a6 (continued) From a shipment of N oranges, in which θN oranges rot off, we
sample without replacement n ≤ N oranges and would like to estimate θ, the proportion of
wasted fruit. The available data is the number of rotten fruit in the sample X, which has the
Hyper Geometric distribution:

pX(k; θ) =

(
θN
k

)(
(1− θ)N
n− k

)
(
N
n

) , max(0, n− (1− θ)N) ≤ k ≤ min(n, θN),

where θ ∈ Θ =

{
0, 1

N , ...,
N
N

}
.

Let’s apply the method of moments to find an estimator of θ: to this end, we shall use the
first moment6of X:

EθX = nθ.

The statistic X/n, suggested by the method of moments, may take non-integer values and e.g.
can be rounded to yield a valid estimator:

θ̃(X) =
1

N
⌊NX/n⌋.

Now let’s calculate the MLE of θ. For convenience we shall reparameterize the model by
defining M := θN (the number of rotten oranges in the shipment). By Lemma 7a15, θ̂(X) =

M̂(X)/N . The likelihood for the model with the new parametrization is

L(k,M) =

(
M
k

)(
N −M
n− k

)
(
N
n

) , M ∈ {0, ..., N}.

6Here is how EθX can be calculated: let ξi be the indicator of the i-th orange in the sample being rotten.
Thus X =

∑n
i=1 ξi and EθX =

∑n
i=1 Eθξi. For j = 2, ..., n,

Eθξj = EθPθ(ξj |ξ1, ..., ξj−1) = Eθ
θN −

∑j−1
ℓ=1 ξℓ

N − (j − 1)
=
θN − Eθ

∑j−1
ℓ=1 ξℓ

N − (j − 1)
.

Hence the quantities rm =
∑m

i=1 Eθξi, m = 1, ..., n satisfy the recursion,

rm =

m∑
i=1

θN − rj−1

N − (j − 1)
=

θN − rm−1

N − (m− 1)
+

m−1∑
i=1

θN − rj−1

N − (j − 1)
=

θN − rm−1

N − (m− 1)
+ rm−1

subject to r0 = 0. Hence r1 = θ and by induction rm = mθ. Hence EθX = rn = nθ.
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Let’s study the monotonicity of L(k,M), as a sequence in M for a fixed k. For M ≥ k

L(k,M + 1)

L(k,M)
=

(
M + 1
k

)(
N −M − 1
n− k

)
(
N
n

)
(
N
n

)
(
M
k

)(
N −M
n− k

) =

(M + 1)!

k!(M + 1− k)!

(N −M − 1)!

(n− k)!(N −M − 1− (n− k)!

k!(M − k)!

M !

(n− k)!(N −M − (n− k))!

(N −M)!
=

(M + 1)

(M + 1− k)

(N −M − (n− k))

(N −M)
=

1− n− k

N −M

1− k

M + 1

.

Let’s see for which values of M the latter expression is less than 1:

1− n− k

N −M

1− k

M + 1

≤ 1

⇕

1− n− k

N −M
≤ 1− k

M + 1

⇕

n− k

N −M
≥ k

M + 1

⇕

M ≥ k

n
(N + 1)− 1.

Hence the sequence M 7→ L(k,M) increases for all M ’s less than M∗ := k
n(N + 1) − 1 and

decreases otherwise. IfM∗ is an integer, then L(k,M∗) = L(k,M∗+1) and L(k,M∗) > L(k,M)
for all M ̸∈ {M∗,M∗ + 1}, hence the maximizer is not unique:

M̂(k)


= 0, k = 0

∈
{
M∗ + 1,M∗

}
, k ̸∈ {0, n},

= N, k = n

and θ̂(X) = M̂(X)/N .

If k/n is non-integer, then M̂(k) = ⌊k/n⌋(N + 1) and θ̂(X) = ⌊X/n⌋(1 + 1/N), which is
only slightly different from the method of moments estimator. �
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b. Elements of the statistical decision theory

In the previous section we have seen several techniques, which can be used to construct point
estimators. Different methods produce different estimators (and hence estimates) in general.
How do we compare the performance of point estimators? For example, suppose we obtain an
i.i.d. sample X1, ..., Xn from N(µ, σ2), where both µ and σ2 are unknown. As we saw, the MLE
estimator of σ is given by:

σ̂n(X) =

√√√√ 1

n

n∑
i=1

(Xi − X̄n)2. (7b1)

However, another estimator7

σ̃n(X) =
1

n

n∑
i=1

|Xi − X̄n|, (7b2)

appears as plausible as σ̂n(X). Which one is better? As we shall see, in a certain sense, this
question can be resolved in favor of σ̂n(X); however, the answer is far from being obvious at the
outset. The questions of comparison and optimality of decision rules, such as point estimators
or statistical tests, etc. are addressed by the statistical decision theory 8. Below we will present
the essentials in the context of point estimators, deferring consideration of statistical hypothesis
testing to the next chapter.

It is clear that comparing the realizations of estimators, i.e. the corresponding estimates,
is meaningless, since the conclusion will depend on the particular outcome of the experiment.
Hence we shall compare the expected performances of the point estimators.

Definition 7b1. For a statistical model (Pθ)θ∈Θ and a loss function ℓ : Θ × Θ 7→ R+, the
ℓ-risk of the point estimator T is

Rℓ(θ;T ) := Eθℓ
(
θ, T (X)

)
,

where X ∼ Pθ.

The loss function in this definition measures the ‘loss’ incurred by estimating θ by T (X)
(for each particular realization) and the risk is the expected loss. Intuitively, the loss should
increase with the magnitude of deviation of the estimate from the true value of the parameter
θ, i.e. larger errors should be assigned greater loss. Here are some popular loss functions for
Θ ⊆ Rd:

ℓp(θ, η) =
d∑
i=1

|θi − ηi|p =: ∥θ − η∥pp

ℓ0(θ, η) = I(θ ̸= η)

ℓ∞(θ, η) = max
i

|θi − ηi|

7The comparison between σ̂n(X) and σ̃n(X) was the subject of the dispute between Sir. R.Fihser, who
advocated for the MLE, and the physicist A.Eddington, who favored the other estimator.

8a concise account can be found in e.g. [2]
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These losses can be associated with distances between θ and η: the larger distance the greater
loss is suffered. The corresponding risks of an estimator T are given by

Rp(θ, T ) = Eθ
d∑
i=1

|θi − Ti(X)|p = Eθ∥θ − η∥pp

R0(θ, T ) = EθI(θ ̸= T (X)) = Pθ
(
θ ̸= T (X)

)
R∞(θ, T ) = Eθmax

i
|θi − Ti(X)|.

The choice of the loss function in a particular problem depends on the context, but sometimes
is motivated by the simplicity of the performance analysis. In this course we shall consider almost
exclusively the quadratic (MSE) risk R2(θ, T ) (assuming that T (X) is such that the risk is finite
and omitting 2 from the notations):

R(θ, T ) = Eθ
(
θ − T (X)

)2
.

This risk makes sense in many models and, moreover, turns to be somewhat more convenient to
deal with technically.

Remark 7b2. If the objective is to estimate q(θ), for a known function q, the MSE risk is
defined similarly

R(q(θ), T ) = Eθ(q(θ)− T (X))2,

and the theory we shall develop below translates to this more general case with minor obvious
adjustments.

In view of the above definitions, we are tempted to compare two estimators T1 and T2 by
comparing their risks, i.e. R(θ, T1) and R(θ, T2). Sometimes, this is indeed possible:

Example 7b3. Let X1, ..., Xn be an i.i.d. sample from U([0, θ]), θ > 0. As we saw, the MLE
of θ is

θ̂n(X) = max
i
Xi =:Mn(X)

Another reasonable estimator of θ can be suggested by the method of moments:

θ̃n(X) = 2X̄n.

Recall that Mn has the p.d.f.

fMn(x) =
n

θn
xn−1I(x ∈ (0, θ)).

Hence

EθMn =

∫ θ

0

n

θn
xndx = θ

n

n+ 1
(7b3)

and

EθM2
n =

∫ θ

0

n

θn
xn+1dx = θ2

n

n+ 2
.

Consequently,

R(θ, θ̂n) = Eθ(θ −Mn)
2 = θ2 − 2θEθMn + EθM2

n =

θ2
(
1− 2n

n+ 1
+

n

n+ 2

)
= θ2

2

(n+ 1)(n+ 2)
. (7b4)
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The risk of θ̃n is given by

R(θ, θ̃n) = Eθ(θ − 2X̄n)
2 =

4

n
varθ(X1) =

4

n

θ2

12
= θ2

1

3n
. (7b5)

Since
1

3n
− 2

(n+ 1)(n+ 2)
=

(n− 1)(n− 2)

3n(n+ 1)(n+ 2)
≥ 0,

it follows

R(θ, θ̂n) ≤ R(θ, θ̃n), ∀θ ∈ Θ = (0,∞),

where the inequality is strict for n ≥ 3. Hence θ̂n yields better (smaller) risk than θ̃n, for all
values of the parameter. �

This example motivates the following notion

Definition 7b4. An estimator θ̃ is inadmissible, if there exists an estimator θ̃′, such that

R(θ, θ̃) ≥ R(θ, θ̃′) ∀θ ∈ Θ,

and the inequality is strict at least for some θ.

In other words, an estimator is inadmissible if there is an estimator with better risk. Let us
stress once again that better risk means that the risk function is smaller or equal for all θ ∈ Θ.

The notion of the admissible estimator is obtained by negation: θ̃ is admissible if no other
estimator has better risk. Notice that this does not exclude the possibility of having an estimator
which yields smaller risk only on a part of the parameter space (in fact, we shall see shortly,this
is always the case).

In the preceding example, θ̃n(X) is inadmissible for n ≥ 3. Is θ̂n(X) admissible ...? This
cannot be concluded on the basis of the preceding calculations: to establish admissibility of
θ̂n(X) we have to prove that there doesn’t exist an estimator which improves the risk of θ̂n(X)
for all values of the parameter.

Remark 7b5. Practically one may prefer an inadmissible estimator due to its simpler struc-
ture, subjective appeal, etc.

Remark 7b6. Admissibility is a very weak property. For example, for X ∼ N(θ, 1), θ ∈ R,
the constant estimator θ̂ ≡ c, which doesn’t depend on X is admissible ! Suppose the contrary
holds, i.e. θ̂ ≡ c is inadmissible, then there is an estimator θ̂′(X) such that Eθ(θ − θ̂′(X))2 ≤
(θ − c)2 for all θ ∈ R and for some θ this inequality is strict. In particular, for θ := c we get

Ec(c − θ̂′(X))2 = 0, i.e. θ̂′(X) = c, Pc-a.s. Let φ be the standard normal density, then for any
θ ∈ R

Eθ(θ − θ̂′(X))2 =

∫
(θ − θ̂′(x))2φ(x− θ)dx =

∫
(θ − θ̂′(x))2

φ(x− θ)

φ(x− c)
φ(x− c)dx =

Ec(θ − θ̂′(X))2
φ(X − θ)

φ(X − c)
= (θ − c)2Ec

φ(X − θ)

φ(X − c)
= (θ − c)2,

i.e. the risk of θ̂′ coincides with the risk of θ̂ ≡ c. The obtained contradiction shows that θ̂ ≡ c
is admissible.
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Remark 7b7. Establishing inadmissibility of an estimator amounts to finding another esti-
mator with better risk. Establishing admissibility of an estimator appears to be a much harder
task: we have to check that better estimators don’t exist! It turns out that constructing an
admissible estimator is sometimes an easier objective. In particular, the Bayes estimators are
admissible (see Lemma 7c8 below).

The following celebrated example, whose earlier version was suggested by C.Stein, demon-
strates that estimators can be inadmissible in a surprising way

Example 7b8 (W.James and C.Stein, 1961). Let X be a normal vector in Rp with inde-
pendent entries Xi ∼ N(θi, 1). Given a realization of X, it is required to estimate the vector
θ. Since Xi’s are independent, Xi doesn’t seem to bear any relevance to estimating the values
of θj , for j ̸= i. Hence it makes sense to estimate θi by Xi, i.e. θ̂ = X. This estimator is
reasonable from a number of perspectives: it is the ML estimator and, as we shall see below, the
optimal unbiased estimator of θ and also the minimax estimator. The quadratic risk of θ̂ = X
is constant

R(θ̂, θ) = Eθ∥X − θ∥2 = Eθ
p∑
i=1

(Xi − θi)
2 = p, θ ∈ Rp.

This ‘natural’ estimator θ̂ = X can also be shown admissible for p = 1 and p = 2, but,
surprisingly, not for p ≥ 3 ! The following estimator, constructed by W.James and C.Stein, has
a strictly better risk for all θ ∈ Rp:

θ̂JS =

(
1− p− 2

∥X∥2

)
X.

Note that this estimator, unlike θ̂ = X, uses all the components of X to estimate each individual
component of θ and the values of X with smaller norms are pushed further towards the origin.
The latter property is often referred to as shrinkage and the estimators with similar property
are called shrinking estimators. Some further details can be found in the concise article [11].

To compute the risk of θ̂JS , we shall need the following simple identity:

Lemma 7b9 (Stein’s lemma). For ζ ∼ N(0, 1) and a continuously differentiable function
h : R 7→ R,

Eζh(ζ) = Eh′(ζ),
whenever the expectations are well defined and finite.

Proof. Note that the standard normal density φ satisfies φ′(x) = −xφ(x) and under our
integrability assumptions, the claim follows by integration by parts

Eh′(ζ) =
∫
h′(x)φ(x)dx = −

∫
h(x)φ′(x)dx =

∫
h(x)xφ(x)dx = Eζh(ζ).

�
Also we shall check that for p ≥ 3,

Eθ
1

∥X∥2
<∞.

To this end, let e1 be the vector with the entries e1,1 = 1 and e1,i = 0 for i = 2, ..., p and note
that the vectors θ and e1∥θ∥ have the same norms. Hence there exists an orthonormal (rotation)
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matrix Uθ, such that Uθθ = e1∥θ∥. Since X = Z + θ, where Z is the vector with i.i.d. N(0, 1)
entries,

∥X∥2 = ∥UθX∥2 =
∥∥UθZ + e1∥θ∥

∥∥2.
But as Uθ is orthonormal, UθZ has the same distribution as Z and

Eθ
1

∥X∥2
=

∫
Rp

1∥∥z + e1∥θ∥
∥∥2 1

(2π)p/2
e−

1
2
∥z∥2dz =

∫
Rp

1

∥v∥2
1

(2π)p/2
exp

−1

2
(v1 − ∥θ∥)2 − 1

2

∑
i≥2

v2i

 dv ≤

∫
Rp

1

∥v∥2
exp

(
v1∥θ∥ −

1

2

p∑
i=1

v2i

)
dv ≤

∫
Rp

1

∥v∥2
exp

(
v1∥θ∥ −

1

4
v21 −

1

4

p∑
i=1

v2i

)
dv

†
≤

e∥θ∥
2

∫
Rp

1

∥v∥2
exp

(
−1

4

p∑
i=1

v2i

)
dv

‡
= e∥θ∥

2

∫ ∞

0

1

r2
exp

(
−1

4
r2
)
rp−1dr <∞,

where in † we used the elementary inequality xa − 1
4x

2 ≤ a2 for all x ∈ R and ‡ holds by the

change of variables to polar coordinates (the term rp−1 is the Jacobian).
Now let us get back to calculating the risk of the James-Stein estimator:

∥θ̂JS − θ∥2 =
∥∥∥∥X − p− 2

∥X∥2
X − θ

∥∥∥∥2 = ∥Z∥2 − 2

⟨
Z,

p− 2

∥X∥2
X

⟩
+

∥∥∥∥ p− 2

∥X∥2
X

∥∥∥∥2 =
∥Z∥2 − 2

⟨
Z,

p− 2

∥X∥2
X

⟩
+

(p− 2)2

∥X∥2
,

where ⟨
Z,

p− 2

∥X∥2
X

⟩
=

p∑
i=1

ZiXi
p− 2

∥X∥2
= (p− 2)

p∑
i=1

Zi
Zi + θi
∥Z + θ∥2

.

Consider h(xi) :=
xi+θi
∥x+θ∥2 as a function of xi ∈ R with all other coordinates xj , j ̸= i fixed, so

that xj ̸= θj at least for some j. In this case, h(xi) is smooth in xi and

∂ih(xi) =
∥x+ θ∥2 − 2(xi + θi)

2

∥x+ θ∥4
=

1

∥x+ θ∥2
− 2

(xi + θi)
2

∥x+ θ∥4
.

Applying Stein’s lemma and using independence of Zi’s, we get

EθZi
Zi + θi
∥Z + θ∥2

= EθEθ
(
Zih(Zi)

∣∣∣Zj , j ̸= i
)
= EθEθ

(
∂ih(Zi)

∣∣∣Zj , j ̸= i
)
=

EθEθ
(

1

∥Z + θ∥2
− 2

(Zi + θi)
2

∥Z + θ∥4
∣∣∣Zj , j ̸= i

)
= Eθ

1

∥X∥2
− 2Eθ

X2
i

∥X∥4
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and hence

Eθ
⟨
Z,

p− 2

∥X∥2
X

⟩
= (p− 2)

p∑
i=1

(
Eθ

1

∥X∥2
− 2Eθ

X2
i

∥X∥4

)
=

(p− 2)Eθ
(

p

∥X∥2
− 2

1

∥X∥2

)
= (p− 2)2Eθ

1

∥X∥2

Plugging this back, we obtain

R(θ̂JS , θ) = Eθ∥θ̂JS − θ∥2 = Eθ
(
∥Z∥2 − 2

⟨
Z,

p− 2

∥X∥2
X

⟩
+

(p− 2)2

∥X∥2

)
=

p− 2(p− 2)2Eθ
1

∥X∥2
+ Eθ

(p− 2)2

∥X∥2
= p− (p− 2)2Eθ

1

∥X∥2
< p = R(θ̂, θ),

for all θ ∈ Rp. �

However, risks do not have to be comparable. Here is a simple example:

Example 7b10. Suppose we toss a coin twice, i.e. obtain an i.i.d. sample X = (X1, X2)

from Ber(θ), θ ∈ [0, 1]. As we saw, the MLE of θ is given by θ̂(X) = X1+X2
2 . Another esti-

mator, suggested earlier by the frequency substitution, is θ̃(X) =
√
X1X2. Let’s calculate the

corresponding risks:

R(θ, θ̂) = Eθ
(
θ − X1 +X2

2

)2
=

1

4

(
varθ(X1) + varθ(X2)

)
=

1

2
θ(1− θ),

and

R(θ, θ̃) = Eθ
(
θ −

√
X2X2

)2
= θ2 − 2θEθ

√
X2X2 + EθX2X2 = θ2 − 2θ3 + θ2 = 2θ2(1− θ).

The obtained risks are plotted at Figure 1: R(θ, θ̂) is worse (greater) than R(θ, θ̃) for θ ∈ (0, 1/4)
and vise versa for θ ∈ (1/4, 1) �

This example shows that the risks of two estimators may satisfy opposite inequalities on
different regions of Θ: since we do not know in advance to which of the regions the unknown
parameter belongs, preferring one estimator to another in this situation does not make sense.

If we cannot compare some estimators, maybe we can still find the best estimator θ̂∗ for
which

R(θ, θ̂∗) ≤ R(θ, θ̃), ∀θ ∈ Θ for all estimators θ̃ ?

A simple argument shows that the latter is also impossible! Suppose that the best estimator
exists. Take the trivial estimator θ̃(X) ≡ θ0. The corresponding risk

R(θ, θ̃) = Eθ(θ − θ0)
2 = (θ − θ0)

2,

vanishes at θ := θ0 and hence the risk of the best estimator must vanish at θ0 as well:

R(θ0, θ̂
∗) ≤ R(θ0, θ̃) = 0, =⇒ R(θ0, θ̂

∗) = 0.

But θ0 was arbitrary, hence in fact R(θ, θ̂∗) = 0 for all θ ∈ Θ, i.e. errorless estimation is possible,
which is obviously a nonsense. This contradiction shows that the best estimator does not exist.
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Figure 1. the risks R(θ, θ̂) and R(θ, θ̃) as functions of θ ∈ [0, 1]

Remark 7b11. Note that nonexistence of the best estimator does not contradict the exis-
tence of the admissible estimators:

R(θ, θ̂a) ≤ R(θ, θ̃), ∀θ for all comparable estimators θ̃.

Indeed, in many problems an admissible estimator can be found explicitly.

In view of this discussion, we are faced with the two basic questions:

(1) How any two estimators can nevertheless be compared ?
(2) If we find a way to make all estimators comparable, does then the best estimator exist?

If yes, how can it be actually found?

Answers can be provided by a number of approaches, which we shall first survey below and
shall discuss some of them in details.

Reduction of the risk to scalar. The basic problem with comparing estimators by their
risk functions is being unable to compare functions in general. The natural idea to cope with
this problem is to reduce the risk function to a nonnegative real number (scalar) by means of
some transformation. This way all estimators are assigned positive numbers and thus become
comparable.

Minimax estimation. For an estimator θ̂, the maximal (supremum) risk is

r(θ̂) := sup
θ∈Θ

R(θ, θ̂).
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In words, r(θ̂) is the worst value of the risk. Any two estimators θ̂ and θ̃ are now compared by

comparing the corresponding maximal risks r(θ̂) and r(θ̃) and the estimator with smaller one is
preferred.

The best estimator θ̂◦, i.e. the one which yields the smallest maximal risk is called minimax:

r(θ̂◦) = sup
θ∈Θ

R(θ, θ̂◦) ≤ sup
θ∈Θ

R(θ, θ̂) = r(θ̂), for any other estimator θ̂.

In words, the minimax estimator optimizes the worst case performance. The principle disad-
vantage of this approach is that the estimator which yields the best performance in the worst
case (which maybe quite bad on its own), may perform quite poorly for other values of the
parameters.

Bayes estimation. In the Bayesian approach, one chooses a prior probability distribution
(e.g. in the form of p.d.f. if Θ is a continuum) π(θ), θ ∈ Θ and defines the Bayes risk of the

estimator θ̂ as

r(π, θ̂) =

∫
Θ
R(θ, θ̂)π(θ)dθ.

Any two estimators are comparable by their Bayes risks. The estimator, which minimizes the
Bayes risk, is called the Bayes estimator and is usually given by an explicit (in fact Bayes, what
else ?) formula (see more details in Section c below).

The prior distribution π, from which the value of the parameter is sampled, is interpreted as
the subjective a priori belief regarding θ. For example, if Θ = [0, 1] (as in the coin tossing), the
prior π = U([0, 1]) makes all θ’s equiprobable. If for some reason we believe that θ cannot deviate
from 1/2 too much, we may express this belief by choosing a prior, concentrated more around
θ = 1/2, e.g. π(θ) = Cr

(
θ(1 − θ)

)r
, where r is a positive number and Cr is the corresponding

normalizing constant. The Bayes estimator is then viewed as the optimal fusion of the a priori
belief about the unknown parameter and the data obtained in the experiment.

On one hand, introducing a prior can be viewed as an advantage, since it allows to incorporate
prior information about the parameter into the solution. On the other hand, if such information
is not available or, more frequently, cannot be translated to a particular prior distribution,
the choice of the prior is left arbitrary and thus problematic (do not think that a uniform
prior is not ‘informative’ !). On the third hand, the Bayes estimator enjoys many good decision
theoretic properties and turns to yield the best possible behavior asymptotically, as the sample
size increases. We shall discuss Bayes estimators in more details below.

Restricting estimators to a class. While the best estimator does not exist, remarkably
it may exist and even be explicitly computable, if we consider a restricted class of estimators
satisfying certain additional properties.

Equivariant estimators. Let X = (X1, ..., Xn) be an i.i.d. sample from the density f(x− θ),

where θ is the unknown location parameter9. An estimator θ̂(X) of θ is called equivariant10 if

θ̂(x + s) = s + θ̂(x) for any shift11 s ∈ R. Remarkably, this extra structure of the estimators
guarantees existence of the best estimator, which can be explicitly computed.

9in other words, Xi = θ + Yi, where Yi’s are sampled from the p.d.f. f
10more generally, equivariance is defined with respect to a group of operations
11for a vector x ∈ Rn and a scalar c ∈ R, x− c stands for the vector with entries xi − c
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Unbiased estimators.

Definition 7b12. Let X ∼ Pθ. The bias function of an estimator12 θ̂ is

b(θ, θ̂) := Eθθ̂(X)− θ.

The estimator θ̂ is unbiased if b(θ, θ̂) = 0, ∀θ ∈ Θ, i.e. Eθθ̂(X) = θ.

Remark 7b13. If the objective is to estimate q(θ) for some known q, the bias of an estimator
q̂(X) is defined similarly

b(q(θ), q̂) = Eθq̂(X)− q(θ).

Unbiased estimators produce estimates which are dispersed around the true value of the
parameter. This may be practically appealing in some problems. Moreover, it turns out that
often it is possible to find the best estimator within the class of all unbiased estimators13. The
related theory is very elegant and frequently useful. We shall dwell on it in details in Section d.

Asymptotic (large sample) theory. In many practical situations the amount of the
available data is as large as we want. After all, repeating a statistical experiment is often only a
matter of resources (time, money, etc.) and if the precision is important, one may be prepared
to pay for it. In these cases, it makes sense to consider sequences of estimators and to compare
them asymptotically, as the number of samples increases.

The typical example is estimation of the mean θ from the i.i.d. sample X1, ..., Xn from
N(θ, 1) distribution. As we saw, the corresponding MLE is θ̂n(X) = X̄n, which can be viewed
as a sequence of estimators, indexed by n. Another reasonable estimator of the mean is the
empirical median, i.e. θ̃n(X) = med(X1, ..., Xn) = X(⌊n/2⌋), where X(i) stands for the i-th order
statistic.

It can be shown, that both estimators become more and more precise as n increases: in
fact, both converge in a certain sense to the true value of the parameter as n → ∞. Hence
one can compare these estimators asymptotically as n → ∞ by e.g. the rate of convergence or
asymptotic variance, etc.

Asymptotic estimation has a deep and beautiful theory with many practical applications.
We shall touch upon the basic notions of it in Section g below.

c. Bayes estimator

As mentioned above, the Bayes estimator, i.e. the estimator which minimizes the Bayes risk
with respect to a prior π:

r(θ̂) =

∫
Θ
R(θ, θ̂)π(dθ),

over all estimators θ̂ is computable explicitly:

Proposition 7c1. The Bayes estimator with respect to the MSE risk and the prior π is
given by the Bayes formula:

θ̂∗π(X) =

∫
Θ sL(X; s)π(s)ds∫
Θ L(X; r)π(r)dr

, (7c1)

12Pay attention that definition of the bias implicitly requires the expectation to be well defined
13Note that the trivial estimators, such as used in the discussion preceding Remark 7b11 are biased and thus

excluded from consideration.
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where L(x; θ) is the likelihood of the model (Pθ)θ∈Θ.

Proof. Suppose for definiteness14 that X ∼ Pθ is a random vector in Rn with j.p.d.f.
f(x; θ). Then the Bayes risk of an estimator θ̂ with respect to the prior π is

rπ(θ̂) =

∫
Θ
R(s, θ̂)π(s)ds =

∫
Θ

∫
Rn

(s− θ̂(x))2f(x; s)π(s)dxds.

Note that f(x; s)π(s) is a j.p.d.f. on Rn ×Θ (since it is nonnegative and integrates to one) and
let E denote the corresponding expectation. Let θ be a sample from π. Then

rπ(θ̂) = E
(
θ − θ̂(X)

)2
,

which is recognized as the MSE of the prediction error of θ, from the observation of X. The
minimal MSE is attained by the conditional expectation, which in this case is given by the Bayes
formula:

E(θ|X) =

∫
Θ sf(X; s)π(s)ds∫
Θ f(X; r)π(r)dr

.

This is nothing but (7c1), as L(x; s) = f(x; s) by definition. �

The Bayes estimator with respect to risks, corresponding to other losses are computable
similarly. Let θ ∼ π and X ∼ Pθ, then for a given loss function and any statistic T (x), the
Bayes risk is given by15

rℓ(π, T ) =

∫
Θ
Eηℓ
(
η, T (X)

)
π(η)dη =

∫
Θ

∫
Rn

ℓ
(
η, T (x)

)
fX|θ(x; η)π(η)dxdη =∫

Rn

(∫
Θ
ℓ(η, T (x))fθ|X(η;x)dη

)
fX(x)dx ≥

∫
Rn

inf
z∈Θ

(∫
Θ
ℓ(η, z)fθ|X(η;x)dη

)
fX(x)dx.

If the infimum is actually attained for each x ∈ Rn, which is typically the case16, then the Bayes
estimator is given by:

z∗(X) ∈ argminz∈Θ

∫
Θ
ℓ(η, z)fθ|X(η;X)dη.

Remark 7c2. Note that for any loss function, z∗(X) depends on the data X only through
the posterior distribution fθ|X . The posterior distribution can be thought as an update of the
prior distribution on the basis of the obtained observations. In other words, the data updates
our prior belief about the parameter.

Let’s see how this recovers the formula (7c1) for ℓ2 loss:∫
Θ
ℓ(η, z)fθ|X(η;X)dη =

∫
Θ
(η − z)2fθ|X(η;X)dη =∫

Θ
η2fθ|X(η;X)dη − 2z

∫
Θ
ηfθ|X(η;X)dη + z2.

14The discrete case is treated similarly
15we shall assume that all the p.d.f.’s involved exists; the discrete or even a more abstract case is treated

along the same lines
16think of a simple condition for existence of the Bayes estimator
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The latter is a parabola in z, which has a unique minimum at

z∗(X) :=

∫
Θ
ηfθ|X(η;X)dη = E(θ|X),

yielding (7c1). For the ℓ1 loss, we get:∫
Θ
ℓ(η, z)fθ|X(η;X)dη =

∫
Θ
|η − z|fθ|X(η;X)dη.

If e.g. Θ = R, then∫
Θ
|η − z|fθ|X(η;X)dη =

∫ z

−∞
(z − η)fθ|X(η;X)dη +

∫ ∞

z
(η − z)fθ|X(η;X)dη.

The latter is a differentiable function in z, if the integrands are continuous, and the derivative
is given by17:

d

dz

∫
Θ
|η − z|fθ|X(η;X)dη =

∫ z

−∞
fθ|X(η;X)dη −

∫ ∞

z
fθ|X(η;X)dη =

Fθ|X(z;X)−
(
1− Fθ|X(z;X)

)
= 2Fθ|X(z;X)− 1.

Equating the latter to 0 we find that the extremum is attained at z∗(X) which is the solution of

Fθ|X(z;X) = 1/2.

Differentiating one more time w.r.t. z, we find that the extremum is in fact a minimum. Hence
z∗(X) is the median of the posterior in this case.

Example 7c3. Suppose that we use a device, which is known to be quite precise in terms of
the random errors, but may have a significant constant error, which we would like to estimate
(and compensate from the device measurements in the future). More precisely, we perform n
measurements and obtain an i.i.d. sample from N(θ, 1), where θ ∈ R is the unknown parameter.
Suppose we do not believe that the constant error term is too large, which we express by
assuming that θ is itself a random variable sampled from N(0, σ2), where σ2 is known to us and
it expresses our belief regarding the dispersion of the error. Hence Xi = θ + Zi, where Zi’s are
i.i.d. N(0, 1) r.v.

In this setting, our prior is π = N(0, σ2) and hence θ,X1, ..., Xn are jointly Gaussian. So
the general formula for the Bayes estimator can be bypassed, using its particular form in the
Gaussian case:

E(θ|X1, ..., Xn) = Eθ +Cov(θ,X)Cov−1(X,X)(X − EX).

We have Eθ = 0, EX =
(
0, ... 0

)⊤
and

cov(θ,Xi) = σ2, cov(Xi, Xj) =

{
σ2 + 1 i = j

σ2 i ̸= j

Let 1 denote the column vector of ones, then

Cov(θ,X) = EθX⊤ = σ21⊤

17Recall that d
dz
ϕ(z, z) = ∂

∂x
ϕ(x, z)x:=z +

∂
∂y
ϕ(z, y)y:=z
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and

Cov(X,X) = EXX⊤ = σ211⊤ + I,

where I is the n-by-n identity matrix. Let’s check that18 Cov−1(X,X) = I − 1
σ−2+n

11⊤:(
σ211⊤ + I

)(
I − 1

σ−2 + n
11⊤

)
= σ211⊤ − σ2

σ−2 + n
11⊤11⊤ + I − 1

σ−2 + n
11⊤ =

σ211⊤ − σ2n

σ−2 + n
11⊤ + I − 1

σ−2 + n
11⊤ = σ211⊤ + I − 11⊤

( σ2n

σ−2 + n
+

1

σ−2 + n

)
=

σ211⊤ + I − σ211⊤ = I,

where we used the fact 1⊤1 = n. Hence

E(θ|X) = σ21⊤
(
I − 1

σ−2 + n
11⊤

)
X = σ2

(
1⊤ − n

σ−2 + n
1⊤
)
X =

σ2
(
1− n

σ−2 + n

)
1⊤X =

1

σ−2 + n

n∑
i=1

Xi.

The estimator depends explicitly on σ2: if σ is large, i.e. the uncertainty about θ is big, the
estimator is close to the empirical mean X̄n (i.e. the a priori belief is essentially ignored and
the estimator relies on the data alone). If σ2 is small, the prior is concentrated around zero
and the estimator is close to zero, virtually regardless of the observations (for moderate n). If
we continue to increase n, we shall again get back to the empirical mean. This behavior is
intuitively appealing, since for large sample the empirical mean is close to the actual value of
the parameter by virtue of the law of large numbers (regardless of our prior beliefs!).

�

Example 7c4. Consider the n i.i.d. tosses of a coin with unknown parameter θ. Suppose
we tend to believe that θ should not be too far from 1/2 and express our belief by assuming the
prior density

πr(η) = Crη
r(1− η)r, η ∈ [0, 1],

where Cr is the normalizing constant (whose value as we shall see won’t play any role) and
r ≥ 0 is a parameter, which measures the strength of our faith: for large r, πr(η) is strongly
concentrated around 1/2 and for small r, it is close to the uniform distribution (which itself
corresponds to r = 0). The Bayes estimator under the quadratic loss is the posterior mean given
by (7c1):

θ̂∗(X) =

∫ 1
0 ηη

Sn(X)(1− η)n−Sn(X)πr(η)dη∫ 1
0 η

Sn(X)(1− η)n−Sn(X)πr(η)dη
=

∫ 1
0 η

Sn(X)+1+r(1− η)n−Sn(X)+rdη∫ 1
0 η

Sn(X)+r(1− η)n−Sn(X)+rdη
=

Γ(Sn(X) + 2 + r)/Γ(3 + 2r + n)

Γ(Sn(X) + 1 + r)/Γ(2 + 2r + n)
.

18this is an application of the well known matrix Woodbury identity, known also as the matrix inversion
lemma
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For integer values19 of r the latter reads:

θ̂∗(X) =
(Sn(X) + 1 + r)!/(2 + 2r + n)!

(Sn(X) + r)!/(1 + 2r + n)!
=
Sn(X) + 1 + r

2 + 2r + n
.

For large r (and small n), the Bayes estimator essentially ignores the data and yields 1/2,
“trusting” more the prior knowledge about θ. As n grows, the difference between the Bayes
estimator and the MLE disappears, no matter how large r was: the prior knowledge is irrelevant
when the data is abundant.

Note that for r = 0, the Bayes estimator θ̂∗(X) = (Sn(X) + 1)/(2 + n) is different from the
MLE Sn(X)/n, contrary to a tempting interpretation of the uniform prior as “non-informative”.
�

Computation of the Bayes estimator as e.g. in (7c1) can be quite involved in general,
depending on both prior and the likelihood. In this connection, the conjugate priors may be
handy.

Definition 7c5. A family of prior probability distributions π is said to be conjugate to a
family of likelihood functions L(x; θ) if the resulting posterior distributions are in the same family
as prior; the prior and posterior are then called conjugate distributions, and the prior is called
a conjugate prior for the likelihood.

Example 7c6. Gaussian priors are conjugate to the Gaussian likelihoods, corresponding to
the i.i.d. sample of size n from N(θ, σ2), θ ∈ Θ with known σ2. To check this we shall show
that the posterior is Gaussian as well. To this end, note that a sample X from the model Pθ,
corresponding to such likelihood can be written as

Xi = θ + σZi, i = 1, ..., n

where Zi’s are i.i.d. N(0, 1) r.v.’s Let θ ∼ π = N(µ, τ2) (an arbitrary Gaussian density),
then θ,X1, ..., Xn are jointly Gaussian (i.e. form a Gaussian vector) and hence the conditional
distribution of θ given X is Gaussian with the parameters, which can be computed explicitly as
in the Example 7c3. �

Here is an example, popular in computer science

Example 7c7. Let’s show that Dirichlet distribution is conjugate to multinomial likelihood
and find the corresponding parameters of the posterior. The p.m.f. of the multinomial distribu-
tion with parameters

θ = (θ1, ..., θk) ∈ Θ = Sk−1 := {u ∈ Rk : ui ≥ 0,
k∑
i=1

ui = 1},

is given by

p(x; θ) = L(x; θ) =
n!

x1!...xk!
θx11 ...θ

xk
k , x ∈ Nk,

k∑
i=1

xi = n.

19recall that Γ(m) = (m− 1)! for integer m ≥ 1
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Hence the conjugate prior should be a distribution on the simplex Sk−1. The Dirichlet distribu-
tion D(α) is defined by the the p.d.f.

f(η;α) =
1

B(α)

k∏
i=1

ηαi−1
i , η ∈ Sk−1

where α = (α1, ..., αk) ∈ Rk+, the normalizing constant is given by

B(α) =

∏k
i=1 Γ(αi)

Γ
(∑k

i=1 αi

) ,
and where ηk := 1 −

∑k−1
j=1 ηj is defined. Notice that the p.d.f. actually depends only on the

first k − 1 coordinates of η, i.e. it is a p.d.f. on Rk−1 (and not on Rk, think why).
To check the claim we have to verify that the posterior is Dirichlet and find its parameters.

Let X be a sample from the above multinomial distribution with θ ∼ π = D(α). Then by an
appropriate Bayes formula we have

fθ|X(η;x) ∝
n!

x1!...xk!
ηx11 ...η

xk
k

k∏
i=1

ηαi−1
i ∝

k∏
i=1

η
(αi+xi)−1
i

where the symbol ∝ stands for equality up to the multiplicative normalizing constant which
depends only on x (and not on η). Hence the resulting posterior is identified as Dirichlet with
parameter α+ x, where x = (x1, ..., xk).

Let’s see how these conjugates are typically used. Suppose we roll a dice n times indepen-
dently and would like to estimate the probabilities to get each one of the six sides. Hence we
obtain a realization of n i.i.d. r.v.’s ξ1, ..., ξn each taking value in {1, ..., 6} with probabilities
θ1, ..., θ6. Let Xi be the number of times the i-th side came up, i.e. Xi =

∑n
m=1 I(ξm = i). As

we saw, X = (X1, ..., X6) is a sufficient statistic and hence nothing is lost if we regard X as our
observation. If we put a prior Dirichlet distribution on Θ, then the emerging Bayes estimator
(under the quadratic risk) has a very simple form.

A direct calculation shows that for V ∼ D(α),

EVi =
αi∑k
j=1 αk

.

Since we already know that the posterior is D(α+X), we conclude that

E(θi|X) =
αi +Xi∑6

j=1(αj +Xj)
, i = 1, ..., 6.

Note that before obtaining any observations, our best guess of θi is just αi/
∑6

j=1 αj . As n
grows, the estimator becomes more influenced by X and for large n becomes close to the usual
empirical frequency estimator.

If we would have chosen a different prior, the Bayes estimator might be quite nasty, requiring
complicated numerical calculations. �

A list of conjugate priors and the corresponding likelihoods can be looked up in the literature.
When dealing with a particular model Pθ, one may be lucky to find a family of conjugate priors,
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in which case a computationally simple and usually very reasonable estimator 20 automatically
emerges.

Some properties of the Bayes estimator. The Bayes estimator satisfies a number of
interesting properties.

Lemma 7c8. The Bayes estimator θ̂∗ is admissible, if the corresponding prior density is
positive and the risk of any estimator is continuous in θ.

Remark 7c9. The continuity assumption is quite weak: e.g. it is satisfied, if the loss function
is continuous in both variables and θ 7→ Pθ is continuous (in an appropriate sense).

Proof. Let θ̂∗ be the Bayes estimator with respect to the loss function ℓ and the prior π.
Suppose θ̂∗ is inadmissible and let θ̂ be an estimator such that

R(θ, θ̂) = Eθℓ(θ, θ̂) ≤ Eθℓ(θ, θ̂∗) = R(θ, θ̂∗), ∀θ ∈ Θ,

where the inequality is strict for some θ′ ∈ Θ. The continuity of risks imply that in fact the
latter inequality is strict on an open neighborhood of θ′ and hence

rB(θ̂) =

∫
Θ
R(θ, θ̂)π(θ)dθ <

∫
Θ
R(θ, θ̂∗)π(θ)dθ = rB(θ̂

∗),

which contradicts optimality of the Bayes estimator. �
The following lemma establishes the important connection between the Bayes and the min-

imax estimators.

Lemma 7c10. A Bayes estimator with constant risk is minimax.

Proof. Let θ̂∗ be the Bayes estimator w.r.t. to the loss function ℓ and the prior π, such
that

R(θ, θ̂∗) = Eθℓ(θ, θ̂∗) ≡ C,

for some constant C > 0. Then for any estimator θ̂,

sup
θ∈Θ

R(θ, θ̂∗) = C =

∫
Θ
R(θ, θ̂∗)π(θ)dθ ≤

∫
Θ
R(θ, θ̂)π(θ)dθ ≤ sup

θ∈Θ
R(θ, θ̂),

where the inequality holds by the Bayes optimality of θ̂∗. �
The preceding lemma is only rarely useful, since the Bayes estimators with constant risks

are hard to find. The following variation is more applicable:

Lemma 7c11. Let (πi) be a sequence of priors and θ̂∗i be the corresponding Bayes estimators.
If the Bayes risks converge to a constant

lim
i

∫
Θ
R(θ, θ̂∗i)πi(θ)dθ = C, (7c2)

then for any estimator θ̂

sup
θ∈Θ

R(θ, θ̂) ≥ C.

20in particular, when the number of the sample grows any Bayes estimator will typically forget its prior
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Proof. For any estimator θ̂,

sup
θ∈Θ

R(θ, θ̂) ≥
∫
Θ
R(θ, θ̂)πi(θ)dθ ≥

∫
Θ
R(θ, θ̂∗i)πi(θ)dθ

i→∞−−−→ C.

�

Example 7c12. In Example 7c3 we saw that the Bayes estimator of θ from the sample
X1, ..., Xn with Xi ∼ N(θ, 1) and the Gaussian prior N(0, σ2) is given by

θ̂∗σ = E(θ|X) =
1

σ−2 + n

n∑
i=1

Xi.

The corresponding Bayes risk is

r(θ̂∗) =E(θ − θ̂∗(X))2 = Evar(θ|X) = var(θ)− cov(θ,X)cov(X,X)−1cov(X, θ) =

σ2 − σ21⊤
(
I − 1

σ−2 + n
11⊤

)
1σ2 =

σ2/n

1/n+ σ2
.

Since limσ→∞ r(θ̂∗) = 1/n, for any estimator θ̂,

sup
θ∈Θ

Eθ(θ − θ̂)2 ≥ 1/n.

This bound is attained by the estimator X̄, which is therefore minimax.

d. UMVU estimator

In this section we shall explore theory of unbiased estimators in more details. Let us start
with a number of examples, recalling the definition of unbiased estimators.

Example 7d1. Let X1, ..., Xn be the i.i.d. sample from N(µ, σ2), where θ = (θ1, θ2) =
(µ, σ2) ∈ Θ = R × R+ is the unknown paremeter. We saw that the MLE of µ is given by the
empirical mean:

µ̂n(X) = X̄n.

Since Eθµ̂n = EθX̄n = µ, the estimator µ̂n is unbiased. What about the MLE of σ2:

σ̂2n(X) =
1

n

n∑
i=1

(Xi − X̄)2 ?

Recall that Zi := (Xi − µ)/σ ∼ N(0, 1) and hence

Eθσ̂2n(X) = Eθ
1

n

n∑
i=1

(Xi − X̄)2 = σ2Eθ
1

n

n∑
i=1

(Zi − Z̄)2 =

σ2
(
Eθ

1

n

n∑
i=1

Z2
i − Eθ(Z̄n)2

)
= σ2

(
1− 1/n

)
.

Since Eθσ̂2n(X) ̸= σ2, it is a biased estimator of σ2 with the bias

b(σ2, σ̂2n) = σ2
(
1− 1/n

)
− σ2 = −σ2/n,
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which depends only on σ2. A slight modification yields an unbiased estimator of σ2:

σ̃2n(X) := σ̂2n(X)/
(
1− 1/n

)
=

n

n− 1

1

n

n∑
i=1

(Xi − X̄n)
2 =

1

n− 1

n∑
i=1

(Xi − X̄n)
2

�

Example 7d2. For an i.i.d. sample X1, ..., Xn from U([0, θ]) with the unknown parameter

θ ∈ Θ = (0,∞), the MLE of θ is θ̂n(X) = maxiXi. By (7b3), Eθθ̂n(X) = θ n
n+1 and hence θ̂n is

biased:

b(θ, θ̂n) = θ
n

n+ 1
− θ = −θ/(n+ 1).

Again, slightly modifying θ̂n we obtain an unbiased estimator

θ̃n(X) =
n+ 1

n
θ̂n(X) =

n+ 1

n
max
i
Xi,

�

While unbiased estimators are often practically appealing, do not think they are always
available! The unbiased estimator may not exist, as the following example demonstrates:

Example 7d3. Let X1, ..., Xn be i.i.d. coin tosses with probability of heads θ ∈ (0, 1). We
want to estimate the odds, i.e. the ratio q(θ) = θ/(1 − θ). Suppose T is an estimator of q(θ),
then

EθT (X) =
∑

x∈{0,1}n
T (x)θS(x)(1− θ)n−S(x),

where S(x) =
∑

i xi. The latter is a polynomial of a finite order in θ. On the other hand, the
function q(θ) can be written as the series:

q(θ) =
θ

1− θ
= θ

∞∑
i=0

θi, ∀θ ∈ (0, 1),

where we used the formula for the sum of geometric progression. Since polynomials of different
orders cannot be equal, we conclude that EθT (X) ̸= θ/(1− θ) for some θ ∈ R+. But as T was
an arbitrary statistic, we conclude that no unbiased estimator of q(θ) exists. �

It is convenient to decompose the quadratic risk into the variance and bias terms:

R(θ, θ̂) = Eθ
(
θ − Eθθ̂(X) + Eθθ̂(X)− θ̂(X)

)2
=

Eθ
(
θ − Eθθ̂(X)

)2
+ Eθ

(
Eθθ̂(X)− θ̂(X)

)2
= varθ(θ̂) + b2(θ, θ̂) (7d1)

where we used the property

2Eθ
(
θ − Eθθ̂(X)

)(
Eθθ̂(X)− θ̂(X)

)
= 2
(
θ − Eθθ̂(X)

)
Eθ
(
Eθθ̂(X)− θ̂(X)

)
=

2
(
θ − Eθθ̂(X)

) (
Eθθ̂(X)− Eθθ̂(X)

)︸ ︷︷ ︸
=0

= 0.

In particular, the quadratic risk for unbiased estimators consists only of the variance term.
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Definition 7d4. The Uniformly Minimal Variance Unbiased Estimator (UMVUE) θ̂∗ of θ
is an unbiased estimator satisfying:

R(θ, θ̂∗) = varθ(θ̂
∗) ≤ varθ(θ̂) = R(θ, θ̂), ∀θ ∈ Θ,

for all unbiased estimators θ̂.

In words, the UMVUE is the optimal unbiased estimator.

Remark 7d5. Note that the unbiased estimators may not be comparable. Moreover, the
UMVUE may be inadmissible21, i.e. its risk can be improvable by another estimator (which, of
course, must be biased).

Of course, the UMVUE may not exist. For instance, unbiased estimators do not exist at all
in the Example 7d3. Even if unbiased estimators do exist, it may be still impossible to choose
UMVUE:

Example 7d6. (Problem 19 page 130 from [8], solution by David Azriel)
Suppose X is a r.v. taking values {θ− 1, θ, θ+1} with equal probabilities, where θ ∈ Θ = Z

(signed integers) is the unknown parameter. We shall show that for any j ∈ Z, there is an
unbiased estimator Tj(X), such that varθ(Tj) = 0 for θ := j. Suppose the UMVUE exists and
denote it by T . Then varθ(T ) ≤ varθ(Tj) for all θ ∈ Θ and since j is arbitrary, it follows that
varθ(T ) = 0 for all θ ∈ Θ, i.e., the parameter can be estimated precisely. Since this is impossible
(prove!), the UMVUE does not exist. This is the same argument we used to show that there is
no estimator, which minimizers the risk uniformly over all θ’s.

To this end, note that EθX = θ, i.e. X is an unbiased estimator of θ. For a fixed j ∈ Z and
x ∈ {j − 1, j, j + 1}, define

δj(x) =


−1 x = j + 1

0 x = j

1 x = j − 1

and extend the definition to other x ∈ Z by periodicity, i.e. δj(x) := δj(x + 3) for all x ∈ Z
(sketch the plot). Note that for any θ ∈ Z,

Eθδj(X) =
1

3

(
δj(θ − 1) + δj(θ) + δj(θ + 1)

)
= 0,

since the average over any three neighboring values of δj(x) equals zero (look at your plot). Now
set Tj(X) = X + δj(X). The estimator Tj(X) is unbiased:

EθTj(X) = θ + Eθδj(X) = θ.

Under distribution Pj , X takes the values in {j−1, j, j+1} and Tj(X) ≡ j. Hence varj(Tj(X)) =
0 as claimed.

Note that the crux of the proof is construction of a family of nontrivial unbiased estimators
of zero δj(X), j ∈ Z. This is precisely, what the notion of completeness, to be defined below,
excludes. �

21If X1, ..., Xn is a sample from U([0, 1]), T ∗(X) = n+1
n

maxiXi is UMVUE (as we shall see in the sequel).

However, T ∗ is inadmissible: for example, the estimator T ′(X) = n+2
n+1

maxiXi has better risk, i.e. R(θ, T ′) ≤
R(θ, T ∗) for all θ ∈ Θ (check!)
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However, if UMVUE exists, it is essentially unique:

Lemma 7d7. If T1(X) and T2(X) are both UMVUEs, then T1(X) = T2(X), Pθ-a.s

Proof. Suppose T1 and T2 are UMVUEs. Then

varθ

(1
2
T1 +

1

2
T2

)
=

1

4
varθ(T1) +

1

2
covθ(T1, T2) +

1

4
varθ(T2) =

1

2
varθ(T1) +

1

2
covθ(T1, T2)

where the last equality follows from varθ(T1) = varθ(T2) (as both T1 and T2 are UMVUE and
thus in particular have the same variance). By the Cauchy–Schwarz inequality, covθ(T1, T2)

2 ≤
varθ(T1)var(T2) = varθ(T1)

2 and hence we obtain:

varθ

(1
2
T1 +

1

2
T2

)
≤ varθ(T1).

But Eθ
(
1
2T1 +

1
2T2

)
= 1

2θ +
1
2θ = θ, i.e. 1

2T2 +
1
2T2 is by itself an unbiased estimator and hence

the latter inequality can hold only with equality (since T1 is UMVUE):

varθ

(1
2
T1 +

1

2
T2

)
= varθ(T1).

Again opening the brackets, this implies covθ(T1, T2) = varθ(T1). But then

varθ(T1 − T2) = var(T1)− 2cov(T1, T2) + var(T2) = 0,

which means that T1 = T2, Pθ-a.s.
�

One of the main tools in analysis of the unbiased estimators is the Rao–Blackwell theorem,
which states that conditioning on a sufficient statistic improves the MSE risk:

Theorem 7d8 (Rao-Blackwell). Let (Pθ)θ∈Θ be a statistical model, X ∼ Pθ, S(X) be a
sufficient statistic and T (X) an estimator of q(θ) for some known function q, with EθT 2(X) <
∞. Then the statistic

T ∗(X) := Eθ(T (X)|S(X))

is an estimator of q(θ) with the same bias as T (X) and smaller MSE risk:

R(q(θ), T ∗) ≤ R(q(θ), T ), ∀θ ∈ Θ, (7d2)

where the inequality is strict, unless T (X) = T ∗(X) Pθ-a.s.

Proof. Note that since S(X) is sufficient, the conditional law of X given S(X) does not
depend on θ and in particular, Eθ(T (X)|S(X)) is only a function of X, i.e. a statistic indeed.
Moreover,

EθT ∗(X) = EθEθ(T (X)|S(X)) = EθT (X),

i.e. T and T ∗ have the same bias function and, since MSE is a sum of the variance and the
squared bias, (7d2) follows if we prove that varθ(T

∗) ≤ varθ(T ):

varθ(T ) = Eθ
(
T (X)− EθT (X)

)2
= Eθ

(
T (X)− EθT ∗(X)

)2
=

Eθ
(
T (X)− T ∗(X) + T ∗(X)− EθT ∗(X)

)2
=

Eθ
(
T (X)− T ∗(X)

)2
+ 2Eθ

(
T ∗(X)− EθT ∗(X)

)(
T (X)− T ∗(X)

)
+

Eθ
(
T ∗(X)− EθT ∗(X)

)2
.
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Note that T ∗(X) = Eθ(T (X)|S(X)) is a function of S(X) and hence by orthogonality property

Eθ
(
T ∗(X)− EθT ∗(X)

)(
T (X)− T ∗(X)

)
=

Eθ
(
T ∗(X)− EθT ∗(X)

)︸ ︷︷ ︸
a function of S(X)

(
T (X)− Eθ(T (X)|S(X))

)
= 0.

The two equalities imply

varθ(T ) = Eθ
(
T (X)− T ∗(X)

)2
+ varθ(T

∗) ≥ varθ(T
∗),

where the equality holds if and only if T (X) = T ∗(X), Pθ-a.s. �
Corollary 7d9. For unbiased T , the estimator T ∗ obtained by the R-B procedure, is unbi-

ased with improved risk.

The R-B theorem suggests yet another way to construct estimators: come up with any
unbiased estimator and improve it by applying the R-B procedure. Here is a typical application

Example 7d10. Let Xi be the number of customers, who come at a bank branch at the
i-th day. Suppose we measure X1, ..., Xn and would like to estimate the probability of having
no customers during a day. Let’s accept the statistical model, which assumes that X1, ..., Xn

are i.i.d. r.v.’s and X1 ∼ Poi(θ), θ > 0. We would like to estimate e−θ, which is the probability
of having no clients under this statistical model.

An obvious22 unbiased estimator of e−θ is T (X) = I(X1 = 0): indeed, EθT (X) = Pθ(X1 =
0) = e−θ. As we saw before, S(X) =

∑n
i=1Xi is a sufficient statistic for this model. B-R

theorem requires calculation of

T ∗(X) = Eθ
(
T (X)|S(X)

)
= Eθ

(
I(X1 = 0)|S(X)

)
= Pθ

(
X1 = 0|S(X)

)
.

To this end, for k ∈ N,

Pθ
(
X1 = 0|S(X) = k

)
=

Pθ
(
X1 = 0, S(X) = k

)
Pθ(S(X) = k)

=
Pθ
(
X1 = 0,

∑n
j=2Xj = k

)
Pθ
(∑n

i=1Xi = k
) =

Pθ
(
X1 = 0

)
Pθ
(∑n

j=2Xj = k
)

Pθ
(∑n

i=1Xi = k
) =

e−θe−(n−1)θ
(
(n− 1)θ

)k
/k!

e−nθ
(
nθ
)k
/k!

=
(n− 1)k

nk
=
(
1− 1

n

)k
,

where we used the fact that a sum of independent Poisson r.v.’s is Poisson. Hence the statistic

T ∗(X) =
(
1− 1

n

)S(X)
, (7d3)

is an unbiased estimator of θ, whose risk improves the risk of the original estimator T (X). Note
that if n is large, X̄n = 1

n

∑n
i=1Xi ≈ θ (by the law of large numbers) and 23

T ∗(X) =
(
1− 1

n

)S(X)
=
(
1− 1

n

)nX̄n

≈ e−θ.

22note that strictly speaking, I(X1 = 0) cannot be accepted as a point estimator of e−θ, since none of its
values, i.e. {0, 1}, is in the range of e−θ, θ ∈ R+. However, the claim of R-B theorem (and many other results
above and below) do not depend on this assumption

23recall that for αn := (1− 1/n)n, logαn = n log(1− 1/n) ≈ −1 + o(1/n), i.e. αn ≈ e−1
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More precisely, T ∗(X) converges to e−θ as n→ ∞ in an appropriate sense. In fact, we shall see
below that T ∗(X) is UMVUE ! �

Remark 7d11. Applying the R-B procedure requires calculation of the conditional expec-
tation, which is often a serious practical drawback. Moreover, such standard estimators as the
MLE and the Bayes estimator cannot be actually improved using the R-B lemma, since both
are functions of the minimal sufficient statistic (see the next paragraph).

Clearly, for any fixed estimator T (X), the actual quality of the R-B improved estimator
T ∗(X) will heavily depend on the choice of the sufficient statistic. For example, the whole
sample X, which is a trivial sufficient statistic, obviously won’t yield any improvement. On
the other hand, if S(X) is the minimal sufficient statistic, then Eθ(T (X)|S(X)) cannot be
improved any further by no other sufficient statistic (why?). However, in general this will not
give the UMVUE, since Eθ(T ′(X)|S(X)) for a different estimator T ′(X), may still give a better
estimator, even if S(X) is the minimal sufficient. Can the R-B procedure produce the optimal
(UMVU) estimator...? An answer to this question can be given in terms of the following notion
of completeness:

Definition 7d12. Let (Pθ)θ∈Θ be a statistical model and X ∼ Pθ. A statistic T (X) is
complete if

Eθg
(
T (X)

)
= 0, ∀θ ∈ Θ =⇒ g

(
T (X)

)
= 0, Pθ − a.s. ∀θ ∈ Θ

Remark 7d13. If T (X) and T ′(X) are equivalent statistics and T (X) is complete, so is
T ′(X). Indeed, let g be a function such that Eθg(T ′(X)) = 0 for all θ ∈ Θ. Since T ′(X)
and T (X) are equivalent, there is a one-to-one function ψ such that T ′(X) = ψ(T (X)). Let
g̃(u) := g(ψ(u)), then

Eθg̃(T (X)) = Eθg
(
ψ(T (X)

)
= Eθg(T ′(X)) = 0.

Since T is complete, we conclude that g̃(T (X)) = 0 and thus g(T ′(X)) = 0, Pθ-a.s. which means
that T ′(X) is complete.

Let’s see how this notion helps in finding the UMVUE.

Lemma 7d14 (Lehmann-Scheffé). If the sufficient statistic S(X) is complete, then there is
at most one unbiased estimator, coarser than S(X).

Proof. Suppose that T (X) = g(S(X)) and T ′(X) = g′(S(X)) are both unbiased, then

Eθ
(
g(S(X))− g′(S(X))

)
= Eθ

(
T (X)− T ′(X)

)
= 0,

and since S(X) is complete, g(S(X)) = g′(S(X)), i.e. T (X) = T ′(X), Pθ-a.s. �

This implies that R-B procedure applied to any unbiased estimator, using a complete suffi-
cient statistic, yields the unique and hence optimal unbiased estimator, i.e.

Corollary 7d15. If S(X) is the complete sufficient statistic, the R-B procedure yields the
UMVUE.

This suggests at least two ways of searching for the UMVUE:

(1) Rao-Blackwellize an unbiased estimator, using the complete sufficient statistic.
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(2) Find an unbiased estimator, which is a function of the complete sufficient statistic.

As we shall shortly see below, the sufficient statistic S(X) in Example 7d10 is complete and
hence the estimator (7d3) is UMVUE. The second approach is demonstrated in the following
example:

Example 7d16. Suppose thatX1, ..., Xn are i.i.d. U([0, θ]) r.v. with the unknown parameter
θ ∈ R+. The minimal sufficient statistic M = maxiXi has the density fM (x) = nxn−1/θn,
supported on [0, θ]. Suppose that we know that M is complete and would like to find the
UMVUE of q(θ), where q is a given differentiable function. Consider the estimator of the form
ψ(M), where ψ is a continuous function. If ψ(M) is an unbiased estimator of q(θ)

q(s) = Esψ(M) =
1

sn

∫ s

0
nxn−1ψ(x)dx, s > 0.

Taking the derivative, we obtain

q′(s) = −ns−n−1

∫ s

0
nxn−1ψ(x)dx+ ns−1ψ(s) = −ns−1q(s) + ns−1ψ(s),

and

ψ(s) =
1

n
sq′(s) + q(s).

Hence taking q(θ) := θ, we obtain the UMVUE of θ:

θ̂(X) =
1

n
M +M =

n+ 1

n
max
i
Xi,

which we already encountered in Example 7d2. For q(θ) = sin(θ) we obtain the UMVUE

q̂(X) :=
1

n
M cos(M) + sin(M).

�

The main question remains: how to establish completeness of a sufficient statistic? The first
helpful observation is the following:

Lemma 7d17. A complete sufficient statistic is minimal.

We have already seen (recall the discussion following the Example 7d10 on page 122), that if
R-B is carried out with a sufficient statistic, which is not minimal, UMVUE cannot be obtained in
general. In view of the L-S theorem, this implies that a complete sufficient statistic is necessarily
minimal. Here is a direct proof:

Proof. Let T (X) be a complete sufficient statistic and S(X) be the minimal sufficient
statistic. Since S(X) is sufficient, Eθ(T (X)|S(X)) does not depend on θ, i.e. Eθ(T (X)|S(X)) =
ϕ(S(X)) for some function ϕ. But as S(X) is the minimal sufficient statistic, it is, by definition,
coarser than any other sufficient statistic, and in particular, S(X) = ψ(T (X)) for some function
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ψ. Hence Eθ(T (X)|S(X)) = ϕ
(
ψ
(
T (X)

))
. Let g(u) := u− ϕ(ψ(u)), then

Eθg(T (X)) = Eθ
(
T (X)− ϕ(ψ(T (X)))

)
= Eθ

(
T (X)− ϕ(S(X))

)
=

Eθ
(
T (X)− Eθ(T (X)|S(X))

)
= EθT (X)− EθEθ(T (X)|S(X)) =

EθT (X)− EθT (X) = 0, ∀θ ∈ Θ.

But T (X) is complete and hence g(T (X)) ≡ 0 with probability one, i.e.

Eθ
(
T (X)|S(X)

)
= T (X). (7d4)

By definition of the conditional expectation, Eθ
(
T (X)|S(X)

)
is a function of S(X) and hence

(7d4) implies that T (X) is coarser than S(X). But on the other hand, S(X) is minimal sufficient
and hence is coarser than T (X). Hence S(X) and T (X) are equivalent and thus T (X) is minimal
sufficient. �

Remark 7d18. A minimal sufficient statistic does not have to be complete and hence R-
B conditioning on the minimal sufficient statistic is not enough to get the UMVUE (revisit
Example 7d6).

The above lemma shows that the only candidate for a complete sufficient statistic is the
minimal sufficient. How do we check that the minimal sufficient statistic is complete? Sometimes,
this can be done directly by the definition, as the following examples demonstrate.

Example 6a3 (continued) We saw that for n independent tosses of a coin with probability of
heads θ, S(X) =

∑n
i=1Xi is the minimal sufficient statistic. Let us check whether it is complete.

Let g be a function such that Eθg(S(X)) = 0, θ ∈ Θ. Recall that S(X) ∼ Bin(n, θ) and hence

Eθg(S(X)) =
n∑
i=0

g(i)

(
n
i

)
θi(1− θ)n−i = (1− θ)n

n∑
i=0

g(i)

(
n
i

)(
θ

1− θ

)i
Hence

n∑
i=0

g(i)

(
n
i

)(
θ

1− θ

)i
≡ 0, ∀θ ∈ (0, 1)

or, equivalently, for any θ/(1−θ) ∈ R+. But since the left hand side is a polynomial in θ/(1−θ),
we conclude that all its coefficients equal zero, i.e. g(i) = 0, and thus g(S(X)) = 0. Hence S(X)
is complete.

Now recall that X̄n = S(X)/n is an unbiased estimator of θ. The R-B procedure does not
change X̄n and hence by completeness of S(X), it is the UMVUE.

Let us see, e.g. that the trivial sufficient statistic X = (X1, ..., Xn) is not complete. To this
end, we should exhibit a function g, such that Eθg(X) = 0, but g(X) is not identically zero
(with probability one). A simple choice is g(X) = X1 −X2: clearly g(X) is not identically zero

Pθ(g(X) ̸= 0) = 1− Pθ(X1 = X2) = 1− θ2 − (1− θ)2

However Eθg(X) = θ − θ = 0. Hence X is not complete. �
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Example 7d19. Let X1, ..., Xn be a sample from U([0, θ]), θ > 0 distribution. As we saw,
M(X) = maxi=1,...,nXi is the sufficient statistic. To check completeness let g be a function such
that Eθg(M) = 0, for all θ ∈ Θ. Recall that M has the density (Example 7b3)

fM (x) =
n

θn
xn−1I(x ∈ (0, θ)),

and hence

Eθg(M) =

∫ ∞

0
g(s)

n

θn
sn−1I(s ∈ (0, θ))ds =

n

θn

∫ θ

0
g(s)sn−1ds.

So Eθg(M) = 0 reads ∫ θ

0
g(s)sn−1ds = 0, ∀θ ∈ Θ,

which implies that g(s) = 0 for almost all s ∈ [0, 1]. Hence g(M) = 0, Pθ-a.s., which verifies
completeness of M .

Recall that (1 + 1/n)M(X) is an unbiased estimator of θ; since M(X) is complete, it is in
fact the UMVUE by the L-S theorem. �

These examples indicate that checking completeness can be quite involved technically. Luck-
ily, it can be established at a significant level of generality for the so called exponential family
of distributions.

Definition 7d20. The probability distributions (Pθ)θ∈Θ on Rm belong to the k-parameter
exponential family if the corresponding likelihood (i.e. either p.d.f. or p.m.f.) is of the form

L(x; θ) = exp
{ k∑
i=1

ci(θ)Ti(x) + d(θ) + S(x)
}
I(x ∈ A), x ∈ Rm (7d5)

where ci’s and d are Θ 7→ R functions, Ti’s and S are statistics taking values in R and A ⊆ Rm
does not depend on θ.

Remark 7d21. Clearly, if the probability distribution ofX1 belongs to an exponential family,
the probability distribution of X1, ..., Xn also belongs to the same exponential family (check!).

Remark 7d22. By the F-N factorization theorem, T = (T1(x), ..., Tk(x)) is a sufficient
statistic.

Example 7d23. The Bernoulli distribution belongs to one parameter exponential family:

p(x; θ) = θx(1− θ)1−xI(x ∈ {0, 1}) = exp
{
x log θ + (1− x) log(1− θ)

}
I(x ∈ {0, 1}),

which is of the form (7d5) with T1(x) = x, c(θ) = log θ
1−θ , d(θ) = log(1 − θ), S(x) = 0 and

A = {0, 1}.
By the preceding remark, the distribution of an i.i.d. sample X1, ..., Xn from Ber(θ), also

belongs to one parameter exponential family. �
Example 7d24. Let X1, ..., Xn be an i.i.d. sample from N(µ, σ2) with unknown parameter

θ = (θ1, θ1) = (µ, σ2) ∈ R × R+. The right hand side of (6d5) tells that Pθ belongs to 2-
parameters exponential family with c1(θ) = nθ1/θ2, c2(θ) = −1/2n1/θ2 and T1(x) = x̄n, T2(x) =

x2n, d(θ) = −1/2nθ21/θ2 − n log θ2 and S(x) = −n
2 log(2π) and A = Rn. �



D. UMVU ESTIMATOR 127

Example 7d25. Uniform distribution U([0, θ]), θ ∈ R+ does not belong to the exponential
family, since its support depends on θ (no appropriate A can be identified). �

The following fact, whose proof is beyond the scope of our course, is often handy:

Theorem 7d26. Let (Pθ)θ∈Θ belong to k-parameter exponential family of distributions with
the likelihood function (7d5). The canonical statistic

T (X) =
(
T1(X), ..., Tk(X)

)
is complete, if the interior 24 of the range {c(θ), θ ∈ Θ} of

c(θ) =
(
c1(θ), ..., ck(θ)

)
is not empty.

Example 6a3 (continued) Let’s see how this theorem is applied to deduce completeness of the
statistic S(X) =

∑n
i=1Xi (which we have already checked directly). The likelihood in this case

is the j.p.m.f.:

L(x; θ) = θS(x)(1− θ)n−S(x) = exp
{
S(x) log

θ

1− θ
+ n log(1− θ)

}
, x ∈ {0, 1}n, θ ∈ [0, 1].

Hence L(x; θ) belongs to the one parameter exponential family with c(θ) := log θ
1−θ . When θ

increases from 0 to 1, the function c(θ) moves from −∞ to +∞, i.e. {c(θ), θ ∈ [0, 1]} = R, which
trivially has a non-empty interior (in fact any open ball, i.e. interval in this case, is contained
in R). Hence the statistic S(X) is complete. �

Example 7d24 (continued) The sample X1, ..., Xn from N(µ, σ2) with the unknown parameter
θ := (µ, σ2) ∈ R× R+, has the likelihood:

L(x; θ) =
1

(2π)n/2σn
exp

{
− 1

2

n∑
i=1

(xi − µ)2

σ2

}
=

exp

{
− n/2 log(2π)− n/2 log σ2 − 1

2σ2

n∑
i=1

x2i +
µ

σ2

n∑
i=1

xi −
n

2σ2
µ2
}
, x ∈ Rn.

which belongs to the 2-parameter exponential family with:

T (x) = (T1(x), T2(x)) =
( n∑
i=1

xi,
n∑
i=1

x2i

)
and

c(θ) =
(
c1(θ), c2(θ)

)
=
(
θ1/θ2,−1/(2θ2)

)
.

24Consider the Euclidian space Rd with the natural distance metric, i.e. ∥x − y∥ =
√∑d

i=1(xi − yi)2. An

open ball with radius ρ > 0 and center x, is defined as Bρ(x) = {y ∈ Rd : ∥x− y∥ < ρ}, i.e. all the points which
are not further away from x than ρ. Let A be a set in Rd. A point x ∈ A is an internal point, if there exists an
open ball with sufficiently small radius ε > 0, such that Bε(x) ⊂ A. The interior of A, denoted by A◦ is the set of
all internal points. A point x is a boundary point of A, if it is not internal and any open ball around x contains
an internal point of A. The set of the boundary points is called the boundary of A and is denoted by ∂A. A set
A is closed if it contains all its boundary points.
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As (θ1, θ2) varies in R × R+, c(θ) takes values in R × R−, which obviously has a non-empty
interior (why ?). Hence T (X) is a complete statistic.

By Remark 7d13, the sufficient statistic T ′(X) :=
(
X̄n,

1
n−1

∑n
i=1(Xi − X̄n)

2
)
, being equiv-

alent to T (X), is also complete. But we have already seen, that T ′(X) is the unbiased estimator
of (µ, σ2) and in view of completeness, the L-S theorem implies that T ′(X) is the UMVUE. �

Now we can explain why the estimator (7b1) is better than the estimator (7b2) and in which
sense. First of all, note that the estimator

σ̃n(X) =
1

n

n∑
i=1

|Xi − X̄n|

is not a function of the minimal sufficient statistic
(∑n

i=1Xi,
∑n

i=1X
2
i

)
and hence is inadmis-

sible, being strictly improvable by means of the Rao-Blackwell lemma. The estimator

σ̂n(X) =

√√√√ 1

n

n∑
i=1

(Xi − X̄n)2,

is the optimal one among the estimators with the same bias, since it is coarser than the minimal
sufficient statistic, which, as we saw, is complete.

Further,

σ̂n(X) =

√√√√ 1

n

n∑
i=1

(Xi − X̄n)2 = σ

√√√√ 1

n

n∑
i=1

(Zi − Z̄n)2,

with Zi := (Xi−µ)/σ. Let C2(n) := Eθ
√

1
n

∑n
i=1(Zi − Z̄n)2 and note that it does not depend on

θ, as Zi’s are i.i.d. N(0, 1) r.v.’s. Hence σ̂n(X)/C2(n) is an unbiased estimator of σ. Similarly
σ̃n(X)/C1(n), where C1(n) := Eθ 1n

∑n
i=1 |Zi − Z̄n| (again independent of θ), is also an unbiased

estimator of σ. However, σ̂n(X)/C2(n) is a function of the complete sufficient statistic and
hence is UMVUE. Thus the normalized unbiased versions of σ̂n(X) and σ̃n(X) are comparable
and the former has better risk.

Example 7d10 (continued) Let’s see that the unbiased estimator (7d3) is in fact UMVUE of
e−θ. Since T ∗(X) is equivalent (why?) to S(X), by Remark 7d13 and L-S theorem it is enough
to check that S(X) is complete. To this end, note the likelihood for this statistical model:

L(x; θ) =
n∏
i=1

e−θθxi

xi!
= exp

{
−θn+ log θS(x)−

n∑
i=1

log(xi!)

}
,

belongs to the one parameter exponential family with c(θ) = log θ. The range of c(θ) over θ > 0
is R and hence S(X) is complete by the Lemma 7d26. �

Finally, let us demonstrate that the “empty interior” part of the Lemma 7d26 cannot be in
general omitted:

Example 7d27. Consider a sample X1, ..., Xn from N(θ, θ2), where θ ∈ R+ is the unknown
parameter. Repeating the calculations from the preceding example, we see that L(x; θ) still
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belongs to the 2-parameter exponential family, and

c(θ) =
(
1/θ,−1/(2θ2)

)
, θ ∈ R+.

The latter is a one dimensional curve in R×R− and hence its interior is empty (sketch the plot
of c(θ)). Hence L-S theorem cannot be applied to check completeness of T (X) (as defined in
the preceding example).

In fact, the statistic is easily seen to be incomplete: take e.g.

g(T (X)) =
1

n− 1

n∑
i=1

(Xi − X̄n)
2 − n

n+ 1
(X̄n)

2,

which is a function of T (X) =
(∑n

i=1Xi,
∑n

i=1X
2
i

)
after a rearrangement of terms. We have

Eθg(T (X)) = Eθ
1

n− 1

n∑
i=1

(Xi − X̄n)
2 − n

n+ 1
Eθ(X̄n)

2 =

θ2 − n

n+ 1

(
θ2 +

1

n
θ2
)
= 0, ∀θ ∈ R+.

However, it is obvious that g
(
T (X)

)
is a non-degenerate random variable (e.g. its variance is

nonzero). �

The notions of completeness and sufficiency are related to ancillarity:

Definition 7d28. A statistic T is ancillary if its probability distribution does not depend
on θ ∈ Θ.

While an ancillary statistic does not contain any information about the unknown parameter
on its own, it nevertheless may be very much relevant for the purpose of inference in conjunction
with other statistics. An ancillary statistic T ′ is an ancillary complement of an insufficient
statistic T , if (T, T ′) is sufficient. For example, if Xi = θ + Ui, where Ui ∼ U([0, 1]) are
independent, the statistic T ′(X) = X1 −X2 is an ancillary complement of the statistic T (X) =
X1 +X2.

A statistic is called first order ancillary if its expectation is constant w.r.t. θ. Hence by defi-
nition, a statistic is complete if any coarser first order ancillary statistic is trivial. In particular,
it is complete if any coarser ancillary statistic is trivial. A deeper relation to completeness is
revealed by the following theorem

Theorem 7d29 (D. Basu). A complete sufficient statistic and an ancillary statistic are
independent.

Proof. Let S be complete sufficient and T ancillary. Then for a fixed x ∈ R, ψ(x) :=
Pθ(T ≤ x) doesn’t depend on θ. On the other hand, by sufficiency of S

ϕ(x;S) := Pθ(T ≤ x|S)

also doesn’t depend on θ. Moreover,

Eθ
(
ψ(x)− ϕ(x;S)

)
= Eθ

(
Pθ(T ≤ x)− Pθ(T ≤ x|S)

)
= 0
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and by completeness of S, it follows that ϕ(x;S) = ψ(x) or

Pθ(T ≤ x|S) = Pθ(T ≤ x),

and the claim follows by arbitrariness of x ∈ R. �

The Basu theorem is typically used to establish independence of statistics. For examples, if
Xi’s are i.i.d. N(θ, 1), then, as we saw, X̄ is sufficient and complete and σ̂2 = 1

n

∑n
i=1(Xi− X̄)2

is ancillary. Hence by the Basu theorem, they are independent. Similarly, e.g., X̄ and maxiXi−
miniXi are independent. Various applications of the Basu theorem are surveyed in [5].

e. The Cramer-Rao information bound

In many practical situations, the optimal (in appropriate sense) estimator may not exist or be
too cumbersome to compute. Then typically a simpler ad-hoc estimator is used and it is desirable
to assess how good it is. Remarkably, it turns out that the risk of any estimator can often be
lower bounded by a quantity, depending only on the statistical model under consideration (and
not a particular estimator at hand).

Theorem 7e1 (Cramer-Rao information bound). Consider the statistical model (Pθ)θ∈Θ
with one dimensional parameter space Θ ⊆ R, given by the family of p.d.f.’s f(x; θ), θ ∈ Θ,
x ∈ Rn. Let X ∼ Pθ and T (X) be an estimator of θ. Assume that f(x; θ) is differentiable in θ
and that the following derivatives and integrations are interchangeable:

∂

∂θ

∫
Rn

f(x; θ)dx =

∫
Rn

∂

∂θ
f(x; θ)dx (7e1)

and
∂

∂θ

∫
Rn

T (x)f(x; θ)dx =

∫
Rn

T (x)
∂

∂θ
f(x; θ)dx. (7e2)

Then

varθ(T ) ≥
(
ψ′(θ)

)2
I(θ)

, (7e3)

where ψ(θ) := EθT (X) and

I(θ) := Eθ
(
∂

∂θ
log f(X; θ)

)2

=

∫
Rn

(
∂

∂θ
log f(x; θ)

)2

f(x; θ)dx

is called the Fisher information, contained in the sample X.

Proof. Since
∫
Rn f(x; θ)dx = 1, by (7e1)∫

Rn

∂

∂θ
f(x; θ)dx = 0. (7e4)

Moreover, (7e2) reads: ∫
Rn

T (x)
∂

∂θ
f(x; θ)dx =

∂

∂θ
ψ(θ) =: ψ′(θ). (7e5)

Multiplying (7e4) by ψ(θ) and subtracting it from (7e5), we obtain:∫
Rn

(
T (x)− ψ(θ)

) ∂
∂θ
f(x; θ)dx = ψ′(θ).
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Hence, by the Cauchy - Schwarz inequality,(
ψ′(θ)

)2
=

(∫
Rn

(
T (x)− ψ(θ)

) ∂
∂θ
f(x; θ)dx

)2

=

(∫
Rn

(
T (x)− ψ(θ)

) ∂
∂θf(x; θ)

f(x; θ)
f(x; θ)dx

)2

≤(∫
Rn

(
T (x)− ψ(θ)

)2
f(x; θ)dx

)(∫
Rn

( ∂
∂θf(x; θ)

f(x; θ)

)2

f(x; θ)dx

)
= varθ(T )I(θ), (7e6)

which is the claimed inequality. �

Corollary 7e2. Under the assumptions of Theorem 7e1, the MSE risk of an unbiased
estimator T (X) satisfies

R(θ, T ) = varθ(T ) ≥
1

I(θ)
. (7e7)

Proof. Follows from (7e3) with ψ(θ) = θ. �

Remark 7e3. The Cramer-Rao bound is valid under similar assumptions for the discrete
models, for which the p.d.f. in the definition of the Fisher information in replaced by p.m.f. For
definiteness, we shall state all the results in the continuous setting hereafter, but all of them
translate to the discrete setting as is.

The multivariate version of the C-R bound, i.e. when Θ ⊆ Rd, with d > 1, is derived along
the same lines: in this case, the Fisher information is a matrix and the inequality is understood
as comparison of nonnegative definite matrices.

Remark 7e4. The estimator, whose risk attains the C-R lower bound, is called efficient.
Hence the efficient unbiased estimator is the UMVUE. However, it is possible that UMVUE
does not attain the C-R bound (see Example 7e10 below) and hence is not necessarily efficient.
In fact, the Cauchy-Schwarz inequality in (7e6) saturates if and only if(

T (x)− ψ(θ)
)
C(θ) =

∂

∂θ
log f(x; θ)

for some function C(θ), independent of x. Integrating both parts, we see that equality is possible
if f(x; θ) belongs to the exponential family with the canonical sufficient statistic T (x) (the precise
details can be found in [16]).

The assumptions (7e1) and (7e2) are not as innocent as they might seem at the first glance.
Here is a simpler sufficient condition:

Lemma 7e5. Assume that the support of f(x; θ) does not depend on θ and for some δ > 0,∫
Rn

|h(x)| sup
u∈[θ−δ,θ+δ]

∣∣∣ ∂
∂θ
f(x;u)

∣∣∣dx <∞, ∀θ ∈ Θ (7e8)

with both h(x) ≡ 1 and h(x) = T (x). Then (7e1) and (7e2) hold.

The proof of this lemma relies on the classical results from real analysis, which are beyond
the scope of this course. Note, for instance, that the model corresponding to U([0, θ]), θ > 0
does not satisfy the above assumptions (as its support depends on θ).

Before working out a number of examples, let us prove some useful properties of the Fisher
information.



132 7. POINT ESTIMATION

Lemma 7e6. Let X and Y be independent r.v. with the Fisher informations IX(θ) and IY (θ)
respectively. Then the Fisher information contained in the vector (X,Y ) is the sum of individual
informations:

IX,Y (θ) = IX(θ) + IY (θ).

Proof. By independence, fX,Y (u, v; θ) = fX(u; θ)fY (v; θ) and

∂

∂θ
log fX,Y (u, v; θ) =

∂

∂θ
log fX(u; θ) +

∂

∂θ
log fY (v; θ).

Recall that Eθ ∂∂θ log fX(X; θ) = 0 and hence, again, using the independence,

IX,Y (θ) = Eθ
(
∂

∂θ
log fX,Y (X,Y ; θ)

)2

=

Eθ
(
∂

∂θ
log fX(X; θ)

)2

+ 2Eθ
∂

∂θ
log fX(X; θ)Eθ

∂

∂θ
log fY (Y ; θ)+

Eθ
(
∂

∂θ
log fY (Y ; θ)

)2

= IX(θ) + IY (θ).

�

In particular,

Corollary 7e7. Let X = (X1, ..., Xn) be an i.i.d. sample from the p.d.f f(u; θ) with the
Fisher information I(θ), then

IX(θ) = nI(θ).

Lemma 7e8. Assume that f(x; θ) is twice differentiable and

∂2

∂θ2

∫
Rn

f(x; θ)dx =

∫
Rn

∂2

∂θ2
f(x; θ)dx, (7e9)

then

I(θ) = −Eθ
∂2

∂θ2
log f(X; θ) = −

∫
Rn

f(x; θ)
∂2

∂θ2
log f(x; θ)dx.

Proof. Denote by f ′(x; θ) and f ′′(x; θ) the first and second partial derivatives of f(x; θ)
with respect to θ. Then

∂2

∂θ2
log f(x; θ) =

∂

∂θ

f ′(x; θ)

f(x; θ)
=
f ′′(x; θ)f(x; θ)−

(
f ′(x; θ)

)2
f2(x; θ)

.

The claim holds if Eθ f
′′(X;θ)
f(X;θ) = 0. Indeed, by (7e9)

Eθ
f ′′(X; θ)

f(X; θ)
=

∫
Rn

f ′′(x; θ)dx =
∂2

∂θ2

∫
Rn

f(x; θ)dx︸ ︷︷ ︸
=1

= 0.

�
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Example 7e9. Let X = (X1, ..., Xn) be a sample from N(θ, σ2), where σ2 is known. Let’s
calculate the Fisher information for this model. By Corollary 7e7, IX(θ) = nI(θ), with

I(θ) = −Eθ
∂2

∂θ2
log

1√
2πσ2

e−(X−θ)2/(2σ2) =
1

2σ2
Eθ

∂2

∂θ2
(X − θ)2 = 1/σ2.

It is not hard to check the condition (7e8) in this case25 and hence for an unbiased estimator
T (X)

varθ(T ) ≥
σ2

n
.

Since X̄n is an unbiased estimator of θ and varθ(X̄n) = σ2/n, the risk of X̄n attains the C-R
bound, which confirms our previous conclusion that X̄n is the UMVUE. �

Example 7e10. Let X = (X1, ..., Xn) be a sample from Ber(θ), θ ∈ [0, 1]. The likelihood
for this model is the j.p.m.f. of X. The Fisher information of Ber(θ) p.m.f. is

I(θ) = Eθ
(
∂

∂θ
log
(
θX1(1− θ)1−X1

))2

= Eθ
(
X1

1

θ
− (1−X1)

1

1− θ

)2

=

1

θ2
θ +

1

(1− θ)2
(1− θ) =

1

θ
+

1

1− θ
=

1

θ(1− θ)
.

Since Ber(θ) random variable takes a finite number of values, the conditions analogous to (7e1)
and (7e2) (with integrals replaced by sums) obviously hold (for any T ) and hence the risk of all
unbiased estimators is lower bounded by 1

nθ(1−θ). But this is precisely the risk of the empirical

mean X̄n, which is therefore UMVUE. �

Here is a simple example, in which UMVUE does not attain the C-R bound:

Example 7e11. Let X ∼ Poi(θ), θ > 0. The Fisher information of Poi(θ) is

I(θ) = −Eθ
∂2

∂θ2
log
(
e−θ

θX

X!

)
= −Eθ

∂2

∂θ2

(
− θ +X log θ

)
= Eθ

X

θ

2

=
1

θ
,

and the C-R bound for an unbiased estimator T (X) of e−θ is

varθ(T ) ≥
(
ψ′(θ)

)2
I(θ)

= θe−2θ.

On the other hand, the statistic θ̂(X) = I(X = 0) is an unbiased estimator of e−θ. Since the
Poisson distribution belongs to the one parameter exponential family, by Lemma 7d26 and L-S
theorem, θ̂(X) is in fact the UMVUE of e−θ. The corresponding risk is readily found:

varθ(θ̂) = varθ
(
I(X = 0)

)
= e−θ(1− e−θ).

Hence the best attainable variance is strictly greater than the Cramer-Rao lower bound (the
two curves are plotted on Figure 2). Note that this does not contradict Remark 7e4, since
T (X) = I(X = 0) is not the canonical sufficient statistic of Poi(θ).

�
25in fact, checking (7e8) or other alternative conditions can be quite involved in general and we shall not

dwell on this (important!) technicality. Note also that (7e8) involves T (X) as well.
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Figure 2. The risk of UMVUE versus the Cramer-Rao lower bound

The quantity I(θ) is the “information” contained in the sample: if I(θ) is small the C-R
bound is large, which means that high precision estimation in this model is impossible. It turns
out that the information, contained in the original sample, is preserved by sufficient statistic:

Lemma 7e12. Consider a statistical model (Pθ)θ∈Θ, given by a p.d.f. fX(x; θ) and let IX(θ)
be the Fisher information contained in the sample X ∼ Pθ. Let T (X) be a statistic with the
p.d.f. fT (t; θ) and Fisher information IT (θ). Then

IX(θ) ≥ IT (θ),

where the equality holds if T (X) is sufficient.

Proof. The proof hinges on the following key observation:

Eθ
( ∂
∂θ

log fX(X; θ)|T (X)
)
=

∂

∂θ
log fT (T (X); θ). (7e10)
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Indeed, for an arbitrary test function26 h:

Eθ
∂

∂θ
log fX(X; θ)h

(
T (X)

)
=

∫
Rn

∂

∂θ
log fX(x; θ)h

(
T (x)

)
fX(x; θ)dx =∫

Rn

∂

∂θ
fX(x; θ)h

(
T (x)

)
dx =

∂

∂θ

∫
Rn

fX(x; θ)h
(
T (x)

)
dx =

∂

∂θ
Eθh

(
T (X)

)
=

∂

∂θ

∫
T (Rn)

h(t)fT (t; θ)dt =

∫
T (Rn)

h(t)
∂

∂θ
fT (t; θ)dt =∫

T (Rn)
h(t)

( ∂
∂θ

log fT (t; θ)
)
fT (t; θ)dt = Eθ

∂

∂θ
log fT (T (X); θ)h

(
T (X)

)
,

which, by the orthogonality property (3a3) of conditional expectation, yields (7e10). Further,

Eθ
(
∂

∂θ
log fX(X; θ)− ∂

∂θ
log fT (T (X); θ)

)2

= Eθ
(
∂

∂θ
log fX(X; θ)

)2

−

2Eθ
(
∂

∂θ
log fX(X; θ)

∂

∂θ
log fT (T (X); θ)

)
+ Eθ

(
∂

∂θ
log fT (T (X); θ)

)2

=

IX(θ) + IT (θ)− 2Eθ
(
∂

∂θ
log fT (T (X); θ)Eθ

( ∂
∂θ

log fX(X; θ)
∣∣∣T (X)

))
=

IX(θ) + IT (θ)− 2Eθ
(
∂

∂θ
log fT (T (X); θ)

)2

= IX(θ)− IT (θ).

As the left hand side is nonnegative, we conclude that IX(θ) ≥ IT (θ).
If T (X) is sufficient, then by the F-N factorization theorem fX(x; θ) = g(θ, T (x))h(x) for

some g and h and hence

Eθ
( ∂
∂θ

log fX(X; θ)|T (X)
)
= Eθ

( ∂
∂θ

log g(θ, T (X))|T (X)
)
=

∂

∂θ
log g(θ, T (X))

and hence by (7e10),

∂

∂θ
log fT (T (X); θ) =

∂

∂θ
log g(θ, T (X)) =

∂

∂θ
log
(
g(θ, T (X))h(X)

)
=

∂

∂θ
log fX(X; θ).

This implies IX(θ) = IT (θ), which completes the proof. �
When the unknown parameter is location, i.e. the model is given by the p.d.f. f(x + θ),

θ ∈ R, the Fisher information is independent of θ:

I =

∫
R

(
f ′(x+ θ)

f(x+ θ)

)2

f(x+ θ)dx =

∫
R

(
f ′(u)

f(u)

)2

f(u)du.

In this case, the Fisher information satisfies various elegant inequalities, such as

Lemma 7e13. (A.J.Stam) If X and Y are independent random variables with finite Fisher
informations IX and IY , then

1

IX+Y
≥ 1

IX
+

1

IY
,

where the equality is attained if and only if X and Y are Gaussian.

26we exchange derivative and integral fearlessly, assuming that the required conditions are satisfied
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Proof. (see e.g. [7]) �

f. Equivariant estimators

Let X = (X1, ..., Xn) be an i.i.d. sample from the density f(x − θ), where θ ∈ R is the

unknown location parameter. An estimator θ̂(X) is equivariant if θ̂(X + s) = s+ θ̂(X) for any
shift s ∈ R.

Definition 7f1. The estimator, minimizing the quadratic risk among all estimators, equi-
variant with respect to location shifts, is called the Pitman estimator.

Proposition 7f2. The Pitman estimator is

θ̂(X) = X̄ − E0

(
X̄|X − X̄

)
=

∫
R u
∏n
i=1 f(Xj − u)du∫

R
∏n
j=1 f(Xi − v)dv

. (7f1)

Proof. Suppose that g(X) is an equivariant statistic, i.e. for all x ∈ Rn and c ∈ R

g(x+ c)− g(x) = c, (7f2)

which in particular implies,

g(x) = x̄+ g(x− x̄), ∀x ∈ Rd. (7f3)

Conversely, any g, solving this functional equation, satisfies (7f2). Let S be the subset of
functions of the form x̄ + ϕ(x − x̄), x ∈ Rn for some real valued ϕ(·). Clearly any solution of
the above equation belongs to S. Conversely, a direct check shows that any function in S is a
solution of (7f3). Hence all the functions satisfying (7f3) (and thus also (7f2)) are of the form

g(x) = x̄+ ϕ(x− x̄).

For such statistics

R(θ, g(X)) = Eθ
(
θ − X̄ − ϕ(X − X̄)

)2
= E0

(
X̄ + ϕ(X − X̄)

)2 ≥ E0

(
X̄ − E0

(
X̄|X − X̄

))2
,

where the equality is attained with φ(x) = −E0

(
X̄|X − X̄ = x − x̄

)
, which verifies the first

equality in (7f1).
Further, note that X − X̄ and (Z1, ..., Zn−1) := (X1 − Xn, ..., Xn−1 − Xn) are equivalent

statistics: Zi = Xi − X̄ − (Xn − X̄), i = 1, ..., n − 1 and, conversely, Xi − X̄ =
(
1 − 1

n

)
Zi −

1
n

∑
k ̸=i Zk, i = 1, ..., n− 1. Hence

X̄ − E
(
X̄|X − X̄

)
= Xn − (Xn − X̄)− E

(
X̄|X − X̄

)
=

Xn − E
(
X̄ +Xn − X̄|X − X̄

)
= Xn − E

(
Xn|X1 −Xn, ..., Xn−1 −Xn

)
.

The vector V = (X1 −Xn, ..., Xn−1 −Xn, Xn) has the p.d.f (under P0):

fV (v1, ..., vn) = f(vn)
n−1∏
i=1

f(vi + vn)



G. ASYMPTOTIC THEORY OF ESTIMATION 137

and hence

E
(
Xn|X1 −Xn, ..., Xn−1 −Xn

)
=

∫
R vf(v)

∏n−1
i=1 f(Xi −Xn + v)dv∫

R f(u)
∏n−1
i=1 f(Xi −Xn + u)du

=∫
R(Xn − v)f(Xn − v)

∏n−1
i=1 f(Xi − v)dv∫

R f(Xn − u)
∏n−1
i=1 f(Xi − u)du

= Xn −
∫
R v
∏n
i=1 f(Xi − v)dv∫

R
∏n
i=1 f(Xi − u)du

,

which verifies the second equality in (7f1).
�

Example 7f3. ForX1 ∼ N(θ, 1), X̄ is independent ofX−X̄ and hence the Pitman estimator
is X̄. For X1 ∼ U([θ, θ + 1]), the Pitman estimator is (maxj Xj + minj Xj − 1)/2 and for
X1 ∼ exp(1), the Pitman estimator is minj Xj − 1/n. �

g. Asymptotic theory of estimation

In many practical situations the amount of the available data can be as abundant as we
wish and it is reasonable to require that the estimator produces more precise guesses of the
parameter as the number of observations grows. The main object studied by the asymptotic
theory of estimation is a sequence of estimators and its goal is to compare different sequences of
estimators in the asymptotic regime, i.e. when the number of observations27 tends to infinity.

For example, we already mentioned several reasons for preferring the estimator (7b1):

σ̂n(X) =

√√√√ 1

n

n∑
i=1

(Xi − X̄n)2.

over the estimator (7b2)

σ̃n(X) =
1

n

n∑
i=1

|Xi − X̄n|.

In particular, after appropriate normalization (7b1) becomes the optimal unbiased estimator.
However, even the optimal estimator may perform quite poorly if we don’t have enough data
(i.e. n is small, say 10 or so). Hence, the natural question is whether σ̂n(X) is getting closer to
the actual value of σ, when n is large. The intuition, based on the law of large numbers, tells
us that this indeed will be the case. But, perhaps σ̃n(X) is as good as σ̂n(X), when n is large ?
How do we compare the two in the asymptotic regime ?

These and many more questions are in the heart of the asymptotic theory and it turns out
that the answers are often surprising and counterintuitive at the first glance. In this section we
shall introduce the basic notions and explore some simple examples (which will hopefully induce
appetite for a deeper dive).

Let’s start with a simulation: a coin28 was tossed 500 times and X̄n is calculated for n =
1, 2, ..., 500. This was repeated three times independently (think of them as three different
realizations of X̄n), and Figure 3 depicts the values of X̄n as a function of n, in the three
experiments (of 500 tosses each). The actual value of the heads probability is θ0 = 2/3.

27other asymptotic regimes are possible: small noise asymptotic, etc.
28well, a digital coin ;)
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Figure 3. The empirical mean X̄n, calculated in three experiments, is plotted
versus the sample size n. The actual value of the parameter (probability of heads)
is θ0 = 2/3 = 0.666...

Observe that for small n, the estimator X̄n is quite unreliable: say at n = 50, the red
experiment produced an estimate, reasonably close to the actual value of the parameter θ0 = 2/3;
however, this appears to be purely ‘good luck’, as the other two experiments generated very
bad estimates. On the other hand, all three experiments generated relatively good estimates
at n = 500 and it seems that increasing n would have improved the estimates furthermore.
Hence on the intuitive level we feel that for large values of n all three experiments will produce
arbitrarily precise estimates.

The picture is hardly surprising: after all X̄n is a random variable and in different experi-
ments we obtain its different realizations. Note that varθ(X̄n) =

1
nθ(1−θ), which decreases with

n: for small n’s, X̄n has a large variance and hence we obtained realizations, which are quite
dispersed; for larger n, its variance decreases and hence the obtained realizations were close to
each other.

Recall that EθX̄n = θ for all θ and all n, and hence as n increases, the distribution29 of the
random variable X̄n concentrates around the true value of the parameter. In particular,

lim
n→∞

varθ(X̄n) = 0, ∀θ ∈ Θ = [0, 1], (7g1)

which means that the sequences of estimators X̄n, viewed as random variables, converges to the
true value of θ.

29which in this case is just the normalized Bin(n, θ), but this is not really important
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Note however, that the convergence in this probabilistic setting is very different from the
convergence of deterministic sequences of numbers. Recall that a sequence of numbers an con-
verges to a number a, called the limit of (an)n≥1 and denoted a := limn→∞ an, if for any ε > 0,
there exists an integer N(ε), possibly dependent on ε, so that |an − a| ≤ ε for all n ≥ N(ε).
That is, the entries of the sequence an, starting from some N(ε) are all in a small (2ε-wide)
interval around a.

Hence, for an arbitrarily small ε > 0, (7g1) implies that there is an integer N(ε), such
that varθ(X̄n) (which is a number) is not further away from zero than ε. However, this does
not mean that X̄n itself must be within the distance of ε from θ: in fact, sometimes (i.e. for
some realizations) it won’t! After all, a random variable with small variance is not prohibited
from generating large values30. Hence the convergence of random variables to a limit, either
random or deterministic, indicates that large deviations from the limits are improbable (though
possible!) for large n’s.

On the technical level, the difference between convergence of sequences of numbers and
random variables is even deeper. Convergence of sequences of real numbers, or more generally
of real vectors in Rd, does not depend on the norm we choose to measure the distance between
the vectors. For example, if we measure the distance between two vectors x, y ∈ Rd, by either
d2(x, y) =

√∑n
i=1(xi − yi)2 or d∞(x, y) = maxi=1,...,d |xi − yi|, a sequence xn ∈ Rd either

converges or diverges in the two metrics simultaneously. One can show that for finite dimensional
linear spaces any two norms are equivalent in this sense.

The situation is radically different for sequences with entries in the infinite dimensional
spaces, such as e.g. functions. Since random variables are functions on Ω, many nonequivalent
modes of convergence emerge, some of which to be discussed below.

Convergence of sequences of random variables. How do we define convergence for a
sequence of random variables (ξn)n≥1 on a probability space (Ω,F,P)? To tackle this question, it
will be convenient to think of a realizations of (ξn)n≥1 as deterministic sequences. Then a natural
obvious way to defined convergence is to require that all the realizations of (ξn)n≥1 converge to
a limit. This limit itself may and will in general depend on the particular realization, i.e. will
be a random variable on its own:

Definition 7g1. A sequence (ξn) converges pointwise to a random variable ξ if

lim
n→∞

ξn(ω) = ξ(ω), ∀ω ∈ Ω.

It turns out, however, that this definition is too strong to be satisfied in a majority of cases.
Here is a simple demonstration:

Example 7g2. Consider a sequence of i.i.d. random variables (Xn)n≥1 with Xn ∼ N(0, 1)
and let Yn = Xn/n. Does the sequence (Yn)n≥1 converge to a limit in the latter sense ? Obviously
not: for example, the sequence (1,−2, 3,+4, ...) is a legitimate realization of (Xn)n≥1 and the
corresponding realization of (Yn)n≥1 is the sequence (1,−1, 1,−1, ...), which does not converge.
Thus (Yn)n≥1 does not converge pointwise. On the other hand, it is intuitively clear that Xn/n
will typically be very small for large n and hence in a certain weaker sense must converge to 0.
�

30e.g. N(0, 0.001) can generate the value in [1000 : 1001] with small, but non-zero probability, which means
that we may observe this in an experiment
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Definition 7g3. The sequence of r.v.’s (ξn)n≥1 converges31 in Lp, p ≥ 1 to a random
variable ξ, if E|ξ|p <∞ and E|ξ|pn <∞ for all n and

lim
n→∞

E
∣∣ξn − ξ

∣∣p = 0.

Example 7g2 (continued) Let’s check that the sequence (Yn)n≥1 does converge to Y ≡ 0 (viewed
as a constant random variable) in L2. Indeed,

E(Yn − Y )2 = E(Xn/n− 0)2 =
1

n2
EX2

n = 1/n2
n→∞−−−→ 0,

and hence, by definition Yn
L2−−−→

n→∞
0.

But what if Xn has the Cauchy distribution, rather than the Gaussian one ...? In this case,
E(Yn− 0)2 = E(Xn/n)

2 = ∞ for any n ≥ 1 and hence the convergence in L2 is lost. This means
that the L2 convergence is too strong to capture the intuition that Xn/n still goes to zero as
n→ ∞: after all, Xn is sampled from a probability density which is centered at zero and hence
we expect that for large n, Xn/n will be typically small.

�

Definition 7g4. The sequence (ξn)n≥1 converges in probability to a random variable ξ, if
for any ε > 0

lim
n→∞

P
(
|ξn − ξ| ≥ ε

)
= 0.

Example 7g2 (continued)
Let (Xn)n≥1 be i.i.d. standard Cauchy random variables and again define the sequence of

random variables Yn := Xn/n. The sequence Yn converges in probability to zero. Indeed, for an
ε > 0,

P
(
|Yn − 0| ≥ ε

)
= P(|Xn| ≥ εn) = P(|X1| ≥ εn) = 1− FX(εn) + FX(−εn).

Since ε > 0, εn→ ∞ as n→ ∞ and limn→∞ FX(εn) = 1 and

lim
n→∞

FX(−εn) = lim
n→−∞

FX(εn) = 0,

which implies:

lim
n→∞

P
(
|Yn| ≥ ε

)
= 0,

as claimed.
�

This example shows that convergence in probability is generally weaker than in L2, i.e. a
sequence may converge in probability, but not in L2. The converse, however, is impossible:

Lemma 7g5. Convergence in L2 implies convergence in probability.

31i.e. (ξn) converges as a sequence in the space of functions (random variables) with finite p-norm



G. ASYMPTOTIC THEORY OF ESTIMATION 141

Proof. Suppose that (ξn)n≥1 converges to ξ in L2, then by the Chebyshev inequality32 for
any ε > 0

P(|ξn − ξ| > ε) ≤ ε−2E(ξn − ξ)2
n→∞−−−→ 0,

which verifies the convergence in probability. �

Of course, a sequence may not converge at all:

Example 7g6. Let ξn a sequence of i.i.d. r.v.’s with the common p.d.f. f . Suppose that
ξn → ξ in probability. Then for any ε > 0

P
(
|ξn − ξn+1| ≥ ε

)
= P

(
|ξn − ξ + ξ − ξn+1| ≥ ε

)
≤

P
(
|ξn − ξ| ≥ ε/2

)
+ P

(
|ξ − ξn+1| ≥ ε/2

) n→∞−−−→ 0.

On the other hand,

P
(
|ξn − ξn+1| ≥ ε

)
=

∫
R2

I(|s− t| ≥ ε)f(s)f(t)dsdt = 1−
∫
R2

I(|s− t| < ε)f(s)f(t)dsdt,

which is arbitrarily close to 1 for small ε > 0. The obtained contradiction shows that ξn does
not converge in probability. �

Here are some useful facts about the convergence in probability:

Lemma 7g7. If ξn
P→ ξ and g is a continuous function, then g(ξn)

P→ g(ξ) in probability.

Proof. Recall that g : R 7→ R is continuous if for any x ∈ R and any ε > 0, there is a
δx > 0, such that |x− y| ≤ δx implies |g(x)− g(y)| ≤ ε. Note that δx may depend on x (and on
ε). However, for any x ∈ [−C,C], for any ε > 0, one can choose33 a δC > 0, independent of x
(!) and such that x, y ∈ [−C,C] and |x− y| ≤ δ imply |g(x)− g(y)| ≤ ε. Hence34

P
(
|g(ξn)− g(ξ)| ≥ ε

)
= P

(
|g(ξn)− g(ξ)| ≥ ε, |ξn| ∨ |ξ| ≤ C

)
+

P
(
|g(ξn)− g(ξ)| ≥ ε, |ξn| ∨ |ξ| > C

)
. (7g2)

Let δC be as mentioned before, then

P
(
|ξn − ξ| ≤ δC , |ξn| ∨ |ξ| ≤ C

)
≤ P

(
|g(ξn)− g(ξ)| ≤ ε, |ξn| ∨ |ξ| ≤ C

)
and hence for any C > 0,

P
(
|g(ξn)− g(ξ)| ≥ ε, |ξn| ∨ |ξ| ≤ C

)
≤

P
(
|ξn − ξ| ≥ δC , |ξn| ∨ |ξ| ≤ C

)
≤ P

(
|ξn − ξ| ≥ δC

)
n→∞−−−→ 0, (7g3)

32The Chebyshev inequality states that for a nonnegative r.v. η and a positive constant a, P(η > a) ≤ Eηp/ap
for any p > 0 (if Eηp = ∞, then the inequality is trivial). Proof: suppose Eηp <∞, then

Eηp = EηpI(η > a) + EηpI(η ≤ a)︸ ︷︷ ︸
≥0

≥ EηpI(η > a) ≥ apI(η > a) = apP(η > a),

which is the claimed inequality after rearrangement. �
33Theorem: continuous functions are uniformly continuous on compacts.
34recall the notation a ∨ b = max(a, b)
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where the convergence holds, since ξn → ξ in probability. On the other hand,

P
(
|g(ξn)− g(ξ)| ≥ ε, |ξn| ∨ |ξ| > C

)
≤ P

(
|ξn| ∨ |ξ| > C

)
=

P
(
{|ξn| > C} ∪ {|ξ| > C}

)
≤ P

(
|ξn| > C

)
+ P

(
|ξ| > C

)
. (7g4)

Moreover, since |ξn| ≤ |ξn− ξ|+ |ξ|, it follows {|ξn| > C} ⊆ {|ξn− ξ| > C/2} ∪ {|ξ| > C/2} and,
consequently,

P
(
|ξn| > C

)
≤ P(|ξn − ξ| > C/2) + P(|ξ| > C/2). (7g5)

Since ξn → ξ in probability, limn→∞ P(|ξn − ξ| > C/2) = 0 and hence, combining (7g4) and
(7g5), we get:

lim
n→∞

P
(
|g(ξn)− g(ξ)| ≥ ε, |ξn| ∨ |ξ| ≤ C

)
≤

P(|ξ| > C/2) + P
(
|ξ| > C

)
≤ 2P(|ξ| > C/2). (7g6)

Substitution of (7g3) and (7g6) into (7g2) gives:

lim
n→∞

P
(
|g(ξn)− g(ξ)| ≥ ε

)
≤ 2P(|ξ| > C/2).

Taking C → ∞ yields the claim, i.e. limn P
(
|g(ξn)− g(ξ)| ≥ ε

)
= 0.

�

Lemma 7g8. If ξn
P→ ξ and ηn

P→ η, then

(1) ξn + ηn
P→ ξ + η

(2) cξn
P→ cξ for any c ∈ R

(3) ξnηn
P→ ξη

Proof. To check (1), let ε > 0, then

P(|ξn + ηn − ξ − η| ≥ ε) ≤ P(|ξn − ξ| ≥ ε/2) + P(|ηn − η| ≥ ε/2)
n→∞−−−→ 0.

Other claims are proved similarly. �

Remark 7g9. Be warned: various facts, familiar from convergence of real sequences, may or
may not hold for various types of convergence of random variables. For example, if ξn → ξ in L2,
then, depending on the function g, g(ξn) may not converge to g(ξ) in L2, even if g is continuous

(if e.g. ξn = Xn/n with i.i.d. N(0, 1) sequence (Xn)n≥1, then for g(x) = ex
4
, Eg2(ξn) = ∞ and

hence the convergence in L2 fails.)

A completely different kind of convergence is the convergence in distribution (or weak con-
vergence35):

Definition 7g10. A sequence of random variables (ξn)n≥1 converges in distribution to a
random variable ξ, if

lim
n→∞

P(ξn ≤ x) = P(ξ ≤ x),

35the term “weak” comes from analysis
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for all x ∈ R, at which Fξ(x) = P(ξ ≤ x) is continuous36.

Remark 7g11. Note that the convergence in distribution is convergence of the c.d.f.’s of
ξn’s, rather than ξn’s themselves37.

Example 7g12. Let (ξn)n≥1 be an i.i.d sequence. As we have seen, (ξn) does not converge
in probability. However, (ξn) trivially converges in distribution:

Fξn(x) ≡ Fξ1(x), ∀x ∈ R.
for all n ≥ 1. �

Before considering much more convincing examples of the weak convergence, let’s explore
some of its useful properties.

Lemma 7g13. If ξn → ξ weakly and αn is a sequence of numbers, αn → ∞, then ξn/αn
P→ 0.

Proof. Let Fn(x) and F (x) be the c.d.f.’s of ξn and ξ respectively, then (w.l.o.g. αn > 0 is
assumed)

P(|ξn/αn| ≥ ε) = P(ξn ≥ εαn) + P(ξn ≤ −εαn).
Let c > 0 be a continuity point of F and let n be large enough so that −εαn < −c, then

P(ξn ≤ −εαn) = Fn(−εαn) ≤ Fn(−c) ≤
∣∣Fn(−c)− F (−c)

∣∣+ F (−c) n→∞−−−→ F (−c).
Since F can have only countable number of discontinuities, c can be chosen to make the right

hand side arbitrarily small. Hence limn P(ξn ≤ −εαn) = 0. Similarly, limn P(ξn ≥ εαn) = 0 is
shown and the claim follows. �

The following lemma, whose proof we shall omit, give an alternative characterization of the
weak convergence

Theorem 7g14. [part of the Portmanteau theorem] The following are equivalent

(i) ξn
d→ ξ

(ii) Eg(ξn) → Eg(ξ) for any bounded continuous function g
(iii) Eeitξn → Eeitξ for all38t ∈ R

36the convergence is allowed to fail at the points at which the target c.d.f. F is discontinuous, simply because
requiring otherwise may yield an unreasonably strong notion of convergence. For example, by the law of large
numbers X̄n := 1

n

∑n
j=1Xi converges in probability to X ≡ 0 if Xi’s are i.i.d. N(0, 1) r.v.’s. However, the c.d.f.

of X̄n fails to converge to the (degenerate) c.d.f of 0 at x = 0:

P(X̄n ≤ 0) =
1

2
̸= 1 = P(X ≤ 0).

It would be embarrassing not to say that X̄n → 0 is distribution, if X̄n → 0 in probability, as the latter should
be expected to be stronger. Hence by definition, the convergence in distribution excludes convergence at the
discontinuity point 0 from consideration.

37ξn may be even defined on different probability spaces
38φξ(t) := Eeitξ, where i is the imaginary unit, is called the characteristic function of the r.v. ξ. It resembles

the definition of the moment generating function with t replaced by it. This seemingly minor detail is in fact
major, since the characteristic function is always defined (unlike the m.g.f. which requires existence of all moments
at least). As the m.g.f. function, the characteristic function also determins the distribution (being it’s Fourier
transform). If you’re not familiar with complex analysis, just replace characteristic function in any appearance in
the text with m.g.f., and pay the price, losing the generality.
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This theorem has a number of useful corollaries.

Corollary 7g15. If ξn
d→ ξ, then g(ξn)

d→ g(ξ) for any continuous function.

Proof. By the preceding lemma, we have to show that Eϕ(g(ξn)) → Eϕ(g(ξ)) for any
bounded continuous function ϕ. This holds, since x 7→ ϕ(g(x)) is continuous and bounded and

ξn
d→ ξ. �
Example 7g12 shows that (ξn) which converges weakly, may not converge in probability. The

converse, however, is true:

Lemma 7g16. ξn
P→ ξ implies ξn

d→ ξ.

Proof. Let ϕ be a bounded continuous function, then by Lemma 7g7, ϕ(ξn) → ϕ(ξ) is

probability and since ϕ is bounded 39 Eϕ(ξn) → Eϕ(ξ), which by Theorem 7g14 implies ξn
d→

ξ. �

Lemma 7g17 (Slutsky’s theorem). If ξn
P→ c for a constant c ∈ R and ηn

d→ η, then 40

(ξn, ηn)
d→ (c, ηn) and in particular:

(1) ξn + ηn
d→ c+ η

(2) ξnηn
d→ cη

(3) ηn/ξn
d→ η/c, if c ̸= 0

Proof. To prove (ξn, ηn)
d→ (c, ηn) we shall check that41 for arbitrary bounded continuous

functions ψ : R 7→ R and ϕ : R 7→ R

Eψ(ξn)ϕ(ηn)
n→∞−−−→ ψ(c)Eϕ(η).

To this end, ∣∣Eψ(ξn)ϕ(ηn)− ψ(c)Eϕ(η)
∣∣ ≤∣∣Eψ(ξn)ϕ(ηn)− ψ(c)Eϕ(ηn)
∣∣+ ∣∣ψ(c)Eϕ(ηn)− ψ(c)Eϕ(η)

∣∣ =
E|ϕ(ηn)|

∣∣ψ(ξn)− ψ(c)
∣∣+ ψ(c)

∣∣Eϕ(ηn)− Eϕ(η)
∣∣ n→∞−−−→ 0,

where the first term on the right hand side converges to zero by Lemma 7g7 as ξn
P→ c (think

why) and the second term converges to zero by Theorem 7g14. Now the claims (1)-(3) follow,

since ξn
P→ c implies ξn

d→ c (by Lemma 7g16) and (x, y) 7→ x + y, (x, y) 7→ xy are continuous
functions on R2 and (x, y) 7→ x/y is continuous on R2 \ {(x, y) : y ̸= 0}. �

39ξn → ξ in probability does not necessarily implies Eξn → Eξ. For example, this fails if ξn = X/n, where
X is Cauchy r.v. However, Lebesgue’s Dominated Convergence theorem states that if there exists a r.v. ζ with

Eζ <∞, such that |ξn| ≤ ζ for all n and ξn
P→ ξ, then ξn

L1→ ξ and Eξn → Eξ <∞. In particular, the latter holds
if |ξn| ≤M for some constant M > 0.

40convergence in distribution of random vectors is defined similarly, as convergence of c.d.f’s (think, how the
discontinuity sets may look like)

41you may suspect that taking bounded continuous functions of the ‘product’ form h(s, t) = ψ(s)ϕ(t) is not
enough and we shall consider the whole class of bounded continuous functions h : R2 7→ R. In fact, the former is
sufficient, but of course requires a justification (which we omit).
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Remark 7g18. Beware: the claims of the preceding lemma may fail, if ξn converges in
probability to a non-degenerate r.v., rather than a constant (can you give an example ?)

Here is another useful fact:

Lemma 7g19. Suppose that ξn’s are defined on the same probability space and ξn
d→ c, where

c is a constant. Then ξn
P→ c.

Proof. Since c is constant, we can consider c = 0 without loss of generality (think why).
Let Fn be the c.d.f.’s of ξn, then for ε > 0

P(|ξn| ≥ ε) = Fn(−ε) + 1− Fn(ε)
n→∞−−−→ 0,

since the Fn(x) → F (x) = 1{x≥0} for all x ∈ R \ {0}. �

Limit theorems. One of the classical limit theorems in probability is the Law of Large
Numbers (LLN), which can be stated with different types of convergence under appropriate
assumptions. Here is a particularly primitive version:

Theorem 7g20 (an LLN). Let (Xn)n≥1 be a sequence of i.i.d. r.v. with E|X1|2 < ∞.
Then the sequence X̄n = 1

n

∑n
i=1Xi, n ≥ 1 converges to µ := EX1 in L2 (and hence also in

probability).

Proof. By the i.i.d. property:

E
( 1
n

n∑
i=1

Xi − µ
)2

=
1

n2

n∑
i=1

E(Xi − µ)2 =
var(X1)

n

n→∞−−−→ 0,

which means that 1
n

∑n
i=1Xi converges to µ in L2. �

The latter, perhaps, is the most naive version of the LLN: it makes a number of strong
assumptions, among which the most restrictive is boundedness of the second moment. The
more classical version of LLN is

Theorem 7g21 (The weak42 LLN). Let (Xn)n≥1 be a sequence of i.i.d. r.v. with E|X1| <∞.
Then the sequence X̄n = 1

n

∑n
i=1Xi, n ≥ 1 converges to µ := EX1 in probability.

Proof. Let us show that X̄n
d→ µ, which implies the claim by Lemma 7g19. Since E|X1| <

∞, the characteristic function ψ(t) = EeitX1 is continuously differentiable (check). Hence by
Taylor’s theorem

EeitX̄n = ψn(t/n) =

(
ψ(0) +

t

n
ψ′(t̃n)

)n
=(

1 +
t

n
ψ′(0) +

t

n

(
ψ′(t̃n)− ψ′(0)

))n
=

(
1 +

t

n
iµ+ rn

)n
where |t̃n| ≤ t and

|nrn| = |t|
∣∣ψ′(t̃n)− ψ′(0)

∣∣ n→∞−−−→ 0,

42in fact under the assumptions of the weak LLN, one can check that the empirical mean converges to EX1

in a much stronger sense, namely with probability one. This stronger result is called the strong LLN
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by continuity of ψ′. Hence

EeitX̄n n→∞−−−→ eitµ

and the claim follows by Theorem 7g14. �
Do not think, however, that the empirical mean always converges:

Example 7g22. Let X1, ..., Xn be i.i.d. standard Cauchy r.v.’s. Since E|X1| = ∞, the
expectation of X1 doesn’t exist and the LLN doesn’t apply. This does not necessarily excludes
convergence of X̄n to some limit. However, it can be shown43 that X̄n also has standard Cauchy
distribution. Hence X̄n at least does not converge to a constant in any sense (in fact, it doesn’t
converge to a random variable either, think why) �

The weak LLN states that the empirical mean X̄n−µ converges to zero. Can we quantify the
speed of convergence? If X̄n−µ converges to zero, then there might be a sequence αn increasing
in n, such that αn(X̄n − µ) ceases to converge to zero. For example, let’s try αn = n1/3:

var
(
n1/3(X̄n − µ)

)
= n2/3

1

n
var(X1)

n→∞−−−→ 0,

i.e. X̄n − µ converges to zero, faster than n1/3. The above hints that n1/2 might be just the
right rate:

var
(
n1/2(X̄n − µ)

)
= n

1

n
var(X1) = var(X1),

which means that n1/2(X̄n − µ) does not converge to zero in L2 any more (and, on the other
hand, has a bounded variance uniformly in n). Remarkably, much more can be claimed:

Theorem 7g23 (Central Limit Theorem). Let (Xn)n≥1 be a sequence of i.i.d. r.v.’s with

µ := EX1 and σ2 := var(X1) < ∞. Then
√
n
X̄n − µ

σ
converges weakly to a standard Gaussian

random variable, i.e.

lim
n→∞

P
(√

n
X̄n − µ

σ
≤ x

)
= Φ(x), ∀x ∈ R, (7g7)

where Φ is the c.d.f. of N(0, 1).

Proof. The r.v.’s Yi := (Xi − µ)/σ are i.i.d. with zero mean and unit variance and (7g7)
is equivalent to

lim
n→∞

P
( 1√

n

n∑
i=1

Yi ≤ x
)
= Φ(x), ∀x ∈ R. (7g8)

Let ψ(t) = EeitY1 and ψn(t) = E exp
{
it 1√

n

∑n
i=1 Yi

}
By the i.i.d. property

ψn(t) = ψn(t/
√
n), t ∈ R.

Since EY 2
1 <∞, the characteristic function ψ(t) is twice continuously differentiable (think why)

and hence by the Taylor theorem

ψn(t) =

(
ψ(0) +

t√
n
ψ′(0) +

1

2

t2

n
ψ′′(t̃n)

)n
=

(
ψ(0)− t2

2

1

n
+
t2

2

1

n

(
ψ′′(t̃n)− ψ′′(0)

))n
43the easiest way is by means of characteristic functions (note that m.g.f.’s are useless in this case)
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where |t̃n| ≤ |t| and ψ′(0) = iEY1 = 0 and ψ′′(0) = −1. By continuity of ψ′′, it follows

lim
n
ψn(t) = e−

1
2
t2 , t ∈ R,

which by Theorem 7g14 proves the claim.
�

Back to statistics. Now we are ready to introduce the basic notions of the asymptotic
theory of point estimation:

Definition 7g24. A sequence of estimators (θ̂n), n ≥ 1 is called consistent, if θ̂n → θ in
Pθ-probability, i.e. for any ε > 0

lim
n→∞

Pθ
(∣∣θ̂n − θ

∣∣ ≥ ε
)
= 0, ∀θ ∈ Θ.

In words, this definition means that large estimation errors are getting less probable as the
sampling size increases. More qualitative information on the convergence is provided by the
following notion:

Definition 7g25. A consistent sequence of estimators (θ̂n) is said to have an asymptotic
(error) distribution F , if there exists a sequence of numbers αn ↗ ∞ such that the scaled
estimation error converges to F in distribution: for any θ ∈ Θ,

lim
n→∞

Pθ
(
αn
(
θ̂n − θ

)
≤ x

)
= F (x; θ),

for all x, at which x 7→ F (x; θ) is continuous.

Remark 7g26. If F (x; θ) in the latter definition is Gaussian, the sequence (θ̂n) is called
asymptotically normal (AN).

Example 7g27. Let X1, ..., Xn be a sample with unknown mean θ = EθX1 ∈ R and finite
variance EθX2

1 = σ2. Then by the LLN the sequence of estimators θ̂n = X̄n is consistent and
by the CLT

√
n(θ̂n − θ)

d−→ N(0, σ2), θ ∈ Θ.

This means that the sequence of estimators (θ̂n) is consistent and asymptotically normal with
rate

√
n and variance σ2. Remarkably, this result holds without any further assumptions on the

c.d.f. of X1, other than finiteness of the second moment. �
Though the rate

√
n and the asymptotic normality frequently emerge in statistical models,

do not think that this is always the case:

Example 7b3 (continued) Let us revisit the problem of estimating θ from the sample X1, ..., Xn,

where X1 ∼ U([0, θ]), θ > 0. We considered the MLE θ̂n(X) = maxiXi =Mn and the estimator

θ̃n(X) = 2X̄n and calculated the corresponding risks in (7b4) and (7b5). As we saw, the risks

are comparable for any n ≥ 1 and the estimator θ̂n(X) has smaller risk than the estimator θ̃n(X)
(and hence the latter is inadmissible).

Since everything is explicitly computable in this example, there is no need to appeal to the
asymptotic theory. Still it will be instructive to analyze this example asymptotically. First of
all, note that both sequences of estimators are consistent, since R(θ, θ̂n) = Eθ(θ − θ̂n(X))2 → 0
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and R(θ, θ̃n) = Eθ(θ − θ̃n(X))2 → 0 as n → ∞, i.e. both θ̂n and θ̃n converge to θ in L2 and
hence also in Pθ-probability for all θ ∈ Θ = R+.

Now let’s find the corresponding asymptotic error distributions. By the CLT,
√
n(2X̄n − θ)

converges in distribution to N
(
0, 4varθ(X1)

)
, i.e. to N(0, θ2/3). Hence θ̃n is asymptotically

normal with rate
√
n and variance θ2/3. What about the MLEs θ̂n?

Note that X1 − θ has uniform distribution on [−θ, 0] and hence Mn − θ has the c.d.f.

Fn(x) =


0 x < −θ
(x/θ + 1)n x ∈ [−θ, 0)
1 x ≥ 0

Note that

lim
n
Fn(x) = 1{x≥0}, x ∈ R

which means that θ̂n − θ
d→ 0 under Pθ and hence, by Lemma 7g19, θ̂n − θ

Pθ→ 0. This verifies
consistency of (θ̂n).

Further, let (αn) be an increasing sequence of positive numbers, then for x ∈ R,

Pθ
(
αn(Mn − θ) ≤ x

)
= Pθ

(
Mn − θ ≤ x/αn

)
= Fn(x/αn) =

0 x/αn < −θ(
1
θ
x
αn

+ 1
)n

x/αn ∈ [−θ, 0)
1 x/αn ≥ 0

=


0 x < −θαn(
1
θ
x
αn

+ 1
)n

x ∈ [−θαn, 0)
1 x ≥ 0

.

A nontrivial limit is obtained if we choose αn := n

lim
n
Fn(x) =

{
ex/θ x ∈ (−∞, 0)

1 x ≥ 0
=: F (x).

Since F (x) is a continuous non-decreasing function with limx→−∞ F (x) = 0 and limx→∞ F (x) =
1, we conclude that n(Mn − θ) converges in distribution to a random variable with c.d.f. F (x),
which has the density

f(x; θ) =
1

θ
ex/θ1{x<0}, x ∈ R.

This is readily recognized as the density of −η, where η is exponential r.v. with mean θ. Hence
the sequence (θ̂n) is consistent with rate n, which is much faster than the consistency rate of√
n offered by the sequence of the estimators (θ̃n): roughly speaking, the accuracy attained by

θ̃n for n = 900, can be attained by θ̂n with only n = 30 samples! �
Asymptotic error distribution of point estimators is often used in practice for construction

of approximate confidence intervals. In this regard, the following lemma proves handy.

Lemma 7g28 (the Delta method). Let θ̂n be a consistent sequence of estimators, which
is asymptotically normal with the rate

√
n and variance V (θ). Then for a continuously dif-

ferentiable function g, the sequence of plug-in estimators g(θ̂n) is consistent for g(θ) and is

asymptotically normal with the variance
(
g′(θ)

)2
V (θ).
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Proof. Being differentiable, g is continuous and g(θ̂n) is a consistent sequence of estimators
for g(θ) by Lemma 7g7. Further, the Lagrange formula for the reminder in the Taylor expansion
yields:

g(θ̂n)− g(θ) = g′(θ)
(
θ̂n − θ

)
+
(
g′(ηn)− g′(θ)

)(
θ̂n − θ

)
,

where |ηn − θ| ≤ |θ − θ̂n|. Multiplying both sides by
√
n, we get

√
n
(
g(θ̂n)− g(θ)

)
= g′(θ)

√
n
(
θ̂n − θ

)
+
(
g′(ηn)− g′(θ)

)√
n
(
θ̂n − θ

)
(7g9)

The first term on the right hand side converges weakly to the Gaussian r.v. with zero mean and

variance
(
g′(θ)

)2
V (θ) by (2) of Slutsky’s Lemma 7g17. Similarly the second term converges to

0 in probability by continuity of the derivative g′ and the claim follows from Slutsky’s Lemma
7g17. �

The following example demonstrates a number of approaches to construction of confidence
intervals (recall Section 5, page 65), based on the limit theorems and the Delta method.

Example 7g29. Let X1, ..., Xn be a sample from the distribution Ber(θ) where θ ∈ Θ =
(0, 1) is the unknown parameter. We would like to construct a confidence interval (shortly c.i.)
with the given confidence level 1 − α (e.g. 1 − α = 0.95), i.e. find an interval of the form
I(X) := [a−(X), a+(X)], such that

Pθ
(
θ ∈ [a−(X), a+(X)]

)
≥ 1− α, ∀θ ∈ Θ. (7g10)

The exact solution of this problem is computationally demanding, though possible (think how).
When n is large, the limit theorems can be used to suggest approximate solutions in a number
of ways.

The pivot method

Consider the sequence of random variables:

Yn :=
√
n

X̄n − θ√
X̄n(1− X̄n) + 1{X̄n∈{0,1}}

.

By the law of large numbers limn X̄n(1−X̄n) = θ(1−θ) and limn 1{X̄n=1} = limn 1{X̄n=0} = 0 in

Pθ-probability and hence, by the CLT and Slutsky’s lemma Yn
d→ N(0, 1) under Pθ. The weak

limit of the pivot random variables (Yn) suggests the confidence interval:

a−(X) = X̄n − z1−α/2n
−1/2

(√
X̄n(1− X̄n) + 1{X̄n∈{0,1}}

)
a+(X) = X̄n + z1−α/2n

−1/2
(√

X̄n(1− X̄n) + 1{X̄n∈{0,1}}

) (7g11)

where z1−α/2 is the (1 − α/2)-quantile of the standard Gaussian distribution, i.e. Φ(z1−α/2) =
1− α/2 and hence

Pθ
(
θ ∈ [a−(X), a+(X)]

)
= Pθ

(
Yn ∈ [−z1−α/2, z1−α/2]

)
≈ 1− 2

(
1− Φ(z1−α/2)

)
= 1− α,
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as required in (7g10), where the approximate equality ‘replaces’ the convergence if n is large
enough 44. Note that for smaller α’s, larger z1−α/2 emerges, i.e. wider c.i.’s correspond to more
stringent requirements. On the other hand, for a fixed α, and large n, we get narrower c.i.’s, as
should be expected.

Variance stabilizing transformation

Alternatively, the confidence interval can be constructed by means of the variance stabilizing
transformation as follows. Let g : (0, 1) 7→ R be a continuously differentiable function, then
applying the Delta method of Lemma (7g28) we have

√
n
(
g(X̄n)− g(θ)

) d−−−→
n→∞

N
(
0,
(
g′(θ)

)2
θ(1− θ)

)
, ∀θ ∈ Θ.

Now, if we choose g so that g′(θ) = 1√
θ(1−θ)

, the asymptotic variance will equal 1, irrespectively

of θ. If in addition, g is increasing and invertible on (0, 1), the following c.i. can be suggested:

I(X) :=
[
g−1
(
g(X̄n)− z1−α/2/

√
n
)
, g−1

(
g(X̄n) + z1−α/2/

√
n
)]
. (7g12)

Indeed,

Pθ
(
θ ∈ I(X)

)
= Pθ

(
g(θ) ∈ g(I(X))

)
=

Pθ
(
g(θ) ∈ [g(X̄n)− z1−α/2/

√
n, g(X̄n) + z1−α/2/

√
n]
)
=

Pθ
(√

n
(
g(X̄n)− g(θ)

)
∈ [−z1−α/2, z1−α/2]

)
n→∞−−−→ 1− 2Φ(−z1−α/2) = 1− α.

Of course, the question now is whether we can find an appropriate function g, referred to as
the variance stabilizing transformation. In our case

g(θ) =

∫ θ

0

1√
s(1− s)

ds

does the job, since the integral is well defined. Clearly, it is continuously differentiable on (0, 1),
increasing and invertible. A calculation yields g(θ) = 1

2π + arcsin (2 θ − 1) . Since we required
only a particular form of g′, we may omit the constant and just take g(θ) := arcsin (2 θ − 1).

Wilson’s method

As we saw above, by the CLT

Pθ
(∣∣∣∣√n X̄n − θ√

θ(1− θ)

∣∣∣∣ ≤ z1−α/2

)
≈ 1− α.

44How large n should be to support firmly such a belief ...? Clearly, to answer this question we must know
more about convergence in the CLT (e.g. the rate of convergence , etc.). Applied statisticians usually use various
rules of thumbs, which often can be justified by a considerable mathematical effort (see Example 8a4 below)
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Note that{∣∣∣∣√n X̄n − θ√
θ(1− θ)

∣∣∣∣ ≤ z1−α/2

}
=

{
n
(X̄n − θ)2

θ(1− θ)
≤ z21−α/2

}
={

(X̄n − θ)2 ≤ n−1z21−α/2θ(1− θ)
}
={

θ2(1 + z21−α/2/n)− θ(2X̄n + z21−α/2/n) + X̄2
n ≤ 0

}
=
{
a−(X) ≤ θ ≤ a+(X)

}
,

where

a±(X) :=
X̄n +

1
2
1
nz

2
α ± z1−α/2

√
1
nX̄n(1− X̄n) +

1
4n2 z2α

1 + 1
nz

2
α

,

and hence the confidence interval I(X) = [a−(X), a+(X)] has the coverage probability close to
1− α when n is large. �

The asymptotic risk of estimators is often easier to compute than their exact risk for a fixed
sample size. In this regard, the Delta-method is the main tool:

Example 7g30. Let X1, ..., Xn be a sample from Ber(θ) with θ ∈ (0, 1) and consider the

MLE θ̂n(X) = X̄n. Since Eθ|X1| = θ < ∞, by the weak LLN, the sequence θ̂n(X) converges

to θ in Pθ-probability for any θ ∈ Θ. Hence θ̂n(X) is a consistent sequence of estimators.
Furthermore, as varθ(X1) = θ(1− θ) <∞, by the CLT

lim
n→∞

P
(√

n
X̄n − θ√
θ(1− θ)

≤ x
)
= Φ(x), ∀x ∈ R,

or equivalently (replace x by x/
√
θ(1− θ)),

lim
n→∞

P
(√

n(X̄n − θ) ≤ x
)
= Φ(x/

√
θ(1− θ)), ∀x ∈ R,

where Φ(x) is the standard Gaussian c.d.f. Hence the sequence θ̂n(X) = X̄n is asymptotically
normal with the limit variance θ(1− θ).

Now consider another sequence of estimators:

θ̃n(X) =

√√√√ 1

[n/2]

[n/2]∑
i=1

X2i−1X2i.

Yi := X2iX2i−1, i = 1, ..., [n/2] are i.i.d. Ber(θ2) r.v’s and hence again by the weak LLN

1

[n/2]

[n/2]∑
i=1

X2i−1X2i
Pθ→ θ2,

and since u 7→
√
u is a continuous function, θ̃n(X)

Pθ→
√
θ2 = θ, i.e. the sequence θ̃n is also

consistent.
Note that by the CLT,√

[n/2]
(
θ̃2n(X)− θ2

)
d→ N

(
0, θ2(1− θ2)

)
, n→ ∞
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Figure 4. asymptotic variances of θ̂n and θ̃n versus θ

Now we can apply the Delta method with g(u) =
√
u to the sequence θ̃2n(X):√

[n/2]
(
g
(
θ̃n(X)

)
− g(θ2)

)
=√

[n/2]
(
θ̃n(X)− θ

)
d−→ N

(
0,
(
g′(θ2)

)2
θ2(1− θ2)

)
= N(0, (1− θ2)/4).

Finally, [n/2]/n→ 1/2, we conclude (why?)

√
n
(
θ̃n(X)− θ

)
d−→ N(0, 1− θ2)

In this example, one can calculate the risks of θ̂n and θ̃n for each fixed n and check whether they
are comparable. However, computing the risk of θ̃n does not appear to be an easy calculation.
Hence considering the estimators in the asymptotic regime, i.e. through the asymptotic risks,
often leads to a more tractable problem.

In this example, the competing sequences of estimators have the same rates, and moreover,
are both asymptotically normal: hence, we can try to compare them by the asymptotic variance.
Indeed, we see that the asymptotic variance of θ̂n is uniformly smaller than the variance of θ̃n
(see Figure 4). Hence we conclude that θ̃n is asymptotically inferior to θ̂n. Of course, just as in
the non-asymptotic case two sequences of estimators may not be comparable by their asymptotic
variances. �

Two sequences of estimators do not have to be comparable, even if they have the same rate
and the same limit type of distribution (e.g. asymptotically normal): it is possible that the
asymptotic variances, being functions of θ, satisfy opposite inequalities on different regions of
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Θ (similarly to Example 7b10). Note that a sequence of consistent estimators (θ̂n), which also
converges in L1, must be asymptotically unbiased 45:

lim
n

Eθθ̂n = θ, ∀θ ∈ Θ.

Thus there still may exist46 a sequence of estimators (θ̂∗n), which attains the Cramer-Rao infor-
mation bound for unbiased estimators, asymptotically as n→ ∞:

lim
n
nEθ(θ̂∗n − θ)2 =

1

I(θ)
, θ ∈ Θ. (7g13)

Guided by the intuition from the finite sample setting, we may think that no sequence of esti-
mators can yield asymptotic risk, smaller than this bound and hence regard (θ̂∗n) asymptotically
efficient (optimal). The following example shows that asymptotic optimality is a more delicate
matter!

Example 7g31 (J.Hodges). Consider an i.i.d. sample X1, X2, ... from N(θ, 1) distribution,
where θ ∈ R is the unknown parameter. As we already saw, the empirical mean X̄n is the
estimator, which has various optimality properties: it is the UMVUE, attaining the Cramer-
Rao bound for unbiased estimators, as well as the minimax estimator for each fixed n ≥ 1.
Hence it is tempting to think that X̄n is asymptotically optimal, in the sense that if (θ̃n) is a
sequence of asymptotically unbiased estimators, then

lim
n
n−1Eθ(θ̃n − θ)2 ≥ lim

n
n−1Eθ(X̄n − θ) = 1, ∀θ ∈ R. (7g14)

Remarkably, this is not the case! Consider the sequence of estimators

θ̃n(X) :=

{
X̄n |X̄n| ≥ n−1/4

0 |X̄n| < n−1/4

Then under Pθ,
√
n
(
θ̃n − θ

)
=

√
n
(
X̄n − θ

)
1{|X̄n|≥n−1/4} −

√
nθ1{|X̄n|<n−1/4} =

=
√
n
(
X̄n − θ

)
1{|

√
n(X̄n−θ)+

√
nθ|≥n1/4} −

√
nθ1{|

√
n(X̄n−θ)+

√
nθ|<n1/4} =

d
= Z1{|Z+

√
nθ|≥n1/4} −

√
nθ1{|Z+

√
nθ|<n1/4}

where
d
= stands for equality in distribution and Z ∼ N(0, 1). Hence for θ = 0,

Eθn
(
θ̃n − θ

)2
= EθZ21{|Z|≥n1/4} ≤

√
EθZ4

√
Pθ(|Z| ≥ n1/4)

n→∞−−−→ 0,

where we used the Cauchy–Schwarz inequality. For θ ̸= 0,

Eθn
(
θ̃n − θ

)2
=Eθ

(
Z1{|Z+

√
nθ|≥n1/4} −

√
nθ1{|Z+

√
nθ|<n1/4}

)2
=

Eθ
(
Z − (Z +

√
nθ)1{|Z+

√
nθ|<n1/4}

)2
= 1 + rn,

45sometimes, this is referred as approximately unbiased, while the term “asymptotically unbiased” is reserved
for a slightly different notion

46just like in the UMVUE theory: not all unbiased estimators are comparable, while the optimal unbiased
estimator can be found through R-B if the minimal sufficient statistic is complete!
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with the residual satisfying

|rn| =
∣∣∣Eθ(2Z(Z +

√
nθ) + (Z +

√
nθ)2

)
1{|Z+

√
nθ|<n1/4}

∣∣∣ ≤
3Eθ

(
|Z|+

√
n|θ|

)2
1{|Z+

√
nθ|<n1/4} ≤ 6

√
Eθ
(
|Z|2 + nθ2

)2√Pθ
(
|Z +

√
nθ| < n1/4

)
.

For θ > 0 and all n ≥ (2/θ)4

Pθ
(
|Z +

√
nθ| < n1/4

)
≤ Pθ

(
Z < n1/4 −

√
nθ
)
≤ Pθ

(
Z < −θ

2

√
n
)
= Φ

(
− θ

2

√
n
)
,

where Φ(x) is the c.d.f. of N(0, 1) distribution, which for x < −1 satisfies

Φ(x) =

∫ x

−∞

1

2π
e−y

2/2dy ≤ −
∫ x

−∞
ye−y

2/2dy = e−x
2/2.

Plugging these bounds back, we see that rn → 0 for θ > 0 and, similarly, for θ < 0. To recap,

lim
n
nEθ(θ̃n(X)− θ)2 =

{
1 θ ̸= 0

0 θ = 0
(7g15)

which shows that (7g14) fails for the sequence (θ̃n) at the point θ = 0. Hodges’ estimator
is superefficient, e.g., in the sense that its asymptotic variance is better than the asymptotic
Cramer-Rao bound for unbiased estimators!

This is of course no paradox: Hodges’ estimator is biased for each fixed n and hence doesn’t
have to satisfy the Cramer-Rao bound for unbiased estimators. The relevant Cramer-Rao bound
for θ̃n is

R(θ, θ̃n) = varθ(T ) + b2(θ, θ̃n) ≥

(
∂
∂θ b(θ, θ̃n) + 1

)2
In(θ)

+ b2(θ, θ̃n) =: CRn(θ),

where b(θ, θ̂n) = Eθθ̂n − θ is the bias and In(θ) = n is the Fisher information in the sample. A

calculation reveals that nb2(θ, θ̃n) → 0 for any θ ∈ Θ, but limn
∂
∂θ
b(θ, θ̃n)∣∣θ=0

= −1 and hence

nCRn(θ)∣∣θ=0
→ 0

which agrees with (7g15). �

This example shows that a sequence of consistent and asymptotically normal estimators,
satisfying (7g13), can be outperformed. Hodges’ example can be modified so that the set of
points in Θ, at which the estimator is superefficient, is infinitely countable. Remarkably, a
theorem of L.Le Cam shows that the set of such points cannot be essentially larger: more
precisely, it has zero Lebesgue measure (‘length’). This allows to define the following local
minimax notion of asymptotic efficiency:

Definition 7g32. A sequence of estimators (θ̂∗n) is asymptotically efficient with rate
√
n if

lim
δ↘0

lim
n→∞

sup
|θ−θ0|≤δ

nEθ(θ̂n − θ)2 ≥ lim
δ↘0

lim
n→∞

sup
|θ−θ0|≤δ

nEθ(θ̂∗n − θ)2, ∀θ0 ∈ Θ,

for any other sequence of estimators (θn).
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Note that in this sense, Hodges’ estimator is not better than X̄n anymore, since nEθ(X̄n −
θ)2 = 1 for all n and θ ∈ R and

lim
δ↘0

lim
n→∞

sup
|θ−θ0|≤δ

nEθ(θ̃n − θ)2 ≥ 1.

On the other hand, we saw in Example 7c12 that X̄n is minimax for any fixed n if Θ = R.
However, X̄n is no longer minimax on small bounded intervals: for example, for the trivial
estimator θ̂ ≡ 0

sup
θ∈[−δ,δ]

Eθ(θ̂ − θ) = δ2

which is smaller than
sup

θ∈[−δ,δ]
Eθ(X̄n − θ) = 1/n

if δ is small enough. Nevertheless, it can be shown that X̄n is asymptotically efficient in the
sense of definition (7g32) (see Theorem 7g34 below).

Remark 7g33. We already saw that Hodges’ estimator is superefficient: it performs as
well as the asymptotically efficient estimator X̄n at all points of Θ and outperforms it at the
superefficiency point 0. Hence it is tempting to think that Hodges’ estimator is asymptotically
efficient as well. Again, counterintuitively, it is not and, moreover, its local minimax risk is
infinite! To see why, let θn := C/

√
n with a positive constant C > 0. Then

Eθnn
(
θ̃n − θn

)2
= Eθn

(
Z1{|Z+

√
nθn|≥n1/4} −

√
nθn1{|Z+

√
nθn|<n1/4}

)2
=

Eθn
(
Z1{|Z+C|≥n1/4} − C1{|Z+C|<n1/4}

)2 n→∞−−−→ C2.

Since for all n large enough,

sup
|θ|≤δ

nEθ(θ̃n − θ)2 ≥ Eθnn
(
θ̃n − θn

)2
we conclude that

lim
n

sup
|θ|≤δ

nEθ(θ̃n − θ)2 ≥ C2

and, since C is arbitrary,
lim
δ↘0

lim
n→∞

sup
|θ−θ0|≤δ

nEθ(θ̃n − θ)2 = ∞.

Roughly speaking, this means that Hodges’ estimator may perform very poorly at the points
close to the superefficiency point for large n.

Finding asymptotically efficient estimators is an interesting problem, which is beyond the
scope of our course. Remarkably, the sequence of the MLE’s often turns to be consistent,
asymptotically normal and asymptotically efficient:

Theorem 7g34. 47 Let X1, ..., Xn be a sample from the probability density48 f(x; θ), θ ∈ Θ

and let (θ̂n) be the sequence of MLE estimators:

θ̂n(X) ∈ argmaxθ∈ΘL(θ;X),

47adapted from [2]
48the theorem holds also for the discrete case with appropriate adjustments
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where L(X; θ) =
∏n
i=1 f(Xi, θ) is the likelihood of the model.

Assume that

(Ac) Θ = (a, b) for some −∞ < a < b <∞
(A0) the model is identifiable, i.e. for any θ1 ̸= θ2, f(x; θ1) ̸= f(x; θ2) for all x ∈ J , where

J is an open interval in R.
(R)

√
f(x; θ) is continuously differentiable and the Fisher information

I(θ) =

∫
R

(
f ′(x; θ)

)2
f(x; θ)

dx

is finite and strictly positive on Θ.

Then (θ̂n) is consistent 49. If in addition to the above assumptions,

(RRm) the function ℓ(x; θ) = log f(x; θ) is twice continuously differentiable in θ. The function
|ℓ′′(x; θ)| is majorized by a function h(x) independent of θ, i.e. |ℓ′′(x; θ)| ≤ h(x), for
which ∫

R
h(x)f(x; θ)dx <∞, ∀θ ∈ Θ

(RRd) the differentiation under the integral is valid:∫
R
f ′(x; θ)dx = 0, ∀θ ∈ Θ

then (θ̂n) is asymptotically normal
√
n
(
θ̂n − θ

) d−→ N
(
0, 1/I(θ)

)
, θ ∈ Θ◦

and asymptotically efficient, moreover50, the moments of all orders converge.

Example 7g35. LetX1, ..., Xn be a sample from Cauchy density with the location parameter
θ ∈ Θ = [−c, c] (for some constant c > 0):

f(x; θ) =
1/π

1 + (x− θ)2
.

Note that the empirical mean X̄n is not consistent for θ in this case (see Problem 7.58). The

MLE θ̂n cannot be found in an explicit form beyond n ≥ 2 and hence the maximization of the
likelihood is to be done numerically51. The assumptions (Ac) and (A0) obviously hold. The

function
√
f(x; θ) is continuously differentiable and

I(θ) =
1

π

∫ (
2(x− θ)(

1 + (x− θ)2
)2
)2

1

1 + (x− θ)2
dx =

1

π

∫
4(x− θ)2(

1 + (x− θ)2
)3dx <∞

49in fact, even stronger result holds under these assumptions, namely
√

n
an

(θ̂n − θ)
Pθ−→ 0 for any unbounded

sequence of numbers (an).
50recall that convergence in distribution guarantees convergence of expectations for continuous and bounded

functions, but not necessarily for polynomials, i.e. moments
51Since the likelihood Ln(x; θ) decreases as |θ| → ∞, the MLE exists and is one of the roots of the score

function ∂
∂θ
L(X; θ). However, the number of roots of the score function grows with n and hence deciding which

root is the MLE may be a challenge (remarkably, the set of roots converges to a Poisson process on R after an
appropriate rescaling, see the paper [10])
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is positive and bounded for any θ ∈ Θ. Hence by Theorem 7g34, the sequence of MLE’s is
consistent for θ. By checking further assumptions, we may be lucky to be able to conclude that
(θ̂n) is also asymptotically normal (try!). �

The mathematical tools for proving, or even, sketching the ideas, leading to this remarkable
conclusion are far beyond the scope of our course, but we shall briefly demonstrate what kind
of difficulties, arise in establishing e.g. consistency of MLE.

The asymptotic analysis is usually straightforward if the MLE is given by an explicit formula
(as in Examples 7b3 and 7g30) or as the unique root of some equation (see Problem 7.57).
However, in the majority of practical situations, the MLE is found numerically for the concrete
sample at hand and its asymptotic analysis should be based directly on its definition as a
maximizer. A number of different approaches have been developed for this purpose, and we
shall sketch one of them below.

Suppose that we sample X = (X1, ..., Xn) from a p.d.f. f(x; θ). Then the corresponding
log-likelihood is given by

logLn(x; θ) =
1

n

n∑
i=1

log f(xi; θ), x ∈ Rn, θ ∈ Θ.

The MLE is defined as a maximizer of logLn(X; θ):

θ̂n(X) = argmaxθ∈Θ logLn(X; θ).

Denote by θ0 the actual value of the parameter (unknown to us) and note that the very same

θ̂n(X) is obtained if we maximize a different quantity, more convenient for the purposes of
analysis:

θ̂n(X) = argmaxθ∈Θ
1

n
log
(
Ln(X; θ)/Ln(X; θ0)

)
.

Now if Eθ0 | log f(X1; θ)| <∞ for all θ0, θ ∈ Θ, then by the strong LLN

1

n
log
(
Ln(X; θ)/Ln(X; θ0)

)
=

1

n

n∑
i=1

log
f(Xi; θ)

f(Xi; θ0)

Pθ0
−a.s.

−−−−−→
n→∞

Eθ0 log
f(X1; θ)

f(X1; θ0)
=

∫
R
log

f(x; θ)

f(x; θ0)
f(x; θ0)dx =: H(θ, θ0).

The quantity −H(θ, θ0) is called the Kullback-Leibler relative entropy (or divergence) and it is
not hard to see 52 that it is nonnegative and has the properties, similar53 to those of a distance
between the p.d.f.’s f(x; θ) and f(x; θ0). If the statistical model is identifiable, then θ 7→ H(θ, θ0)
has a unique maximum at θ0, i.e. H(θ, θ0) < H(θ0, θ0) = 0 for all θ ̸= θ0.

Thus we have a sequence of (random) functions

Hn(θ; θ0) :=
1

n
log
(
Ln(X; θ)/Ln(X; θ0)

)
converging to H(θ, θ0), which has a unique maximum at θ := θ0. It is tempting to conclude that
for each fixed θ0, the maximizer of Hn(θ; θ0) over θ converges to the maximizer of H(θ, θ0), that

52using the Jensen inequality
53The K-L divergence is not a true distance, since it is not symmetric
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is θ̂n → θ0 and thus θ̂n is consistent. Unfortunately, this does not have to be the case54 and for
the latter to hold, a stronger - uniform over Θ - convergence is required in general. Establishing
such convergence is harder and can be done under appropriate assumption. Once consistency is
established, one can study the asymptotic normality, essentially using Taylor’s expansion.

Exercises

Methods of point estimation.

Problem 7.1. Consider a population made up of three different types of individuals occur-
ring in the Hardy-Weinberg proportions θ2, 2θ(1−θ) and (1−θ)2, respectively, where 0 < θ < 1.

(1) Show that T3 = N1/n+N2/2n is a frequency substitution estimator of θ
(2) Using the estimator of (1), what is a frequency substitution estimator of the odds ratio

θ/(1− θ)?
(3) Suppose X takes the values 1, 0, 1 with respective probabilities p1, p2, p3 given by the

Hardy-Weinberg proportions. By considering the first moment of X, show that T3 is a
method of moment estimator of θ.

(4) Find the MLE 0f θ and compare to the other estimators, obtained so far.

Problem 7.2. Consider n systems with failure times X1, ..., Xn assumed to be independent
and identically distributed with exponential exp(λ) distributions.

(1) Find the method of moments estimator of λ based on the first moment.
(2) Find the method of moments estimator of λ based on the second moment.
(3) Combine your answers to (1) and (2) to get a method of moment estimator of λ based

on the first two moments.
(4) Find the method of moments estimator of the probability P (X1 > 1) that one system

will last at least a month.
(5) Find the MLE of λ

Problem 7.3. Let X1, ..., Xn be the indicators of n Bernoulli trials with probability of
success 0.

(1) Show that X̄n is a method of moments estimator of θ.
(2) Exhibit method of moments estimators for varθ(X1) = θ(1−θ) first using only the first

moment and then using only the second moment of the population. Show that these
estimators coincide.

(3) Argue that in this case all frequency substitution estimators of q(θ) must agree with
q(X̄n).

(4) Find the MLE of θ

Problem 7.4. Suppose X = (X1, ..., Xn) where the Xi are independent N(0, σ2)

(1) Find an estimator of σ2 based on the second moment.

54think of a counterexample: a sequence of (even deterministic) functions fn(x) → f(x) for all x, where fn
and f have unique maxima x∗n and x∗, but x∗n ̸→ x∗
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(2) Construct an estimator of σ using the estimator of part (1) and the equation σ =
√
σ2

(3) Use the empirical substitution principle to construct an estimator of σ using the relation
E|X1| = σ

√
2π.

Problem 7.5. An object of unit mass is placed in a force field of unknown constant intensity
θ. Readings Y1, ..., Yn are taken at times t1, ..., tn on the position of the object. The reading Yi
differs from the true position (θ/2)t2i by a random error εi. We suppose the εi to have mean 0
and be uncorrelated with constant variance.

(1) Find the least square estimator (LSE) of θ.
(2) Can you compute the MLE of θ without additional assumptions ? The method of

moments estimator ?

Problem 7.6. Let Y1, ..., Yn be independent random variables with equal variances such
that EYi = αzi where the zi are known constants. Find the least squares estimator of α.

Problem 7.7. Suppose Y1, ..., Yn1+n2 are given by

Yi =

{
θ1 + εi, i = 1, ..., n1

θ2 + εi, i = n1 + 1, ..., n2,

where ε1, ..., εn1+n2 are independent N(0, σ2) variables.

(1) Find the LSE of θ = (θ1, θ2)
(2) Find the MLE of θ, when σ2 is known
(3) Find the MLE of θ, when σ2 is unknown

Problem 7.8. Let X1, ..., Xn be a sample from one of the following distributions. Find the
MLE of θ.

(1) f(x; θ) = θe−θx, x ≥ 0, θ > 0 (exponential p.d.f.)

(2) f(x; θ) = θcθx−(θ+1), x ≥ c, c > 0 and θ > 0 (Pareto p.d.f.)

(3) f(x; θ) = cθcx−(c+1), x ≥ θ, c > 0, θ > 0 (Pareto p.d.f.)

(4) f(x; θ) =
√
θx

√
θ−1, x ∈ [0, 1], θ > 0 (β(

√
θ, 1) p.d.f.)

(5) f(x; θ) = (x/θ2) exp
{
− x2/2θ2

}
, x > 0, θ > 0 (Rayleigh p.d.f.)

(6) f(x; θ) = θcxc−1 exp
{
− θxc

}
, x ≥ 0, c > 0, θ > 0 (Weibull p.d.f.)

Problem 7.9. Let X1, ..., Xn be a sample from N(µ, σ2). Find the MLE of θ = (µ, σ2)
under the assumption that µ ≥ 0.

Problem 7.10. Let X1, ..., Xn be a sample from the p.d.f.

f(x; θ) =

{
1
σe

−(x−µ)/σ, x ≥ µ

0 x < µ

where σ > 0 and µ ∈ R.
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(1) Find the MLE of θ = (µ, σ2)
(2) Find the MLE of Pθ(X1 ≥ t) for t > µ.

Problem 7.11. Let X1 ∼ N(µ, σ2). Show that the MLE of θ = (µ, σ2) doesn’t exist.

Problem 7.12. Let X1, ..., Xn be independent r.v. with Xi ∼ N(θi, 1), θi ∈ R
(1) Find the MLE for θ = (θ1, ..., θn)
(2) For n = 2, find the MLE of θ, under the constraint θ1 ≤ θ2

Problem 7.13. Let X1, ..., Xk be a sample from Geo(1− θ). The observations are given by
Yi = min(Xi, r+1), where r is a positive integer. If Xi’s are interpreted as times, then they can
be observed only till certain known time r (this is known in statistics as censored observations).
The p.m.f. of Y1 is55

p(k; θ) =

{
θk−1(1− θ), k = 1, ..., r

θr, k = r + 1
.

Let M be the number of Yi’s, such that Yi = r + 1. Show that the MLE of θ is given by:

θ̂(Y ) =

∑n
i=1 Yi − n∑n
i=1 Yi −M

.

Problem 7.14. Let X1, ..., Xn be a sample form the Cauchy distribution with the location
parameter θ, i.e.

f(x; θ) =
1/π

1 + (x− θ)2
, x ∈ R, θ ∈ R.

(1) Show that if n = 1, then the MLE is θ̂ = X1

(2) Show that for n = 2, the equation ∂
∂θf(x1, x2; θ) = 0 has several roots and find the

MLE

Problem 7.15. Let X1, ..., Xn be a random sample from p.d.f.

f(x; θ) = θxθ−1I(x ∈ (0, 1)), θ > 0.

(1) Show that EθX1 = θ/(θ + 1)
(2) Find the method of moments estimator θ
(3) Compute the maximum likelihood estimator of θ
(4) Find the maximum likelihood estimator of Eθ

55note that Pθ(X1 > r) = θr
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Optimality.

Problem 7.16. Let X be the p.m.f. of a Poisson r.v., conditioned to be positive56:

p(k; θ) =
e−θθk/k!

1− e−θ
, k ∈ {1, 2, ...}, θ > 0.

It is required to estimate q(θ) = 1− e−θ and for this purpose the estimator

T ∗(X) =

{
0 X is odd

2 X is even
.

Show that T ∗ is an unbiased estimator of q(θ). Is it a good estimator ...?

Problem 7.17. Let X ∼ N(θ, 1) and consider the estimators of θ of the form Ta,b(X) =
aX + b, where a, b ∈ R.

(1) Calculate the MSE risk of Ta,b
(2) Compare the MSE risks of T1/2,0 and T1,0 = X (the “natural” estimator) as a function

of θ. Show that none of these estimators is better than the other for al θ ∈ Θ.
(3) Is there an estimator of the form Ta,b with the MSE risk, better than that of T1,0 = X

for all θ ∈ Θ ?
(4) Show that T1,0 is the only unbiased estimator among Ta,b, a, b ∈ R.

Problem 7.18. Let X1, ..., Xn be a sample from N(µ, σ2) with unknown θ = (µ, σ2). It is
required to estimate σ2.

(1) Calculate the MSE risk of the estimators

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄n)
2 and S̃2 :=

1

n+ 1

n∑
i=1

(Xi − X̄n)
2

(2) Show that the MSE risk of S2 is greater than of S̃2 for all θ ∈ Θ (i.e. S2 is inadmissible).

Bayes estimation.

Problem 7.19. Prove Lemma 7c8 in the case of countable parametric space Θ.

Problem 7.20 (The sunrise problem of Laplace). ”What is the probability that the sun
will rise tomorrow?” is the question which P-S. Laplace addressed in the 18-th century. He
suggested that at the beginning of the world (he has literally taken the date from the Bible), the
probability of the sun to rise was completely uncertain, which he expressed by assuming that
p was sampled form U([0, 1]). Further, he assumed that the sun rises each day independently
with the same conditional probability of success p. More precisely, if Xi takes value 1 if the sun
rises on the i-th morning, then Xn, n ≥ 1 forms a sequence of i.i.d. Ber(p) r.v.’s, conditioned
on p. Prove the rule of succession :

P(Xn+1 = 1|X1 + ...+Xn = s) =
s+ 1

n+ 2
.

56i.e. the conditional p.m.f of Y given {Y > 0}, where Y ∼ Poi(θ).
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Problem 7.21. Let (Pθ)θ∈Θ be a statistical model with Θ being a discrete set of points.
Show that the Bayes estimator of θ with respect to the prior π and the loss function:

ℓ0(θ, η) = I(θ ̸= η),

is given by the maximum a posteriori probability (MAP)

θ̂∗(X) = argmaxη∈ΘP(θ = η|X).

Explain, why the MAP estimator minimizes the probability of error in guessing the value of θ,
given the observation X.

Problem 7.22. Show that β distribution is conjugate to the likelihood of n i.i.d. Ber(θ),
θ ∈ [0, 1] r.v.’s Find the corresponding posterior parameters and deduce the Bayes estimator
under MSE.

Problem 7.23. Prove that Pareto distribution with the p.d.f.

f(x; c, α) =
αcα

xα+1
I(x ≥ c), c > 0, α > 0

is conjugate to the likelihood of the sample X = (X1, ..., Xn) of size n from U([0, θ]), θ ∈ R+.
Show that the posterior distribution has the Pareto density with parameters max(c,maxiXi)
and α+ n. Check that the Bayes estimator under MSE is given by:

θ̂∗(X) =
(α+ n)max(c,X1, ..., Xn)

α+ n− 1
.

Problem 7.24. Let X1, ..., Xn be a sample from Poi(θ), θ > 0. Assume the prior Γ(α, β).

(1) Find the Bayes estimator of θ with respect to the loss function ℓ(θ, η) = (θ − η)2/θ
(2) Find the Bayes risk of the Bayes estimator

Problem 7.25. Let X = (X1, ..., Xn) be a sample from the exponential distribution exp(θ),
θ > 0. Assume the prior Γ(α, β).

(1) Find the conditional distribution of θ given X. Is the prior conjugate to the likelihood
?

(2) Find the Bayes estimator of θ with respect to the loss function ℓ(θ, η) = (θ − η)2.
(3) Find the MLE of θ
(4) Calculate the risk functions of the estimators in (3) and (2) and compare
(5) Calculate the Bayes risk of the estimaets in (3) and (2) and compare

Problem 7.26. Show that Bayesian estimator with respect to quadratic loss is biased, if
the posterior is non-degenerate (i.e. the posterior variance is positive with positive probability)

Problem 7.27. Find the minimax estimator for θ ∈ R+, given the sample X1, ..., Xn ∼
Poi(θ)

Problem 7.28. Show that the naive estimator θ̂ = X is minimax in Stein’s example 7b8.
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Unbiased estimation.

Problem 7.29. Argue that an estimator, which is not a function of the minimal sufficient
statistic, is inadmissible with respect to the quadratic risk.

Problem 7.30. Let X1, ..., Xn be a sample from a p.d.f. with unknown mean µ and variance
σ2. Define T (X) =

∑n
i=1 ciXi.

(1) Show that T is an unbiased estimator of µ if and only if
∑n

i=1 ci = 1.
(2) Show that X̄n is the UMVUE among all estimators of the above form.

Problem 7.31. Let X1, ..., Xn be a sample from N(µ, 1). It is required to estimate Pµ(X1 ≥
0) = Φ(µ)

(1) Show that T (X) = I(X1 ≥ 0) is an unbiased estimator
(2) Apply the R-B theorem with the sufficient statistic X̄n to obtain an improved estimator.

Hint: note that (X1, X̄) is a Gaussian vector.
(3) Show that the obtained estimator is UMVUE

Problem 7.32. Let X1, ..., Xn be a sample from U([0, θ]), θ > 0 and let Mn(X) = maxiXi.

(1) Show that T ∗(X) = n+1
n Mn(X) is an unbiased estimator of θ.

(2) Let T (X) = n+2
n+1Mn(X). Show that

R(θ, T ) < R(θ,Mn), and R(θ, T ) < R(θ, T ∗), ∀θ ∈ Θ

and conclude that both Mn and T ∗ (which is the UMVUE!) are inadmissible.

Problem 7.33. In each one of the following cases, show that ϕ is an unbiased estimator of
the parameter of interest, find a sufficient statistic and improve ϕ by means of the R-B procedure.

(1) X1, X2 is a sample from Geo(θ), ϕ(X) = I(X1 = 1) is an estimator of θ
(2) X1, ..., Xn is a sample form Ber(θ), ϕ(X) =

∏n
i=1Xi is an estimator of θn

(3) X1, ..., Xn is a sample form Ber(θ), ϕ(X) = X1 −X1X2 is an estimator of θ(1− θ)

Problem 7.34. Let X1 ∼ Geo(θ). It is required to estimate θ/(1 + θ) and the estimator
T (X) = e−X is considered.

(1) Is T (X) unbiased ?
(2) LetX2 be an additional sample from Geo(θ), independent ofX1 and define S = X1+X2.

Find the conditional distribution of X1, given S.
(3) Apply the R-B procedure with57 S from (2), to improve the estimator from (1)

Problem 7.35. Let X1, ..., Xn be a sample from Ber(θ). Show that S(X) =
∑n

i=1Xi is a
complete statistic, if Θ contains more than n points. Argue that X̄n is the UMVUE of θ.

57check that S is sufficient
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Problem 7.36. Let X1, ..., Xn be a sample from U([θ1, θ2]), where θ = (θ1, θ2) is the un-
known parameter.

(1) Specify the parametric space Θ.
(2) Show that T (X) = (miniXi,maxiXi) is a sufficient statistic.
(3) Assuming that T is complete, argue that (T1 + T2)/2 is the UMVUE of the mean

(θ1 + θ2)/2

Problem 7.37. Consider N = (N1, ..., Nk) ∼ Mult(n; θ), where θ = (θ1, ..., θk) ∈ Sk−1 =

{x ∈ Rk−1 : xi ≥ 0,
∑k

i=1 xi = 1} is the unknown parameter. Show that N is a complete
sufficient statistic and find the UMVUE of θ2 − θ1.

Problem 7.38. Let X1, ..., Xn be a sample from N(µ, σ2).

(1) Show that if µ in unknown and σ2 is known, then X̄n is the UMVUE of µ.
(2) Show that if µ is known and σ2 is unknown, then 1

n

∑n
i=1(Xi − µ)2 is the UMVUE of

σ2.

Problem 7.39. Let X1, ..., Xn be a sample from Γ(p, λ), where θ = (p, λ) is the unknown
parameter. Find the UMVUE of p/λ.

Problem 7.40. Let X ∼ Bint(n, θ) be a sample from truncated Binomial distribution:

p(k; θ) =

(
n
k

)
θk(1− θ)n−k

1− (1− θ)n
, k ∈ {1, ..., n}.

(1) Show that X is a complete sufficient statistic for θ.
(2) Show that EθX = n θ

1−(1−θ)n . Conclude that X/n is the UMVUE of q(θ) = EθX.

Problem 7.41. Let X ∼ Bin(n, θ). Show that X(n−X)
n(n−1) is the UMVUE of θ(1− θ).

Problem 7.42. Let (Pθ)θ∈N be the family of uniform distributions on the first θ integers
U({1, ..., θ}).

(1) Show that X ∼ Pθ is a complete sufficient statistic
(2) Show that 2X − 1 is the UMVUE of θ
(3) Let (P′

θ)θ∈N\k =
{
Pθ∈N

}
\ Pk, where k is a fixed integer. Show that X ′ ∼ P′

θ is not
complete. Hint: Calculate E′

θg(X
′) for

g(i) =


0, i ̸= k, k + 1

1, i = k

−1, i = k + 1
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(4) Show that 2X ′ − 1 is not UMVUE of θ for P′
θ. Hint: Consider the estimator T (X ′) ={

2X ′ − 1, X ′ ̸∈ {k, k + 1}
2k, X ′ ∈ {k, k + 1}

Problem 7.43. Let X = (X1, ..., Xn) be a sample from the β(θ, 1) p.d.f.

f(x; θ) = θxθ−1I
(
x ∈ (0, 1)

)
, θ > 0

and consider the estimator T (X) = − 1
n

∑n
i=1 logXi.

(1) Show that EθT (X) = 1/θ and varθ(T ) =
1
nθ2

.

(2) Show that the Fisher information is given by I(θ) = 1/θ2 and that T (X) is the UMVUE
of 1/θ.

Problem 7.44. Solve the previous problem for the Weibull p.d.f.

f(x; θ) = cxc−1θe−θx
c
I(x > 0),

θ > 0, c > 0 and the estimator T (X) = 1
n

∑n
i=1X

c
i .

Problem 7.45 (Best Linear Unbiased Estimator). Let X = Aθ + ε, where θ ∈ Rd is the
unknown parameter, A is a known n × d matrix and ε is a random vector in Rn with Eθε = 0
and the covariance matrix Γ := cov(ε, ε) > 0.

An estimator T (X) is linear if T (X) := BX + v for some d× n matrix B and a vector v.

(1) Show that any unbiased linear estimator of θ is of the form T (X) = BX, where BA = I
(2) Show that the MSE risk of an unbiased estimator is given by

Eθ∥θ − T (X)∥2 = tr
(
BΓB⊤)

(3) Assuming that Γ is an identity matrix, show that the linear estimator with the minimal
MSE risk (the BLUE) is given by

T ∗(X) := (A⊤A)−1A⊤X

Hint: Note that for any B, satisfying BA = I,

BB⊤ = (B −B∗)(B −B∗)⊤ + (A⊤A)−1,

where B∗ = (A⊤A)−1A⊤.
(4) Derive the formula for the BLUE, when Γ > 0 is a diagonal matrix.

Asymptotic theory.

Problem 7.46. Prove that if (ξn) converges to a constant c weakly, then it converges to c
is probability.
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Problem 7.47. Let (Xn)n≥1 be a sequence of i.i.d r.v. with the common distribution
U([0, 1]) and let Mn = maxi≤nXi. Introduce the sequences

Yn =
√
n(1−Mn)

Zn = n(1−Mn)

Wn = n2(1−Mn).

Check whether each one of these sequences converges in probability ? in distribution ?

Problem 7.48. Let (Xn)n≥1 be a sequence or r.v. with the p.m.f.

P(Xn = k) =


1
2n k = n
1
2n k = 2

1− 1
n k = 3

0 otherwise

(1) Does (Xn)n≥1 converge in probability ? If yes, what is the limit ?
(2) Does EXn converge ? Compare to your answer in (1)
(3) Answer (1) and (2) if “k = n” in the first line of definition of Xn is replaced with

“k = 1”

Problem 7.49. Prove that Xn ∼ Bin(n, pn) with pn satisfying

lim
n→∞

npn = λ > 0

converges weakly to X ∼ Poi(λ).

Hint: check that P(Xn = k) → P(X = k) for all k and argue that this implies the result.

Problem 7.50. Let Xn ∼ Poi(n), show that (Xn − n)/
√
n converges weakly to N(0, 1).

Problem 7.51. Let X1, ..., Xn be a sample from U([θ − 1/2, θ + 1/2]), where θ ∈ R.
(1) Show that the MLE θ̂n of θ is not unique

(2) Show that any choice of θ̂n yields a consistent sequence of estimators

Problem 7.52. A beuro of statistics wants to choose a sample, so that the empirical pro-
portion of voters for a particular candidate will be less than 50% with probability 0.01, when
the actual proportion is 52%. Suggest how to choose the sample size on the basis of CLT ?

Problem 7.53. LetX1, ..., Xn be a sample fromN(µ, σ2), where both µ and σ2 are unknown.
Show that S2

n(X) := 1
n−1

∑n
i=1(Xi − X̄n)

2 is a consistent and asymptotically normal estimator

of σ2. Calculate its limit variance.

Hint: use the particular properties of the distribution of S2
n(X) and apply CLT.
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Problem 7.54. Let X ∼ HG(N,Nθ, n), where θ ∈ Θ = (0, 1). Suppose that n = ϕ(N) for
an increasing function ϕ (i.e. the size of the sample n grows with the population (shipment,

etc.) size N). Find conditions on ϕ so that the sequence of estimators θ̂N (X) = X/n = X/ϕ(N)
is consistent.

Problem 7.55. For the sample X1, ..., Xn from each one of the following distributions, find
the sequence of MLEs as n → ∞, show that it is consistent and find the asymptotic error
distribution (under appropriate scaling)

(1) Poi(θ), θ > 0
(2) Ber(θ), θ ∈ [0, 1]
(3) Geo(1/θ), θ > 0

Problem 7.56. Construct confidence interval estimator for the parameter λ of the i.i.d.
Poi(λ) sample X1, ..., Xn

(1) Using the CLT and Slutsky’s theorem
(2) Using the corresponding variance stabilizing transformation

Problem 7.57 (MLE in exponential families). Let X1, ..., Xn be an i.i.d. sample from the
density, which belongs to the 1-exponential family

f(x; θ) = exp
(
c(θ)T (X) + d(θ) + S(x)

)
, x ∈ R, θ ∈ Θ.

Assuming that c(θ) is a one-to-one function, the natural parametrization of the exponential
family is defined by η := c(θ) with η ∈ c(Θ):

f̃(x; η) = exp
(
ηT (X) + d̃(η) + S(x)

)
, x ∈ R, η ∈ c(Θ),

where d̃(η) := d(c−1(η)).

(1) Show that d̃′(η) = −EηT (X1) and d̃
′′(θ) = −varη(T (X1)).

(2) Show that the MLE η̂n is the unique root of the equation

d′(η) = − 1

n

n∑
i=1

T (Xi).

(3) Using the LLN, conclude that the MLE (η̂n) is consistent

(4) Show that the MLE θ̂n of θ is consistent

Hint: recall that the MLE is invariant under reparametrization

(5) Apply the ∆-method to show that the MLE (η̂n) is asymptotically normal with the
rate

√
n and find the corresponding asymptotic variance (compare with the Fisher

information).

(6) Apply the ∆-method once again to derive the asymptotic variance of the MLE (θ̂n).

Problem 7.58. Let Xn = (X1, ..., Xn) be a sample from the Laplace density

f(x; θ) =
1

2
e−|x−θ|, x ∈ R

(1) Argue that the statistics X̄n form a consistent sequence of estimators for the location
parameter θ
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(2) Show that the MLE of θ can be taken to be the sample median med(Xn) := X(⌈n/2⌉)
where ⌈n/2⌉ is the smallest integer greater or equal n/2 and X(1), ..., X(n) is the order
statistic of Xn.

Hint: note that the MLE is not unique for even n.

(3) Prove consistency of med(Xn)

Hint: note that e.g.{
med(Xn) ≥ θ + ε

}
=

{
n∑
i=1

1{Xi−θ≥ε} ≥ n/2

}
.

The Cauchy density with the location parameter θ ∈ R and the scaling parameter γ > 0
is

f(x; θ, γ) =
1

γπ

1

1 +
(
x−θ
γ

)2
(4) Let Xn = (X1, ..., Xn) be a sample from Cau(θ, γ) density with the unknown location

parameter θ and γ = 1. Is X̄n consistent ? Is med(Xn) consistent ?

Hint: It can be shown that the characteristic function of the Cauchy random
variable is given by:

φ(t; θ, γ) =

∫
R
eitxf(x; θ, γ)dx = eitθ−γ|t|.

(5) Suggest yet another consistent estimator of θ, using the substitution principle method.



CHAPTER 8

Hypothesis testing

In contrast to parameter estimation (either point or interval), which deals with guessing
the value of the unknown parameter, we are often interested to know only whether or not the
parameter lies in a specific region of interest in the parametric space. A typical instance of such
a problem is signal detection, frequently arising in electrical engineering. A radar transmitter
sends a signal in a particular direction: if the signal encounters an object on its way, the echo of
the signal is returned to the radar receiver, otherwise the receiver picks up only noise. Hence the
receiver has to decide whether the received transmission contains a signal or it consists only of the
background noise. How to formalize this problem mathematically ? How to construct reasonable
test procedures ? How to compare different test procedures ? Is there a best procedure ? All
these questions are addressed within the statistical framework of hypothesis testing, which we
shall explore below.

a. The setting and terminology

Let (Pθ)θ∈Θ be a statistical model and suppose Θ = Θ0 ∪Θ1, where the subsets Θ0 and Θ1

do not intersect. The value of the parameter θ is unknown and our goal is to decide whether θ
belongs to Θ0 or to Θ1, given a sample X ∼ Pθ. Using the statistical language, we want to test
the null hypothesis H0 : θ ∈ Θ0 against the alternative H1 : θ ∈ Θ1, based on the sample X ∼ Pθ.
If Θ0 (or/and Θ1) consists of a single point, the null hypothesis (or/and the alternative) is called
simple, otherwise it is referred as composite.

Example 8a1. In the signal detection problem1, a reasonable statistical model is an i.i.d.
sample X = (X1, ..., Xn) from N(θ, σ2), where σ2 is the known intensity (variance) of the noise
and θ is the unknown parameter. The null hypothesis is then H0 : θ = 0, i.e. Θ0 consists of a
single point {0} and we want to test it against the alternative H1 : θ ̸= 0, i.e. Θ1 = Θ \ {0}.
Thus we want to test a simple hypothesis against composite alternative.

If we know that the signal may have only positive (but still unknown) value, then we may
consider testing H0 : θ = 0 against H1 : θ > 0. If, in addition, this value is known, say θ0, then
the problem is to test H0 : θ = 0 against H1 : θ = θ0, i.e. testing a simple hypothesis against a
simple alternative. �

Remark 8a2. While technically the roles of the null hypothesis and the alternative are
symmetric, it is customary to think about H0 as some “usual” theory/state/etc., which we want
to reject in favor of the alternative theory/state.

1it is convenient to think of this problem to memorize the terminology: e.g. null hypothesis can be thought
of as absence of the signal, etc.

169
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Given a sample X ∼ Pθ we have to reject or accept the null hypothesis. Suppose for def-
initeness that the sample X takes values in Rn. Then any2 test can be defined by specifying
the region of rejection (or critical region), i.e. a set C ⊂ Rn such that the null hypothesis H0 is
rejected if and only if the event {X ∈ C} occurs. The complement Rn \ C is called the region
of acceptance (of the null hypothesis). This can be equivalently reformulated in terms of the
critical function (or test function) δ(X) := I(X ∈ C), i.e H0 is rejected if and only if

{
δ(X) = 1

}
occurs. Usually the test function can be put in the form δ(X) = I

(
T (X) ≥ c

)
, where T (X) is

the test statistic, i.e. a function from Rn to R, depending only on the sample, and c is a real
constant, called the critical value.

Example 8a1 (continued) If we want to test H0 : θ = 0 against H1 : θ ̸= 0, intuitively we
feel that we shall reject the null hypothesis H0 if the empirical mean is far from zero: in terms
of the objects defined above we use the test statistic T (X) = X̄n and reject H0 if and only if
{|X̄n| ≥ c}, where c is the critical value to be chosen (see below). This kind of tests are called
two-sided (or two-tailed) as they reject if the test statistic takes values on “both sides” with
respect to the null hypothesis.

Now suppose that we know that the signal value is positive, i.e. H0 : θ = 0 is to be tested
against H1 : θ > 0. In this case, the one-sided (one-tailed) test {X̄n ≥ c} appears as a reasonable
choice, as it rejects H0 for large enough values of X̄n. �

How do we measure performance of a test? Note that a test can produce two types of errors,
namely, we may either reject H0, when actually H0 is true: this is the so called type I error
(or α-error or the false alarm error or false positive error); or we may accept H0, when H1 is
true: this is the type II error (or β-error or detection error or false negative error). Both types
of errors are conveniently expressed in terms of the power function:

π(θ, δ) := Eθδ(X) = Pθ(T (X) ≥ c).

Note that for θ ∈ Θ0, the power function π(θ, δ) is the α-error of the test (at a specific θ) and
for θ ∈ Θ1 is the probability of correct acceptance of the particular alternative θ. The α-error
of a test is defined as the highest probability over Θ0 of erroneously rejecting H0:

α := sup
θ∈Θ0

Pθ(T (X) ≥ c) = sup
θ∈Θ0

π(θ, δ), (8a1)

and the β-error is the highest probability over Θ1 of erroneously accepting H0:

β := sup
θ∈Θ1

Pθ(T (X) < c) = 1− inf
θ∈Θ1

π(θ, δ).

Let’s try to get a feeling of how c affects these three quantities (it may be helpful to think of
the signal detection again). For large critical values c, we shall rarely rejectH0 and, in particular,
shall rarely reject erroneously, and consequently shall get small α-error. On the other hand, for
exactly the same reason we shall get little power at θ ∈ Θ1 (and hence large β-error). Conversely,
small c will cause frequent rejections and hence higher false alarms, however will yield higher

2in fact, we may also consider randomized tests, i.e. those in which the decision is taken not only on the
basis of the sample realization, but also on an auxiliary randomness. More specifically, δ(X) is allowed to take
values in the interval [0, 1] (rather than in the set of two points {0, 1}) and a coin with probability of heads δ(X)
is tossed: H0 is rejected if the coin comes up heads. It turns out that this general framework is more flexible and
convenient in certain situations (see Remark 8b6)
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values of power at θ ∈ Θ1. This tradeoff is the key to the optimality theory of tests: we would
like to make small false alarm errors and simultaneously have large power at the alternatives
(or, equivalently, to make small errors of both types simultaneously).

If a test erroneously rejects H0 with probability less than α > 0 for all θ ∈ Θ0, then it is
said to have the level of significance α. Clearly a test of level α is also of level α′ is α′ > α. The
smallest level of the test is referred to as its size (which is nothing but the definition (8a1)).

Example 8a1 (continued) Let’s calculate the power function of the test δ(X) = {X̄n ≥ c} of
H0 : θ = 0 against H1 : θ > 0:

π(θ, δ) = Pθ
(
X̄n ≥ c

)
= Pθ

(√
n(X̄n − θ)/σ ≥

√
n(c− θ)/σ

)
= 1− Φ

(√
n(c− θ)/σ

)
,

where Φ is the c.d.f of a standard Gaussian r.v. and we used the fact that ξ :=
√
n(X̄n− θ)/σ ∼

N(0, 1). Note that π(θ, δ) is an increasing function of θ (why ?). The size of the test is

α = sup
θ∈Θ0

π(θ, δ) = π(0, δ) = 1− Φ
(√
nc/σ

)
.

Hence if we want our test to have the size α, we shall choose

c(α) = σΦ−1(1− α)/
√
n.

For larger values of n, c(α) gets smaller, which agrees with the fact that X̄n is closer to 0 under
H0. For the critical value corresponding to the size α, the power function reads

π(θ, δ) = 1− Φ
(√

n(σΦ−1(1− α)/
√
n− θ)/σ

)
= 1− Φ

(
Φ−1(1− α)−

√
nθ/σ)

)
, (8a2)

Pay attention (see Figure 1) that for small values of the alternative θ ∈ Θ1, the power is
close to α (which is of course anticipated as the power function is continuous in this case). On
the other hand, for any θ ∈ Θ1, the power tends to 1 as n→ ∞, i.e. the test makes small errors
of both types. In particular, we can choose n large enough to force arbitrarily small β-errors at
any value of θ from the alternative. �

Remark 8a3. This example shows that the power of the test is close to α at θ’s close to
the null hypothesis, which of course confirms the fact that close values of the hypothesis and
alternatives are hard to distinguish. Hence often the practical requirement is formulated in terms
of the size of the test α and the minimal power of the test outside some indifference region of
length ∆, where good testing quality cannot be expected. For instance, in the previous example
one can require level α = 0.01 and minimal power 0.9 outside the indifference region [0, 1] (i.e.
∆ = 1). The corresponding n is easily found, using monotonicity of π(θ, δ) and the formula
(8a2).

Another practically useful notion is the p-value of the test. Suppose a simple null hypotheses
is tested by means of a test statistic T . The p value is defined as the probability of getting the
values of the test statistic more extreme than the actually observed one:

p(t) := Pθ0(T ≥ t), t ∈ R.

Large p-value indicates that the observed value of the test statistic is typical under the null
hypothesis, which is thus to be accepted. If T has a continuous increasing c.d.f., then the
random variable p(T ) has uniform distribution, irrespectively of Pθ0 (think why). Hence the
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Figure 1. π(θ, δ) for the test in Example 8a1

test, which rejects the null hypotheses if and only if the p-value is less than α ∈ (0, 1), has the
significance level α.

The p-value formalism of the statistical hypothesis testing is preferred by some practitioners,
since in addition to acceptance/rejection decision, it provides a quantitative information of how
firmly the null hypothesis is supported.

Here is an example with a more practical flavor:

Example 8a4. Suppose we toss a coin n times and would like to test the hypothesis that
the coin is fair. Assuming the i.i.d. Ber(θ) model, we are faced with the problem of testing
H0 : θ = 1/2 against H1 : θ ̸= 1/2 on the basis of the outcome of n tosses X = (X1, ..., Xn).
Since the empirical mean X̄n is close to the actual value of θ (at least for large n’s), the two-sided
test δ(X) = {|X̄n − 1/2| ≥ c} appears reasonable. The power function of this test is given by:

π(θ, δ) = Pθ
(
|X̄n − 1/2| ≥ c

)
=

∑
k:|k/n−1/2|≥c

(
n
k

)
θk(1− θ)n−k.

The critical value of the test of level α is the minimal c satisfying the inequality

π(1/2, δ) ≤ α =⇒
∑

k:|k/n−1/2|≥c

(
n
k

)
≤ 2nα,

which can be found numerically. For large n, such calculation can be difficult and, alternatively,
one can use the CLT to construct an approximate test. Assuming that n is large enough (to
justify the approximation) and adding the subscript n to c to emphasize its dependence on n,
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we get:

π(1/2, δ) = P1/2

(
|X̄n − 1/2| ≥ cn

)
= P1/2

(∣∣∣√nX̄n − 1/2

1/2

∣∣∣ ≥ 2cn
√
n
)

n→∞−−−→ 2Φ
(
− 2z

)
,

where the convergence holds, if cn := z/
√
n is chosen with a constant z. Now, we shall choose

z to meet the size requirement, i.e. 2Φ
(
− 2z

)
= α or z := −1

2Φ
−1(α/2). To recap, the critical

value

cn(α) = − 1

2
√
n
Φ−1(α/2),

yields a test, whose size is approximately α. The approximation is justified on the basis of CLT,
if we believe that n is large enough to regard the limit as a valid approximation for a fixed n.

In fact, the approximation can be treated more rigorously using the following refinement of
the CLT:

Theorem 8a5 (Berry-Esseen). Let (ξi) be a sequence of i.i.d. random variables with zero

mean and unit variance. Then the c.d.f. Fn(x) = P
(

1√
n

∑n
i=1 ξi ≤ x

)
satisfies∣∣Fn(x)− Φ(x)

∣∣ ≤ Cm3√
n
, x ∈ R, n ≥ 1,

where m3 := E|ξ1|3 and C is an absolute constant with value less than 0.4784

For the problem at hand ξi :=
Xi − E1/2Xi√
var1/2(Xi)

= 2(Xi − 1/2) and with cn := z/
√
n,

P1/2

(∣∣∣√nX̄n − 1/2

1/2

∣∣∣ ≥ 2cn
√
n
)
= P1/2

(∣∣∣ 1√
n

n∑
i=1

ξi

∣∣∣ ≥ 2z
)
= 1− Fn(2z) + Fn(−2z).

By the B-E theorem,

|Fn(±2z)− Φ(±2z)| ≤ CE|ξ1|3√
n

=
C√
n
,

and for z∗ := −1
2Φ

−1(α/2)∣∣∣P1/2

(∣∣∣√nX̄n − 1/2

1/2

∣∣∣ ≥ 2z∗
)
− α

∣∣∣ ≤∣∣∣1− Fn(2z
∗)− 1

2
α
∣∣∣+ ∣∣∣Fn(−2z∗)− 1

2
α
∣∣∣ =∣∣∣1− Fn(2z

∗)−
(
1− Φ(2z∗)

)∣∣∣+ ∣∣∣Fn(−2z∗)− Φ
(
− 2z∗

)∣∣∣ ≤ 2Cn−1/2 ≤ 1√
n
.

Let us stress that the latter inequality holds for any n and not just asymptotically. Hence for a
given α, one can choose an n, which yields the approximation of the required quality.

Application of the limit theorems must be done with care. For example, suppose that we
want to calculate the power of the obtained test at a particular value of alternative (e.g. at an
end point of an indifference region, say at θ1 := 3/4):

π(3/4, δ) = P3/4

(
|X̄n − 1/2| ≥ z∗/

√
n
)
.



174 8. HYPOTHESIS TESTING

Note that this time the critical value is already fixed. Let’s try to implement the same approach
as above:

P3/4

(
|X̄n − 1/2| ≥ z∗/

√
n
)
= P3/4

(√
n
X̄n − 3/4√

3/4
≥

√
n
z∗/

√
n− 1/4√
3/4

)
+

P3/4

(√
n
X̄n − 3/4√

3/4
≤ −

√
n
z∗/

√
n+ 1/4√
3/4

)
= P3/4

(√
n
X̄n − 3/4√

3/4
≥ z∗ − 1/4

√
n√

3/4

)
+

P3/4

(√
n
X̄n − 3/4√

3/4
≤ −z

∗ + 1/4
√
n√

3/4

)
= 1− Fn

(
z∗ − 1/4

√
n√

3/4

)
+ Fn

(
−z

∗ + 1/4
√
n√

3/4

)
.

Note that Fn(·) in the latter expression is evaluated at points, which themselves depend on n
and hence CLT is not informative (or applicable) anymore: this expression converges3 to 1 as

n → ∞. In particular, pretending that e.g. Fn

(
z∗−1/4

√
n√

3/4

)
≈ Φ

(
z∗−1/4

√
n√

3/4

)
cannot be easily

justified (though often done in practice).
Finally, let’s demonstrate how p-value is calculated for this problem. Suppose that we toss

the coin 50 times and obtain 35 heads. The p-value is then given by:

P1/2(|X̄50 − 1/2| ≥ |35/50− 1/2|) = P1/2(|S50 − 25| ≥ 10) = 2
∑
k≥35

(
50
k

)
(1/2)50 = 0.0066...

which indicates that the obtained sample poorly supports the hypothesis H0 (or in other words
this outcome is not typical for a fair coin). �

b. Comparison of tests and optimality

From the decision theoretic point of view, it makes sense to compare tests of the same size:

Definition 8b1. Let δ and δ̃ be tests of size α. The test δ is more powerful than δ̃, if

π(θ, δ) ≥ π(θ, δ̃), ∀θ ∈ Θ1.

Definition 8b2. A test δ∗ of size α is uniformly most powerful (UMP) if it is more powerful
than any other test δ of size α.

As in the case of the point estimators, two tests of size α do not have to be comparable
in the sense of the latter definition and the UMP test does not have to exist. When both the
hypothesis and the alternative are simple, the UMP4 test can be found explicitly:

Theorem 8b3 (Neyman-Pearson lemma). Consider the statistical model (Pθ)θ∈Θ with Θ =
{θ0, θ1}, X ∼ Pθ and let L(x; θ0) and L(x; θ1) be the corresponding likelihood functions. Then
the likelihood ratio test5:

δ∗(X) = I

(
L(X; θ1)

L(X; θ0)
≥ c(α)

)
,

of size α < 1 is MP.

3again, by the Berry-Esseen theorem (check!)
4in fact it is MP (most powerful) test, since the alternative is simple
5A better way to define the test is

δ∗(X) = I

(
L(X; θ1) ≥ c(α)L(X; θ0)

)
,
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Remark 8b4. The test is not counterintuitive: if the sample X comes from Pθ0 , then
L(X; θ0) will be typically greater than L(X; θ1) and hence the test statistic in δ∗ is small, i.e.
H0 is rarely rejected. This also provides the heuristic grounds for the so called generalized
likelihood ratio test, which is the main tool in more general hypothesis testing problems (see
Section c below).

Remark 8b5. Note that if S(X) is the minimal sufficient statistic for θ ∈ Θ, then by the
F-N factorization theorem the likelihood ratio test depends on the sample only through S(X).

Proof. We shall give the proof for the continuous case, when the likelihoods are in fact
p.d.f.’s on Rn (the discrete case is treated similarly). We have to show that if δ is a test of level
α, i.e. Eθ0δ(X) ≤ α, then

Eθ1δ
∗(X) ≥ Eθ1δ(X). (8b1)

To this end

Eθ1δ(X) =

∫
Rn

δ(x)f(x; θ1)dx =

c(α)

∫
Rn

δ(x)f(x; θ0)dx+

∫
Rn

δ(x)
(
f(x; θ1)− c(α)f(x; θ0)

)
dx =

c(α)Eθ0δ(X) +

∫
Rn

δ(x)
(
f(x; θ1)− c(α)f(x; θ0)

)
dx.

(8b2)

Further, ∫
Rn

δ(x)
(
f(x; θ1)− c(α)f(x; θ0)

)
dx

†
≤∫

Rn

δ(x)I
(
f(x; θ1)− c(α)f(x; θ0) ≥ 0

)(
f(x; θ1)− c(α)f(x; θ0)

)
dx

‡
≤∫

Rn

I
(
f(x; θ1)− c(α)f(x; θ0) ≥ 0

)(
f(x; θ1)− c(α)f(x; θ0)

)
dx =∫

Rn

δ∗(x)
(
f(x; θ1)− c(α)f(x; θ0)

)
dx = Eθ1δ

∗(X)− c(α)Eθ0δ
∗(X) =

Eθ1δ
∗(X)− c(α)α,

where † holds since δ(x) ≥ 0 and ‡ is true as δ(x) ≤ 1. Plugging the latter inequality into (8b2)
yields

Eθ1δ(X) ≤ c(α)
(
Eθ0δ(X)− α

)
+ Eθ1δ

∗(X) ≤ Eθ1δ
∗(X),

where the last inequality holds, since c(α) ≥ 0 (otherwise α = 1) and Eθ0δ(X) ≤ α. �

Remark 8b6. If the likelihood ratio does not have a continuous distribution, as will typically
be the case if X is discrete, then it might be impossible to find the critical value c, so that the
N-P test has the precise level α. In this case, the UMP test exists in the more general class of
randomized test. In practice, if a randomized test is undesirable, one can switch to the largest
achievable size less than α.

which does not run into the problem of division by zero (in case, the likelihoods do not have the same support)
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Example 8b7. Suppose that we observe the outcome of n independent tosses of one of two
coins with the head probabilities 0 < θ0 < θ1 < 1 respectively. We want to decide which coin
was actually tossed, i.e. test H0 : θ = θ0 against H1 : θ = θ1 given the sample X = (X1, ..., Xn).

The likelihood ratio statistic is

L(X; θ1)

L(X; θ0)
=

(
θ1
θ0

)Sn(x)(1− θ1
1− θ0

)n−Sn(x)

where Sn(X) =
∑n

i=1Xi, and the N-P test rejects H0 if and only if(
θ1
θ0

)Sn(x)(1− θ1
1− θ0

)n−Sn(x)

≥ c,

or, equivalently, (
1/θ0 − 1

1/θ1 − 1

)Sn(x)

≥ c

(
1− θ0
1− θ1

)n
.

Since θ0 < θ1, the N-P test is

δ∗(X) =
{
Sn(X) ≥ c′

}
,

where the critical value c′ is to be chosen to match the desired level α. The power function of
this test is

π(θ, δ∗) =
∑
k≥c′

(
n
k

)
θk(1− θ)n−k, θ ∈ {θ0, θ1}.

If α is in the range of π(θ0, δ
∗) considered as a function of c′, then the corresponding critical

value is the unique root of the equation∑
k≥c∗(α)

(
n
k

)
θk0(1− θ0)

n−k = α,

which can be found either numerically. The MP test of level α is now

δ∗(X) =
{
Sn(X) ≥ c∗(α)

}
. (8b3)

�

Example 8b8. Consider the signal detection problem, when we know the exact value of the
signal to be θ1 > 0. We observe n i.i.d. samples from N(θ, σ2), θ ∈ Θ = {0, θ1} where σ2 > 0
is known and would like to decide whether the signal is present. Put into the above framework,
we are faced with the problem of testing H0 : θ = 0 against the alternative H1 : θ = θ1. The
corresponding likelihood is

Ln(x; θ) =
( 1√

2πσ2

)n
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2
)
, x ∈ Rn, θ ∈ Θ (8b4)

and the likelihood ratio test statistic is

Ln(X; θ1)

Ln(X; 0)
= exp

(
− 1

2σ2

n∑
i=1

(Xi − θ1)
2 +

1

2σ2

n∑
i=1

X2
i

)
= exp

(
θ1
σ2

n∑
i=1

Xi − n/2

)
,
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and the N-P test rejects H0 (i.e. decides that there is a signal) if and only if

exp

(
θ1
σ2

n∑
i=1

Xi − n/2

)
≥ c,

for a critical value c to be chosen to meet the level specification. Note that the above is equivalent
to the test suggested in Example 8a1 on the intuitive grounds:

X̄n ≥ c′,

where c′ is related to c by a one-to-one correspondence, which is not of immediate interest to
us, since we shall choose c′ directly to get a test of level α. To this end, note that under H0,
X̄n ∼ N(0, σ2/n) and hence the level of the test is given by

P0

(
X̄n ≥ c′

)
= P0

(√
nX̄n/σ ≥

√
nc′/σ

)
= 1− Φ

(√
nc′/σ

)
= α,

which gives c′ = σ√
n
Φ−1(1− α). Thus the MP test of level α is then

δ∗(X) =

{
X̄n ≥ σ√

n
Φ−1(1− α)

}
. (8b5)

The power of this test at θ1 is given by

π(θ1, δ
∗) =Pθ1

(
X̄n ≥ σ√

n
Φ−1(1− α)

)
= Pθ1

(√
n
X̄n − θ1

σ︸ ︷︷ ︸
∼N(0,1)

≥ Φ−1(1− α)− θ1
σ/

√
n

)
=

1− Φ

(
Φ−1(1− α)− θ1

σ/
√
n

)
.

(8b6)

As n increases, the power at θ1 approaches 1, while the level remains α. �
Note that the test (8b5) is most powerful against any simple alternative θ1 > 0 and does

not itself depend on θ1. Hence we can use δ∗ to test H0 : θ = 0 against H1 : θ = θ1, without
knowing the value of θ1! Let δ(X) be an arbitrary level α test of H0 : θ = 0 against H1 : θ > 0,
i.e. E0δ(X) ≤ α. Then by the N-P lemma for any fixed θ1 ∈ Θ1,

π(θ1, δ
∗) ≥ π(θ1, δ),

and since θ1 is arbitrary alternative, we conclude that δ∗ is UMP:

π(θ, δ∗) ≥ π(θ, δ), ∀θ ∈ Θ1. (8b7)

Of course, independence of the test δ∗ of the alternative parameter value θ1 was crucial and, in
fact, in general will not be the case.

Furthermore, note that the power function (8b6) of δ∗ is continuous and monotonically
increasing in θ1. Consider δ

∗ as a test for the problem

H0 : θ ≤ 0

H1 : θ > 0
(8b8)

Clearly, δ∗ has size α in this problem

sup
θ≤0

π(θ, δ∗) = π(0, δ∗) = α.
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Now let δ be another test of size α, i.e. supθ≤0 π(θ, δ) ≤ α, and suppose that

π(θ′, δ) > π(θ′, δ∗) (8b9)

for some θ′ ∈ Θ1. Consider the tests δ and δ∗ for testing the simple problem

H0 : θ = 0

H1 : θ = θ′.

Again by N-P lemma δ∗ is MP in this problem, which contradicts (8b9), since π(0, δ) ≤ α. Thus
we conclude that δ∗ is the UMP test for the more complex problem (8b8).

To recap, remarkably the N-P likelihood ratio test, which, at the outset, is optimal only
for testing simple hypothesis versus simple alternative, is in fact UMP test in the two latter
examples. It turns out that this is a somewhat more general phenomena:

Definition 8b9. A family of probability distributions (Pθ)θ∈Θ, Θ ⊆ R with the likelihood
L(x; θ) is said to be a monotone likelihood ratio family in statistic T (X), if for any θ0 < θ1, Pθ0
and Pθ1 are distinct and L(x; θ1)/L(x; θ0) is a strictly increasing function of T (x).

Theorem 8b10 (Karlin-Rubin). If (Pθ)θ∈Θ is a monotone likelihood ratio family with respect
to T (X) and T (X) has a continuous distribution under Pθ0, then T (X) is the optimal test
statistic6 for testing

H0 : θ ≤ θ0

H1 : θ > θ0
(8b10)

and the corresponding power function is increasing.

Remark 8b11. ‘Strictly increasing’ in the above definition can be replaced with nondecreas-
ing and continuity of the distribution in the Theorem 8b10 can be omitted, if randomized tests
are allowed, or alternatively, some levels are forbidden.

Proof. By the assumption

R(x; θ1, θ0) := L(x; θ1)/L(x; θ0) = ϕ(T (x); θ1, θ0),

where t 7→ ϕ(t, θ1, θ0) is a strictly increasing function for any θ1 > θ0. Hence for any c in the
range of ϕ {

L(x; θ1)

L(x; θ0)
≥ c

}
=
{
T (X) ≥ ϕ−1(c; θ1, θ0)

}
.

In particular, this is true for the critical value cα(θ0, θ1), which yields the level α at θ0, i.e.

Pθ0
(
L(x; θ1)

L(x; θ0)
≥ cα(θ1, θ0)

)
= α,

and it follows that

Pθ0
(
T (X) ≥ ϕ−1

(
cα(θ1, θ0); θ1, θ0

))
= α.

6i.e. the α level {T (X) ≥ c(α)} is UMP
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Since T (X) has a continuous distribution under Pθ0 , the latter can be solved for c′α(θ0) :=
ϕ−1

(
cα(θ1, θ0); θ1, θ0

)
, which does not depend on θ1. Hence we conclude that the level α likeli-

hood ratio test for the simple problem

H0 : θ = θ0

H1 : θ = θ1

with θ1 > θ0 has the form {T (X) ≥ c′α}, where c′α does not depend on θ1.
We shall prove shortly that the power function of this test π(θ, δ∗) = Eθδ∗(X) is strictly

increasing in θ. Then supθ≤θ0 π(θ, δ
∗) = π(θ0, δ

∗) = α, i.e. δ∗ is a level α test for the problem
(8b10).

Let’s repeat the arguments from the discussion, preceding Definition 8b9, to show that δ∗

is in fact UMP for the problem (8b10). Suppose that this is not the case and there is a test δ
with supθ≤θ0 π(θ, δ) ≤ α, such that

π(θ′, δ) > π(θ′, δ∗), (8b11)

for some θ′ > θ0. Now consider the problem of testing two simple hypotheses

H0 : θ = θ0

H1 : θ = θ′.

Note that π(θ0, δ) ≤ α and hence (8b11) contradicts the statement of the N-P lemma, which
shows that δ∗ is UMP for the problem (8b10), as claimed.

To complete the proof, it remains to check that the power function π(θ, δ∗) is strictly in-
creasing in θ. To this end, we shall show that for an nondecreasing function ψ, the function
θ 7→ Eθψ

(
T (X)

)
is increasing: in particular, with7 ψ(u) := I(u ≥ c(α)) this implies that the

power π(θ, δ∗) = EθI(T (x) ≥ c(α)) increases in θ.

7I(u ≥ c(α)) is a nondecreasing function of u: it jumps from 0 to 1 as u increases
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Recall that L(x; θ) = f(x; θ) and let θ′ > θ, then

Eθ′ψ(T (X))− Eθψ(T (X)) =

∫
Rn

ψ(T (x))
(
f(x; θ′)− f(x; θ)

)
dx =∫

Rn

ψ(T (x))

(
f(x; θ′)

f(x; θ)︸ ︷︷ ︸
=R(x;θ′,θ)

−1

)
f(x; θ)dx =

∫
R(x;θ′,θ)>1

ψ(T (x))
(
R(x; θ′, θ)− 1

)︸ ︷︷ ︸
>0

f(x; θ)dx+

∫
R(x;θ′,θ)<1

ψ(T (x))
(
R(x; θ′, θ)− 1

)︸ ︷︷ ︸
<0

f(x; θ)dx ≥

inf
x:R(x;θ′,θ)>1

ψ(T (x))

∫
R(x;θ′,θ)>1

(
R(x; θ′, θ)− 1

)
f(x; θ)dx+

sup
x:R(x;θ′,θ)<1

ψ(T (x))

∫
R(x;θ′,θ)<1

(
R(x; θ′, θ)− 1

)
f(x; θ)dx =(

inf
x:R(x;θ′,θ)>1

ψ(T (x))− sup
x:R(x;θ′,θ)<1

ψ(T (x))
)∫

R(x;θ′,θ)>1

(
f(x; θ′)− f(x; θ)

)
dx,

where in the last equality we used the identity:

0 =

∫
Rn

(
f(x; θ′)− f(x; θ)

)
dx =

∫
Rn

(
R(x; θ′, θ)− 1

)
f(x; θ)dx =∫

R(x;θ′,θ)<1

(
R(x; θ′, θ)− 1

)
f(x; θ)dx+

∫
R(x;θ′,θ)>1

(
R(x; θ′, θ)− 1

)
f(x; θ)dx.

Note that ∫
R(x;θ′,θ)>1

(
f(x; θ′)− f(x; θ)

)
dx > 0

and it is left to show that

inf
x:R(x;θ′,θ)>1

ψ(T (x)) ≥ sup
x:R(x;θ′,θ)<1

ψ(T (x)).

The latter holds, since ψ is an nondecreasing function and R(x; θ′, θ) is increasing in T (x). �
Here is a frequently encountered instance of the monotone likelihood ratio family

Lemma 8b12. One-parameter exponential family (see (7d5)) (Pθ)θ∈Θ with

L(x; θ) = exp
(
c(θ)T (X) + d(θ) + S(x)

)
I(x ∈ A),

where c(θ) is a strictly increasing function, is monotone likelihood ratio family in T (X).

Proof. Since c(θ) is an increasing function, for θ1 > θ0, c(θ1) − c(θ0) > 0 and thus the
likelihood ratio

L(x; θ1)

L(x; θ0)
= exp

((
c(θ1)− c(θ0)

)
T (X) + d(θ1)− d(θ0)

)
I(x ∈ A),
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increases in T (x). �

Corollary 8b13. The conclusion of Theorem 8b10 holds for one-parameter exponential
family as in Lemma 8b12 (if T (X) has continuous distribution).

Example 8b8 (continued) The likelihood function (8b4) belongs to the one parameter ex-
ponential family:

Ln(x; θ) =
( 1√

2πσ2

)n
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2
)
=

exp
(
− n/2 log(2πσ2)− 1

2σ2

n∑
i=1

x2i +
θ

σ2

n∑
i=1

xi −
n

2σ2
θ2
)
,

with c(θ) = θ/σ2, which is an increasing function. Hence by Corollary 8b13, it is also monotonic
likelihood ratio family and hence by K-R Theorem 8b10, the level α test (8b5) is UMP in testing
H0 : θ ≤ 0 against H1 : θ > 0. �

Example 8b7 (continued) The likelihood

L(x; θ) = θSn(x)(1− θ)n−Sn(x) = exp
{
Sn(x) log

θ

1− θ
+ n log(1− θ)

}
belong to the exponential family with c(θ) = log θ/(1 − θ), which is strictly increasing. Hence
the test (8b3) is UMP in testing H0 : θ ≤ θ0 against H1 : θ > θ0. �

Unfortunately, K-R theorem does not easily extend to hypothesis testing problems with a
more complicated structure: e.g. it doesn’t appear to have a natural analog in the case of
multivariate parameter space or when the alternative is two-sided. In fact, UMP test may fail
to exist at all. To see why we shall need a result, converse to the Neyman-Pearson lemma:

Proposition 8b14. Let δ be a test of H0 : θ = θ0 against H1 : θ = θ1, with both types of
errors less than those of the N-P test. Then the two tests coincide, except perhaps on the set on
which the likelihood ratio equals the critical value of the N-P test.

Proof. Let δ∗ be the N-P test, then under the assumptions of the proposition

Eθ0δ(X) ≤ Eθ0δ
∗(X)

and

Eθ1
(
1− δ(X)

)
≤ Eθ1

(
1− δ∗(X)

)
.

The first inequality reads ∫
Rn

δ(x)fX(x; θ0)dx ≤
∫
Rn

δ∗(x)fX(x; θ0)dx

and the second one: ∫
Rn

δ(x)fX(x; θ1)dx ≥
∫
Rn

δ∗(x)fX(x; θ1)dx.
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Let c be the critical value of the N-P test (w.l.o.g. c ≥ 0), then multiplying the former inequality
by −c and adding it to the latter, we get:∫

Rn

δ(x)
(
fX(x; θ1)− cfX(x; θ0)

)
dx ≥

∫
Rn

δ∗(x)
(
fX(x; θ1)− cfX(x; θ0)

)
dx,

and ∫
Rn

(
δ(x)− δ∗(x)

)(
fX(x; θ1)− cfX(x; θ0)

)
dx ≥ 0

Let D := {x ∈ Rn : fX(x; θ1)− cfX(x; θ0) ≥ 0}, then the latter reads:∫
D

(
δ(x)− 1

)︸ ︷︷ ︸
≤0

(
fX(x; θ1)− cfX(x; θ0)

)
︸ ︷︷ ︸

≥0

dx+

∫
Dc

(
δ(x)− 0

)︸ ︷︷ ︸
≥0

(
fX(x; θ1)− cfX(x; θ0)

)
︸ ︷︷ ︸

≤0

dx ≥ 0.

The latter inequality is possible if and only if

δ(X) =

{
1 fX(x; θ1)− cfX(x; θ0) > 0

0 fX(x; θ1)− cfX(x; θ0) < 0,

i.e. δ(x) coincides with δ∗(x) as claimed.
�

Here is a typical example, in which UMP doesn’t exist:

Example 8b15. Let X1, ..., Xn be a sample from N(θ, 1), θ ∈ R distribution and suppose
we want test the problem

H0 : θ = θ0

H1 : θ ̸= θ0,

where θ0 is known. Suppose δ∗ is the UMP test of level α. In particular, this implies that δ∗ is
MP for the problem

H0 : θ = θ0

H1 : θ = θ′,

for some θ′ > θ0. By Proposition 8b14, δ∗ coincides with the level α N-P test for the latter
problem, i.e. δ∗(X) = {X̄ ≥ cα} for an appropriate critical value cα. But on the other hand, δ∗

is MP for the problem

H0 : θ = θ0

H1 : θ = −θ′,

and hence must have the form δ∗(X) = {X̄ ≤ c′α}. This contradiction shows that the UMP test
does not exist for the two-sided problem. �

The UMP test may not exist even for the one-sided problem of testing H0 : θ = θ0 against
H1 : θ > θ0, as the following example demonstrates.
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Example 8b16. Let X be a single sample from the Cauchy density with the location pa-
rameter θ ∈ Θ = R:

f(x; θ) =
1/π

1 + (x− θ)2
, x ∈ R.

The likelihood ratio is

R(x; θ1, θ0) :=
L(x; θ1)

L(x; θ0)
=

1 + (x− θ0)
2

1 + (x− θ1)2
.

For fixed θ1 > θ0, this ratio is not monotonous in x: take e.g. θ0 = 0 and θ1 = 1, for which

lim
x→±∞

R(x; 1, 0) = 1 and R(1; 1, 0) = 2.

Hence this model is not monotonic likelihood ratio family.
Does the UMP level α test exist for testing H0 : θ = θ0 against H1 : θ > θ0? Suppose it does

and call it δ∗. Then δ∗ is the MP test for

H0 : θ = θ0

H1 : θ = θ1,

for any θ1 > θ0. Since the likelihood ratio statistic has continuous distribution, by Proposition
8b14 δ∗ must coincide with the N-P test for the latter problem. But since θ1 is arbitrary and
δ∗ does not depend on θ1, this is possible only if the level α N-P test does not depend on the
value of the alternative θ1.

Let θ0 = 0 for definiteness, then the N-P test is given by{
L(x; θ0)

L(x; θ1)
≥ c

}
=

{
1 + x2

1 + (x− θ1)2
≥ c

}
.

It is easy to get convinced8 that for different θ1, the α level test has different critical regions.
�

c. Generalized likelihood ratio test

While the N-P test is not applicable in the general hypothesis testing problem, it motivates
the following heuristic approach. Suppose we sample X from Pθ, and we would like to test
H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where Θ0 ⊎ Θ1 = Θ. Let θ̂0(X) be the MLE estimator of θ,
under hypothesis H0

θ̂0(X) = argmaxθ∈Θ0
L(X; θ)

and similarly

θ̂1(X) = argmaxθ∈Θ1
L(X; θ).

With enough data at hand (e.g. in the large sample asymptotic regime), we expect that θ̂1 will

be close to the actual value of the parameter, when H1 is true, while θ̂0 will be far from it (as
it is forced to be in Θ0). Hence the test statistic

λ(X) :=
L
(
X; θ̂1(X)

)
L
(
X; θ̂0(X)

) =
supθ∈Θ1

L
(
X; θ

)
supθ∈Θ0

L
(
X; θ

) (8c1)

8e.g. a calculation reveals that the likelihood ratio has a global maximum at θ1/2 +
√

(θ1/2)2 + 1, whose

value increases with θ1. Hence for small α we shall get even nonintersecting critical regions
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will yield large values and hence the test
{
λ(X) ≥ c

}
, with an appropriate critical value c will

tend to reject the null hypothesis correctly. Conversely, when H0 is true, the null hypothesis
will be correctly accepted with large probability.

This test is called generalized likelihood ratio test (GLRT). While the test statistic (8c1)
is not guaranteed to produce optimal tests, it nevertheless typically does lead to good tests in
many problems of interest and thus is used as the main test design tool in practice. Moreover,
the critical value of GLRT can be efficiently approximated9for large n (see Theorem 8c6 below).

Remark 8c1. If the likelihood L(x; θ) is continuous in θ and Θ0 has a smaller dimension
than Θ1 (which itself has the dimension of Θ), then (8c1) reads:

λ(X) =
supθ∈Θ L

(
X; θ

)
supθ∈Θ0

L
(
X; θ

) .
Such situations are typical in applications and hence this latter form is sometimes called GLRT.
In this context, the maximizers over Θ0 and Θ1 are referred to as restricted and unrestricted
MLEs respectively.

Below we shall explore a number of classical examples.

Example 8b7 (continued) A coin is tossed and we want to decide whether it is fair or not,
i.e. test H0 : θ0 = 1/2 against H1 : θ ̸= 1/2. The GLRT statistic in this case is given by

λ(X) =
supθ∈(0,1)\1/2 L

(
X; θ

)
supθ∈{1/2} L

(
X; θ

) =
supθ∈(0,1) θ

Sn(X)(1− θ)n−Sn(X)

(1/2)n
=

2n(X̄n)
Sn(X)(1− X̄n)

n−Sn(X) = 2n(X̄n)
nX̄n(1− X̄n)

n(1−X̄n),

and thus

log λ(X) = n log 2 + nX̄n log X̄n + n(1− X̄n) log(1− X̄n) =: n
(
h(1/2)− h

(
X̄n

))
,

where
h(p) = −p log p− (1− p) log(1− p),

is the Shannon entropy of the Ber(p) r.v. It is easy to see that h(p) is maximal at p = 1/2 and
symmetric around it. The GLRT rejects H0 if and only if

δ(X) =
{
h
(
X̄n

)
≤ c
}
,

i.e. if the ‘empirical’ entropy is small. Note that this is a two-sided test and, in fact, it is
equivalent to our original suggestion {|X̄n−1/2| ≥ c} (why?). To get an α test, we have to choose
an appropriate c, which for large n can be done approximately, using normal approximation. �

Example 8c2. (matched pairs experiment)
Suppose we want to establish effectiveness of a medicine, whose effect varies, depending on

the weight, sleeping regime, diet, etc. of the patient. To neutralize the effect of different habits,
a pair of patients with the similar habits is chosen, one of them is given a placebo and the other

9One of the major difficulties in constructing practical tests is calculation of the critical value for the given
size α. This basically reduces to finding the distribution of the the test statistic, which can be a complicated
function of the sample.
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one is treated by the medicine. The responses are recorded and the experiment is repeated
independently n times with other pairs. In this setting it is not unnatural to assume that the
differences in responses X1, ..., Xn is a sample from N(µ, σ2), where both µ and σ2 are unknown.
We want to test H0 : µ = 0 against H1 : µ ̸= 0. In this problem, θ = (µ, σ2) ∈ Θ = R × R+.
Under hypothesis H0, the value of µ is known to be 0 and the MLE of σ2 is given by

σ̂20(X) =
1

2

n∑
i=1

X2
i .

Under H1, the MLE of µ and σ2 are given by10

µ̂1 = X̄n

σ̂21 =
1

n

n∑
i=1

(Xi − X̄n)
2.

The GLRT statistic is:

λ(X) =
L(X; θ̂1)

L(X; θ̂0)
=(

σ̂21(X)
)−n/2(

σ̂20(X)
)−n/2 exp{− 1

2

1

σ̂21(X)

n∑
i=1

(
Xi − X̄n

)2
︸ ︷︷ ︸

=nσ̂2
1(X)

+
1

2

1

σ̂20(X)

n∑
i=1

X2
i︸ ︷︷ ︸

=nσ̂2
0(X)

}
=

(
σ̂20(X)

σ̂21(X)

)n/2
.

Note that

σ̂20(X)/σ̂21(X) =
σ̂21(X) + X̄2

n

σ̂21(X)
= 1 +

X̄2
n

σ̂21(X)
= 1 +

(
X̄n√
σ̂21(X)

)2

,

and hence the GLRT test rejects H0 if and only if{∣∣∣√n− 1
X̄n√
σ̂2n(X)

∣∣∣ ≥ c

}
,

which is the familiar two sided test. By Proposition 5a1,

√
n− 1

X̄n√
σ̂2n(X)

∼ Stt(n− 1),

under H0 and α level test is obtained with the critical value c solving the equation

α = 2FStt(n−1)(−c) =⇒ c(α) = −F−1
Stt(n−1)(α/2).

The obtained test may not be UMP, but is still convenient and powerful enough for practical
purposes. �

Example 8c3. If the medicine in the previous example does not depend too much on the
patients’ habits, the experiment can be performed in a simpler manner: a group of m patients
is given a placebo and another group of n patients is treated with the drug. Assuming that
the responses X1, ..., Xm and Y1, ..., Yn of the first and the second groups are independent, with

10pay attention that we are maximizing with respect to µ over R \ {0}, but this leads to the usual estimator,
since the likelihood is continuous in θ - recall Remark 8c1.



186 8. HYPOTHESIS TESTING

Xi ∼ N(µ0, σ
2) and Yi ∼ N(µ1, σ

2), where µ0, µ1 and σ are unknown, we would like to decide
whether the medicine has had any effect, i.e. to test the hypothesis H0 : µ0 = µ1 against
H1 : µ0 ̸= µ1.

In this setting, θ = (µ0, µ1, σ
2) ∈ Θ = R× R× R+ and Θ0 is the hyperplane µ0 = µ1. The

likelihood is

L(x, y; θ) =

(
1√
2πσ2

)n+m
exp

(
− 1

2σ2

m∑
i=1

(xi − µ0)
2 − 1

2σ2

n∑
i=1

(yi − µ1)
2

)
.

Under H0, the MLE of µ = µ0 = µ1 is

µ̂ =
1

n+m

( n∑
i=1

Yi +
m∑
j=1

Xj

)
=

n

n+m
Ȳn +

m

n+m
X̄m

and the MLE of σ2 is

σ̂20 =
1

n+m

( n∑
i=1

(Yi − µ̂)2 +
m∑
j=1

(Xj − µ̂)2
)
.

Under H1, the MLE’s are µ̂0 = X̄m, µ̂1 = Ȳn and

σ̂21 =
1

n+m

( n∑
i=1

(Yi − Ȳn)
2 +

m∑
j=1

(Xi − X̄m)
2

)
.

The corresponding GLRT statistic is

λ(X,Y ) =

(
σ̂20
σ̂21

)n+m
exp

(
− 1

2σ̂21

( m∑
i=1

(Xi − X̄m)
2 +

n∑
i=1

(Yi − Ȳn)
2
)

+
1

2σ̂20

( m∑
i=1

(Xi − µ̂)2 + (Yi − µ̂)2
))

=

(
σ̂20
σ̂21

)n+m
.

This statistic is equivalent to

σ̂20
σ̂21

=

∑n
i=1

(
Yi − n

n+m Ȳn −
m

n+mX̄m

)2
+
∑m

j=1

(
Xj − n

n+m Ȳn −
m

n+mX̄m

)2∑n
i=1(Yi − Ȳn)2 +

∑m
j=1(Xi − X̄m)2

.

Note that
n∑
i=1

(
Yi −

n

n+m
Ȳn −

m

n+m
X̄m

)2
=

n∑
i=1

(
Yi − Ȳn + Ȳn −

n

n+m
Ȳn −

m

n+m
X̄m

)2
=

n∑
i=1

(
Yi − Ȳn +

m

n+m

(
Ȳn − X̄m

))2
=

n∑
i=1

(Yi − Ȳn)
2 + n

( m

n+m

)2(
Ȳn − X̄m

)2
and similarly

m∑
j=1

(
Xj −

n

n+m
Ȳn −

m

n+m
X̄m

)2
=

m∑
j=1

(Xi − X̄m)
2 +m

( n

n+m

)2(
Ȳn − X̄m

)2
.
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Then

σ̂20
σ̂21

= 1 +

(
n
(

m
n+m

)2
+m

(
n

n+m

)2)(
Ȳn − X̄m

)2∑n
i=1(Yi − Ȳn)2 +

∑m
j=1(Xi − X̄m)2

= 1 +
nm
n+m

(
Ȳn − X̄m

)2∑n
i=1(Yi − Ȳn)2 +

∑m
j=1(Xi − X̄m)2.

Hence the GLRT rejects H0 if and only if{ (
Ȳn − X̄m

)2∑n
i=1(Yi − Ȳn)2 +

∑m
j=1(Xi − X̄m)2

≥ c

}
.

Recall that by Proposition 5a1 the r.v.’s X̄m,
∑m

j=1(Xi − X̄m)
2, Ȳn and

∑n
i=1(Yi − Ȳn)

2 are

independent. Moreover, under H0, X̄m ∼ N(µ0, σ
2/m) and Ȳn ∼ N(µ1, σ

2/n) with µ0 = µ1 and
hence X̄m − Ȳn ∼ N

(
0, σ2(1/m + 1/n)

)
. The denominator has χ2 distribution, and hence the

test statistic has Student distribution with explicitly computable parameters (see Proposition
5a1 (4)). The level α test is now readily obtained, by choosing the appropriate critical value c,
expressed via the Student distribution quintile. �

Remark 8c4. If the unknown variances of the two populations in the preceding problem
are not assumed equal, the MLEs of the parameters cannot be found explicitly anymore and
consequently the GLRT statistic does not admit a closed form. In fact, even its numerical
computation turns to be quite challenging. This variant, often referred in the literature to as
the Behrens-Fisher problem, generated much research and a number of alternative solutions
have been proposed over the years. A classical approach due to Behrens and Fisher is to use
the standardized difference of the empirical means as the test statistic:

T (X,Y ) =
X̄ − Ȳ√

σ̂2(X) + σ̂2(Y )
,

where X̄ = 1
m

∑m
i=1Xi, Ȳ = 1

n

∑n
i=1 Yi and σ̂

2(X) and σ̂2(Y ) are the corresponding estimators
of the variances. A nontrivial issue is to find or approximate the distribution of T (X,Y ) under
H0 to be able to find an appropriate critical value, etc.

Example 8c5 (Test of independence). Given two samples X1, ..., Xn and Y1, ..., Yn we would
like to test whether they are independent or not. If the samples are Gaussian, the question of
independence translates to the question of lack of correlation. Assume that the pairs (Xi, Yi)
are i.i.d. and have bivariate Gaussian j.p.d.f. (2b1):

f(x, y) =
1

2πσ1σ2
√

1− ρ2
exp

{
− 1

2

1

1− ρ2

(
(x− µ1)

2

σ21
− 2ρ(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ22

)}
,

where all the parameters θ = (µ1, µ2, σ1, σ2, ρ) are unknown and vary in the corresponding
subspaces. We want to test the hypothesis H0 : ρ = 0 against H1 : ρ ̸= 0. The corresponding
likelihood function is

L(x, y; θ) =

(
1

2πσ1σ2
√

1− ρ2

)n
exp

{
− 1

1− ρ2

(∑
i

(xi − µ1)
2

2σ21
−
∑
i

ρ(xi − µ1)(yi − µ2)

σ1σ2
+
∑
i

(yi − µ2)
2

2σ22

)}
.
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Under both H0 and H1, the MLE estimators are

µ̂1 = X̄n

µ̂2 = Ȳn

σ̂21 =
1

n

n∑
i=1

(Xi − X̄n)
2

σ̂22 =
1

n

n∑
i=1

(Yi − Ȳn)
2.

Under H1, the MLE of ρ is

ρ̂ =
1

nσ̂1σ̂2

n∑
i=1

(Xi − X̄n)(Yi − Ȳn).

A direct calculation reveals the GLRT statistic:

log λ(X,Y ) = −n
2
log(1− ρ̂2).

Hence the GLRT rejects H0 if and only if {
|ρ̂| ≥ c

}
.

Recall that X̃i = (Xi−µ1)/σ1 and Ỹi = (Yi−µ2)/σ2 are N(0, 1) r.v.’s and thus it is easy to see
that the distribution of ρ̂ depends only on ρ and not on the rest of the parameters. Further, it
can be shown that

Tn(X) =

√
n− 2ρ̂√
1− ρ̂2

has Student distribution with n − 2 degrees of freedom. Now the level α test can be readily
obtained, by choosing an appropriate critical value. �

Potentially we may encounter two difficulties when trying to apply the GLRT: first, as
calculating the GLRT statistic reduces to an optimization problem, it can easily be quite involved
technically and be challenging even numerically; second, even if a closed form statistic can be
found, its distribution under H0 might be hard to find and, consequently, it is not clear how to
choose the critical value to achieve the required significance level.

Wilks’ theorem resolves the second difficulty asymptotically as n→ ∞:

Theorem 8c6. Let X1, ..., Xn be a sample from the density f(x; θ), satisfying the assump-
tions of Theorem 7g34 (consistency and asymptotic normality of MLE, page 155) hold. Let
λn(X) be the GLRT statistic

λn(X) :=
supθ∈Θ Ln(X; θ)

Ln(X; θ0)
,

for testing

H0 : θ = θ0

H1 : θ ̸= θ0,
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where θ0 is an interior point of the closed interval Θ ⊂ R. Then11 under Pθ0

2 log λn(X)
d−→ χ2

1.

Proof. (sketch) Since Θ is closed and the likelihood is continuous in θ, supθ∈Θ Ln(X; θ) =

Ln(X; θ̂n), where θ̂n is the MLE of θ. Expanding into powers of θ̂n − θ0 around θ̂n and using
the continuity of the second derivative, we get

2 log λn(X) = 2 logLn(X; θ̂n)− 2 logLn(X; θ0) =

2
∂

∂θ
logLn(X; θ̂n)(θ̂n − θ0)−

∂2

∂θ2
logLn(X; θ0)(θ̂n − θ0)

2 + rn(X), (8c2)

where rn(X) is the reminder term, converging to zero in Pθ0-probability as n → ∞ (fill in the
details!).

If θ̂n(X) ∈ Θ◦ (the interior of Θ), then ∂
∂θLn(X; θ̂n) = 0, and hence

∂

∂θ
Ln(X; θ̂n) =

∂

∂θ
Ln(X; θ̂n)1{θ̂n ̸∈Θ◦}.

Consequently,

∂

∂θ
logLn(X; θ̂n)(θ̂n − θ0) = 1{θ̂n ̸∈Θ◦}(θ̂n − θ0)

(
n∑
i=1

ℓ′(Xi; θ̂n)

)
=

1{θ̂n ̸∈Θ◦}(θ̂n − θ0)

(
n∑
i=1

ℓ′(Xi; θ0) +
n∑
i=1

ℓ′′(Xi; θ̃n)
(
θ̂n − θ0

))
where ℓ(x; θ) = log f(x; θ) and where |θ̃n− θ0| ≤ |θ̂n− θ0|. Recall that |ℓ′′(x, θ)| ≤ h(x) for some
h(x), satisfying Eθ0h(X1) <∞, hence by Slutsky’s theorem

1{θ̂n ̸∈Θ◦}

∣∣∣∣∣
n∑
i=1

ℓ′′(Xi; θ̃n)
(
θ̂n − θ0

)2∣∣∣∣∣ ≤ 1{θ̂n ̸∈Θ◦}

(
1

n

n∑
i=1

h(Xi)

)(√
n(θ̂n − θ0)

)2 n→∞−−−→ 0,

where the convergence holds, since the second term converges in probability to a constant by
LLN, the third term converges weakly since (θ̂n) is asymptotically normal with rate

√
n and the

first term converges to zero in probability, since θ̂n converges to θ0, which is in the interior of Θ.
Similarly,∣∣∣∣∣1{θ̂n ̸∈Θ◦}(θ̂n − θ0)

n∑
i=1

ℓ′(Xi; θ0)

∣∣∣∣∣ = 1{θ̂n ̸∈Θ◦}
√
n
∣∣θ̂n − θ0

∣∣ ∣∣∣∣∣ 1√
n

n∑
i=1

ℓ′(Xi; θ0)

∣∣∣∣∣ Pθ0−−→ 0,

where the convergence holds by Slutsky’s theorem (note that Eθ0ℓ′(Xi; θ0) = 0 and the CLT is
applicable as I(θ0) < ∞). To recap, the first term on the right hand side of (8c2) converges to
zero in Pθ0-probability.

Finally, we have

− ∂2

∂θ2
logLn(X; θ0)(θ̂n − θ0)

2 = −

(
1

I(θ0)

1

n

n∑
i=1

ℓ′′(Xi; θ0)

)(√
n
√
I(θ0)(θ̂n − θ0)

)2 d−→ χ2
1,

11χ2
1 is the χ-square distribution with one degree of freedom
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where the convergence holds, since the first term converges to 1 by the LLN and
√
n(θ̂n− θ0)

d−→
N(0, 1/I(θ0)). �

Wilks’ theorem extends to the multivariate case as follows. Suppose that we are given a
sample from the p.d.f. f(x; θ), θ ∈ Θ ⊆ Rk, dim(Θ) = k and we want to test

H0 : R(θ) = 0

H1 : R(θ) ̸= 0
(8c3)

where R : Θ 7→ Rr with r ≤ k is a continuously differentiable function of full rank, so that the
relation R(θ) = 0 defines (k − r)-dimensional manifold Θ0. The GLRT statistic is

λn(X) =
supθ∈Θ Ln(X; θ)

supθ∈Θ0
Ln(X; θ)

,

where Ln(X; θ) =
∏n
i=1 f(Xi; θ). Under appropriate technical conditions, under Pθ0

2 log λn(X)
d−→ χ2

r ,

where χ2
r is the χ-square distribution with r degrees of freedom. Hence the number of degrees of

freedom of the limit distribution is the dimension of the parameter space minus the dimension
of the constrained space under H0.

Wald’s test and Rao’s score test. Consider the problem of testing a simple null hypoth-
esis H0 : θ = θ0 against two-sided composite alternative H1 : θ ̸= θ0, given the the i.i.d. sample
Xn = (X1, ..., Xn). Wald’s test statistic is

Wn(X
n) := nI(θ̂n)

(
θ̂n − θ0

)2
where θ̂n is the MLE of θ and I(θ), θ ∈ Θ is the Fisher information in X1. Since under appro-
priate conditions the MLE is asymptotically normal with variance 1/I(θ), Wn(X

n) converges in
distribution to the χ2

1 random variable as n→ ∞, if I(θ) is a continuous function of θ.
An alternative is Rao’s score test statistic

Sn(X
n) =

(
∂θ logL(X

n; θ0)
)2

nI(θ0)
,

where Ln(X
n; θ) is the likelihood function of the sample. Under appropriate conditions on the

density f(x; θ), Eθ∂ log f(X1, θ) = 0 and Eθ
(
∂ log f(X1, θ)

)2
= I(θ) and hence by the CLT

Sn(X
n) =

(
1√
I(θ0)

1√
n

n∑
i=1

∂θ log f(Xi; θ)

)2
d−−−→

n→∞
χ2
1.

Both tests generalize to the setting (8c3). Wald’s test statistic is

Wn(X
n) = R⊤(θ̂n)

(
∇⊤R(θ̂n)I

−1
n (θ̂n)∇R⊤(θ̂n)

)−1
R(θ̂n),

where θ̂n is the unrestricted MLE of θ (i.e. the maximizer of the likelihood over Θ), ∇R(θ) is
the gradient matrix of R and In(θ) = nEθ∇ log f(X1; θ)∇⊤ log f(X1; θ) is the Fisher information
matrix.
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Rao’s score test statistic is

Sn(X) := ∇⊤ logLn
(
Xn; θ̂(0)n

)
I−1
n (θ̂(0)n )∇ logLn

(
Xn; θ̂(0)n

)
,

where θ̂
(0)
n is the restricted MLE of θ (i.e., over Θ0).

It can be shown that both statistics converge in distribution to χ2
r random variable under

H0, just as the GLRT statistic. Note that Wald’s and Rao’s tests require calculation of only
unrestricted and restricted MLEs respectively, while the GLRT test requires both.

d. Some classical tests

Pearson’s χ2 test. Suppose we observe the outcome of Sn ∼ mult(n, p), where p =
(p1, ..., pk) is the vector of probabilities and would like to test

H0 : p = q

H1 : p ̸= q,
(8d1)

for a known vector q.
The GLRT statistic is

λn(X) =
supp∈Sk−1 p

Sn(1)
1 ...p

Sn(k)
k

q
Sn(1)
1 ...q

Sn(k)
k

.

The supremum can be found by the Lagrange multipliers: the Lagrangian is

Λ(p, λ) =
k∑
i=1

Sn(i) log pi + λ

(
1−

k∑
i=1

pi

)
,

and taking the derivatives w.r.t. pi and equating them to zero gives:

Sn(i) = piλ.

Summing up over i gives λ = n and hence the MLEs are given by (check the conditions for
maximum)

p̂i = Sn(i)/n = X̄n(i)

Hence (on the event ∩ki=1{X̄n(i) > 0})

log λn(X) = −n
k∑
i=1

X̄n(i)
(
log qi − log X̄n(i)

)
.

By the LLN, X̄n

Pθ0→ q under H0 and expanding the latter expression into power series of X̄n− q
around X̄n we get

2 log λn(X) = −2n

k∑
i=1

X̄n(i)
1

X̄n(i)

(
qi − X̄n(i)

)
+ n

k∑
i=1

X̄n(i)
1

X̄2
n(i)

(
qi − X̄n(i)

)2
+ rn.

The first term on the right vanishes, since
∑

i X̄n(i) =
∑

i qi = 1, and the residual term can be
seen to converge to zero in probability under H0. Since

Θ = Sk−1 :=

{
q ∈ Rk : qi ≥ 0,

k∑
i=1

qi = 1

}
,
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dim(Θ) = k−1 and hence by the multivariate Wilks’ theorem the second term converges weakly
to χ2

k−1 distribution. For large n, the second term is the dominant one and hence it makes sense
to use it as the test statistic for the problem, ignoring other terms.

To recap, the so called Pearson’s χ2 statistic

χ2(Sn) :=

k∑
i=1

(Sn(i)− nqi)
2

Sn(i)
(8d2)

can be used to test the problem (8d1) and the critical value of the level α test can be approxi-

mated, using the limit χ2(Sn)
d−→ χ2

k−1 under H0.

Here is the first classical application of the Pearson’s χ2 test:

Example 8d1 (Goodness of fit test). Consider the problem of testing whether a sample
comes from a particular distribution or not. More precisely, given a sample X1, ..., Xn from a
c.d.f. F , test

H0 : F = F0

H1 : F ̸= F0

Formally, the parametric space Θ here is the space of c.d.f’s, which is infinite dimensional, unlike
all the examples we have seen so far. Such statistical models are called nonparametric and their
study require a different theory and tools, than those covered in this course.

However, a reasonable test can be constructed using the following idea. Partition the range
of X1 into k disjoint sets I1, ..., Ik (usually intervals if the range of X1 is R) and consider Sn(i) =∑n

m=1 1{Xm∈Ii}, i = 1, ..., k. The vector Sn has multinomial distribution with probabilities

pi = PF (X1 ∈ Ii) =
∫
Ii
dF . This reduces the problem to (8d1) with qi = PF0(X1 ∈ Ii), to

which the χ2-test is applicable. Of course, strictly speaking, the obtained test is not suitable for
the original problem, since two different distributions may assign the same probabilities to all
Ii’s. However, under appropriate restrictions on the set of alternative distributions it is known
to give very reasonable powers and is widely used in practice. The choice of the intervals Ii is
another practical issue to be addressed.

�

For the next application, we shall need the following variation on the Pearson’s χ2 theme.
Suppose we want to test

H0 : p = ψ(p)

H1 : p ̸= ψ(p),

given the mult(n, p) counts Sn as before, where ψ is a fixed known function and the relation p =
ψ(p) defines a d-dimensional submanifold on the k − 1 dimensional simplex Sk−1 of probability
vectors.

The GLRT statistic is

λn(Sn) =

k∏
i=1

(Sn(i)/n)
Sn(i)(

p̂i
)Sn(i)
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where p̂i is the MLE of pi under H0. Hence

2 log λn(Sn) = 2

k∑
i=1

Sn(i)
(
logSn(i)/n− log p̂i

)
=

− 2
k∑
i=1

(
Sn(i)/n− p̂i

)
+

k∑
i=1

n2

Sn(i)

(
Sn(i)/n− p̂i

)2
+ rn.

As before, the first term vanishes and the residual term converges to zero in probability under
H0. Moreover, since under H0 Sn(i)/n− p̂i = (Sn(i)/n− pi) + (pi − p̂i) → 0 in probability,

k∑
i=1

n2

Sn(i)

(
Sn(i)/n− p̂i

)2
=

k∑
i=1

(√
n
(
Sn(i)/n− p̂i

))2
Sn(i)/n

=
k∑
i=1

(
Sn(i)− np̂i

)2
np̂i

+ r′n,

with a residual term r′n converging to zero. Hence by Wilks’ theorem the dominant term

χ2(Sn) =

k∑
i=1

(
Sn(i)− np̂i

)2
np̂i

(8d3)

converges to χ2
(k−1)−d distribution under H0. The main application of this version of the Pear-

son’s χ2-test is testing independence in contingency tables.

Example 8d2. Suppose we want to test whether smoking and lung cancer are related. For
this purpose, we may survey n individuals from the population for their smoking habits and
the disease history. If the individuals are assumed i.i.d., the sufficient statistic is the vector of
counters of each one of the four cases, which can be conveniently summarized in the following
contingency table:

smoking/cancer no yes

no S00 S01
yes S10 S11

Denote by pij , i, j ∈ {0, 1} the corresponding probabilities (e.g. p00 is the probability that
an individual doesn’t smoke and didn’t develop cancer, etc.) and by pi∗ and p∗j the marginal
probabilities (e.g. p1∗ = p10+p11 is the probability that a sampled individual smokes). We want
to test

H0 : pij = pi∗p∗j , for all i, j ∈ {0, 1}
H1 : pij ̸= pi∗p∗j , for some i, j ∈ {0, 1}.

More generally, we may consider testing the above hypotheses for the contingency table of the
form

x1 x2 ... xc total
y1 S11 S12 ... S1c S1∗
y2 S21 S22 ... S2c S2∗
... .. ... ... ... ...
yr Sr1 Sr2 ... Src Sr∗

total S∗1 S∗2 ... S∗c n



194 8. HYPOTHESIS TESTING

where c and r are the numbers of columns and rows respectively, and Si∗ =
∑c

j=1 Sij and S∗j =∑r
i=1 Sij . A calculation reveals that the MLE of pij under H0 equals X̄i∗X̄∗j := (Si∗/n)(S∗j/n)

and the statistic (8d3) reads

χ2 =

r∑
i=1

c∑
j=1

(
Sij − nX̄i∗X̄∗j

)2
nX̄i∗X̄∗j

.

The dimension of the constrained subspace under H0 is (r − 1) + (c − 1) and the dimension of
the whole parameter space is rc−1, hence the statistic converges in law to χ-square distribution
with rc− 1− r − c+ 2 = (r − 1)(c− 1) degrees of freedom. �

Goodness of fit tests: Kolmogorov–Smirnov and Cramer–von Mises. Suppose we
observe the sample X1, ...,Xn and would like to decide whether it comes from a particular c.d.f.
F0 or not, i.e. to test

H0 : F = F0

H1 : F ̸= F0.
(8d4)

This is the goodness of fit problem, briefly introduced in Example 8d1 as an application of
Pearson’s χ2-test, which has an appealing simple structure, but also has both practical and
theoretical limitations. In particular, it is not immediately clear how to choose the intervals to
construct the appropriate multinomial distribution. Moreover, since the vector of corresponding
counts do not in general form a sufficient statistic, it is clear that Pearson’s χ2-test inevitably
discards some statistical information, contained in the sample.

Alternative solutions to the problem are based on the empirical distribution of the sample.
Let F̂n be the empirical distribution of the sample, i.e.

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ R.

Clearly, F̂n is a legitimate discrete c.d.f., which is random due to its dependence on the sample.
By the LLN,

F̂n(x)
PF−−→ F (x), ∀x ∈ R,

where PF denotes the probability law of the data, corresponding to the c.d.f. F . Remarkably, a
stronger, uniform over x, result holds

Theorem 8d3 (Glivenko Cantelli). Assume X1, ..., Xn are i.i.d., then

sup
x∈R

|F̂n(x)− F (x)| PF−−→ 0.

Even more remarkably, the convergence above can be quantified as follows:

Theorem 8d4 (Dvoretzky-Kiefer-Wolfowitz inequality). For i.i.d. r.v.’s X1, ..., Xn and an
ε > 0,

PF
(
sup
x∈R

|F̂n(x)− F (x)| ≥ ε

)
≤ 2e−2nε2 .

These results, whose proof is beyond our scope, hint to uniform over x ∈ R version of CLT:



D. SOME CLASSICAL TESTS 195

Theorem 8d5 (Kolmogorov Smirnov). Assume X1, ..., Xn are i.i.d. with continuous dis-
tribution, then

√
n sup
x∈R

|F̂n(x)− F (x)| dF−−→ κ

where κ is a random variable with the Kolmogorov distribution:

P(ξ ≤ x) = 1− 2
∞∑
i=1

(−1)i−1e−2i2x2 .

The latter theorem can be applied to test (8d4): given the sample, calculate12 the statistic

Dn(X) =
√
n sup
x∈R

|F̂n(x)− F0(x)|

and reject H0 if Dn ≥ c(α), where c(α) is chosen as the α-quantile of the Kolmogorov distribu-
tion.

Remark 8d6. It is not hard to find the distribution of Dn for any fixed n, however, for large
n the computations become quite involved and the Kolmogorov-Smirnov asymptotic is often
preferred.

A computationally appealing feature of the statistic Dn is that its limit distribution does
not depend on F0, i.e. it is asymptotically distribution-free. This property should be expected
and, in fact, the statistic Dn is distribution-free for each n ≥ 1. To see this, recall that if F is a
continuous distribution on R and X1 ∼ F , then F (X1) ∼ U([0, 1]). Hence

sup
x∈R

|F̂n(x)− F0(x)| = sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1{Xi≤x} − F0(x)

∣∣∣∣∣ = sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1{F0(Xi)≤F0(x)} − F0(x)

∣∣∣∣∣ =
sup
u∈[0,1]

∣∣∣∣∣ 1n
n∑
i=1

1{F0(Xi)≤u} − u

∣∣∣∣∣ = sup
u∈[0,1]

∣∣∣∣∣ 1n
n∑
i=1

1{Ui≤u} − u

∣∣∣∣∣ ,
which shows that the distribution of Dn is independent of F0.

Let us see how the particular form of the limit distribution emerges. Note that we can
restrict our consideration to F0(x) = x, x ∈ [0, 1] corresponding to U([0, 1]). To this end, for
any fixed x ∈ [0, 1],

∑n
i=1 1{Ui≤x} ∼ Bin(n, x). Hence by the classical CLT,

√
n
(
F̂n(x)− F0(x)

) d−→ N(0, x(1− x)).

The statistic Dn is a functional of
√
n
(
F̂n(x) − F0(x)

)
, x ∈ R, i.e. it depends on this

expression at all points x simultaneously. Hence we shall need the multivariate version of the
CLT:

Theorem 8d7. Let (Xn) be an i.i.d. sequence of random vectors in Rd with EX1 = µ and
the covariance matrix S = cov(X1, X1). Then

√
n(X̄n − µ)

d−→ N(0, S).

12calculating supremum is easy in this case since x 7→ F0(x) increases and F̂n(x) is piecewise constant
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The proof of this theorem is similar to the proof of the scalar CLT.
Consider now the random vector

(
F̂n(x1), F̂n(x2)

)
for 0 ≤ x1 < x2 ≤ 1. As before we have

EF0F̂n(xi) = xi and varF0(F̂n(x1)) =
1
nxi(1− xi) for i = 1, 2. Also

cov
(
F̂n(x1), F̂n(x2)

)
=

1

n2
EF0

∑
i,j

1{Ui≤x1}1{Uj≤x2} − x1x2 =

1

n2
(
(n2 − n)x1x2 + n(x1 ∧ x2)

)
− x1x2 = 1/n

(
(x1 ∧ x2)− x1x2

)
.

Hence by the multivariate CLT,
√
n
(
F̂n(x1)− F0(x1), F̂n(x2)− F0(x2)

) d−→ N
(
0, C(x1, x2)

)
,

where

C(x1, x2) =

(
x1(1− x1) x1 ∧ x2 − x1x2

x1 ∧ x2 − x1x2 x2(1− x2)

)
.

Similarly, one can check that the vector with entries
√
n
(
F̂n(x) − F0(x)

)
, x ∈ {x1, ..., xn} con-

verges weakly to a zero mean Gaussian vector with the covariance matrix with the entries
xi ∧ xj − xixj , i, j ∈ {1, ..., n}.

More sophisticated mathematics, namely functional CLT, shows that the whole function√
n
(
F̂n(x) − F0(x)

)
, x ∈ R converges weakly13 to a zero mean Gaussian process V (x) with the

correlation function EV (x)V (y) = x ∧ y − xy, x, y ∈ [0, 1]. The process with this correlation
function is called Brownian bridge and the Kolmogorov distribution is the one of supx∈[0,1] V (x),
which can be found using appropriate techniques.

Similarly, it can be shown that the Cramer–von Mises statistic

Hn := n

∫
R
(F̂n(x)− F0(x))

2dF0(x)

converges weakly to the random variable

H =

∫ 1

0
V 2(x)dx,

whose distribution is also independent of F0 and can be found explicitly.

e. Testing multiple hypotheses

Familywise Error Rate. When a new medicine is being considered for use, the decision
is based not only on its direct efficiency, but also on the presence of side-effects. Suppose we
know what the possible side-effects are and we want to detect them, using appropriate statistical
tests. Even if the false positive probability of each test is small, the probability of getting at
least one false positive result can be large by ‘pure chance’, if the number of tests is large.

More precisely, consider m hypothesis testing problems in which the null hypotheses H0i are
tested against the corresponding alternatives H1i, i = 1, ...,m and assume that in each problem
a size α test δi is used. The familywise error rate (FWER) is defined as the probability of
rejecting at least one of H0i’s erroneously. In the medicine example, FWER is the probability
of erroneous detection of at least one side-effect.

13weak convergence should and can be defined for random processes
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Note that it is the type I error of the test δ = maxi=1,...,m δi in the problem

H0 : (θ1, ..., θm) ∈ Θ0 = Θ01 × ...×Θ0m

H1 : (θ1, ..., θm) ̸∈ Θ0 = Θ01 × ...×Θ0m

where Θ0i and Θ1i are the parameter subspaces, corresponding to the null hypothesis and the
alternative in the i-th problem. If the samples in the problems are independent, then for θ ∈ Θ0,

FWER = Eθδ = Eθmax
i
δi = 1− Eθ

∏
i

(1− δi) = 1− (1− α)m.

If FWER is required to be less or equal than ᾱ ∈ (0, 1), then the size in each test must satisfy

1− (1− α)m = ᾱ =⇒ α ≤ 1− (1− ᾱ)1/m,

and hence the sizes of the individual tests are to be corrected to achieve the desired control over
the FWER. The latter simple formula is called Sidak’s correction. For example, if m = 20 and
ᾱ = 0.05 is needed, then α ≤ 0.0026 must be chosen. Requiring such small sizes in the tests
may significantly decrease their powers and consequently in the familywise power.

If the samples are dependent, the Bonferroni correction suggests to replace the individual
sizes with ᾱ/m, in which case

FWER = Pθ
( m∪
i=1

{δi = 1}
)
≤ mEθδi = mᾱ/m = ᾱ.

Note that if the samples are in fact independent, the Bonferroni correction yields smaller indi-
vidual sizes and hence worse overall power. More sophisticated approaches to controlling the
FWER exist.

False Discovery Rate. Suppose we want to identify the genes, which are related to certain
disease. For a single given gene such relation can be tested, e.g., by Pearson’s χ2 test as in
Example 8d2. In practice, a very large number of genes is screened and it makes sense to seek
for a screening procedure, which makes as few erroneous detections as possible. To this end,
consider the quantities, summarized in the following table

# of true H0i’s # of false H0i’s total
# of rejected H0i’s V S R
# of accepted H0i’s U T m-R

total m0 m−m0 m
Table 1. The standard terminology of FDR

Note that the random variables V , S, U and T are not observable, while R is. The false
discovery rate (FDR) is defined as the expected ratio of false discoveries (erroneous rejections of
the null hypotheses) over the total number of discoveries:

FDR = E
V

R
1{R>0} = E

V

R ∨ 1
.
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Here E is the expectation with respect to the probability P, under which m0 out of m null
hypotheses are true14.

Remark 8e1. Note that if m0 = m, i.e. all the null hypotheses are true, V = R and
FWER = P(V > 0) = P(R > 0). Hence in this case

FDR = E
R

R ∨ 1
= P(R > 0) = FWER.

The following algorithm, proposed by Y.Benjamini and Y.Hochberg, controls the FDR at
any desired level α ∈ (0, 1).

(1) Order the p-values pi of the individual tests in the increasing order and denote the
ordered sequence by p(i), i = 1, ...,m

(2) For a fixed number find the integer

k = max
{
i : p(i) ≤

i

m
α
}
,

where max{∅} = 0.

(3) Reject H0(i) if and only if i ≤ k (if k = 0, then none is rejected).

Proposition 8e2. If pi’s are independent and uniformly distributed on the interval [0, 1],
then the FDR of BH procedure is less or equal than α.

Remark 8e3. The assumptions of the proposition are satisfied if the tests are based on
independent samples and the test statistic in each test has continuous distribution.

To prove this assertion we shall need some additional tools from probability theory. Let
us start with some basic definitions. An increasing sequence of σ-algebras Fj ⊆ Fj+1, j ∈ Z+

is called filtration (of σ-algebras). For example, if (Xj) is a sequence of random variables on
a probability space (Ω,F,P), then the σ-algebras FXj = σ{X1, ..., Xj} form a filtration, called

the natural filtration of the process (Xj). The filtration should be thought of as an increasing
collection of events, which become certain as time evolves. For the natural filtration of the
sequence (Xj), this means the collection of events revealed by observing the sequence up to
current time.

A process (Xj) is adapted to the filtration (Fj) if Xj is measurable with respect to (i.e.
determined by) Fj for all j’s. A process (Mj) is a martingale with respect to filtration (Fj) if it
is adapted to it and for j ≥ i

E(Mj |Fi) =Mi.

A random variable τ with nonnegative integer values is called stopping time if {τ ≤ j} ∈ Fj
for all j’s, i.e. the event {τ ≤ j} becomes certain if Fj is observed. For example, if (Xj) is an
adapted process, then the first passage time of a ∈ R

τa = min
{
j : Xj ≥ a

}
14there are

(
m
m0

)
such probabilities, corresponding to the combinations of indices of the true null hypotheses,

but this will not play a role in the calculations to be presented below due to independence
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is a stopping time. Indeed, {τa > j} = ∩ji=1{Xi < a} and since (Xj) is adapted to (Fj), we
have {Xi ≤ a} ∈ Fj for all i ≤ j and hence {τa > j} ∈ Fj and hence {τa ≤ j} ∈ Fj for all
j’s. Convince yourself, that, for example, the last passage time sa = max{j : Xj ≥ a} is not a
stopping time.

Example 8e4. Let (ξj) be a sequence of i.i.d. equiprobable random signs, i.e. P(ξ1 = ±1) =
1/2 and define the simple random walk

Sj =

j∑
i=1

ξi, j ≥ 1,

and S0 = 0. Since for each j, all ξi’s with i ≤ j can be recovered from S1, ..., Sj and vise versa,
the natural filtrations of (ξj) and (Sj) coincide. Denote this filtration by Fj . The sequence (ξj)
is not a martingale w.r.t. (Fj) since for j > i, E(ξj |Fi) = Eξj = 0 ̸= ξi. However (Sj) is a
martingale w.r.t. (Fj)

E(Sj |Fi) = Si + E

(
j∑

ℓ=i+1

∣∣∣Fi) = Si, j ≥ i.

�

The martingale property implies that EMj = EM0 and one may expect that EMτ = EM0

holds for Markov times as well. This is true, at least for martingales on finite intervals:

Theorem 8e5 (a rudiment of the Optional Sampling Theorem). Let (Mj), j = 0, 1, ..., n be
a martingale with respect to a filtration (Fj) and let τ be a stopping time with values in {0, ..., n}.
Then

EMτ = EM0.

Proof. Since
∑n

i=0 1{τ=i} = 1,

EMτ = EM01{τ=0} + E
n∑
i=1

Mi1{τ=i} = EM01{τ=0} + E
n∑
i=1

Mi

(
1{τ≤i} − 1{τ<i}

)
=

EM01{τ=0} +
n∑
i=1

(
EMi1{τ≤i} − EE

(
Mi1{τ≤i−1}|Fi−1

))
=

EM01{τ=0} +
n∑
i=1

(
EMi1{τ≤i} − E1{τ≤i−1}E

(
Mi|Fi−1

))
=

EM01{τ=0} +

n∑
i=1

(
EMi1{τ≤i} − EMi−11{τ≤i−1}

)
= EMn1{τ≤n} = EMn = EM0.

�

Remark 8e6. The Optional Sampling Theorem remains valid under more general conditions.
For example, if τ is a stopping time with Eτ <∞ and (Mj) is a martingale with

E
(∣∣Mj+1 −Mj

∣∣|Fj) ≤ C, P− a.s.∀j,
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then EMτ = EM0. Do not think, however, that the latter property holds without appropriate
assumptions. For example, if (Sj) is the simple random walk as above and

τ1 = inf{j ≥ 0 : Sj = 1},
then obviously Sτ1 = 1 and thus ESτ1 ̸= ES0 = 0. It can be seen that Eτ1 = ∞ in this case.

In the proof to follow, we shall need similar results and notions for continuous time processes,
i.e. families of random variables indexed by real numbers, rather than sequences of random
variables indexed by integers. While the analogous theory is similar in spirit, it is much more
technically involved.

Proof of Proposition 8e2. Let I be the set of true null hypotheses, |I| = m0, and for
any t ∈ [0, 1], define the total number of hypotheses, rejected at level t

r(t) = #{i : pi ≤ t}
and the number of erroneously rejected hypotheses at level t

v(t) = #{i ∈ I : pi ≤ t}.
Let fdr(t) be the (random) proportion of false discoveries:

fdr(t) =
v(t)

r(t)
1{r(t)>0} =

v(t)

r(t) ∨ 1
, t ∈ [0, 1]

Note that r
(
p(i)
)
= i and hence{
i : p(i) ≤

i

m
α
}
=
{
i :
m

i
p(i) ≤ α

}
=
{
i :

m

r(p(i))
p(i) ≤ α

}
={

i :
m

r(p(i)) ∨ 1
p(i) ≤ α

}
:=
{
i : Q(p(i)) ≤ α

}
,

(8e1)

where

Q(t) =
mt

r(t) ∨ 1
, t ∈ [0, 1].

Define τα = sup
{
t ∈ [0, 1] : Q(t) ≤ α

}
, and note that

k = max
{
i : p(i) ≤

i

m
α
}
= max

{
i : Q(p(i)) ≤ α

}
= max

{
i : p(i) ≤ τα

}
,

where the latter holds since Q(t) has negative jumps at p(i)’s and increases otherwise (sketch a
plot). Since both r(t) and v(t) are constant between p(i)’s, it follows that v(p(k)) = v(τα) and
r(p(k)) = r(τα). For the BH procedure (with p(0) := 0)

V

R ∧ 1
=

v(p(k))

r(p(k)) ∨ 1
=

v(τα)

r(τα) ∨ 1
=
v(τα)

τα

Q(τα)

m
≤ v(τα)

τα

α

m

and hence

FDR = E
V

R ∧ 1
≤ α

m
EM(τα), (8e2)

where we defined M(t) = v(t)/t. Let (Ft), t ∈ [0, 1] be the filtration of σ-algebras generated by
the events {pi ≤ t}. Since pi’s are independent and pi ∼ U([0, 1]) for i ∈ I, for s ≤ t and i ∈ I

E
(
1{pi≤s}

∣∣Ft) = E
(
1{pi≤s}

∣∣1{pi≤t}) = P(pi ≤ s|pi ≤ t)1{pi≤t} =
s

t
1{pi≤t}
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and hence

E
(
M(s)|Ft

)
= E

(1
s

∑
i∈I

1{pi≤s}
∣∣Ft) =

1

s

∑
i∈I

s

t
1{pi≤t} =M(t).

Clearly M(t) is measurable with respect to Ft for all t ∈ [0, 1], and hence M(t) is a martingale
in reversed time. Moreover, in reversed time, τα is the first hitting time of the level α by the
process Q(t), which is adapted to the time reversed filtration and hence is a stopping time with
respect to the time reversed filtration. Then by the appropriate Optional Sampling Theorem

EM(τα) = EM(1) = Ev(1)/1 = m0.

Plugging this equality into (8e2), we obtain the required claim. �
The recent text [4] is a good starting point for further exploration of the large scale inference

problems.
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Exercises

Problem 8.1. Consider the problem of testing the hypothesis H0 : p = 1/2 against the
alternative H1 : p > 1/2, given a sample X1, ..., Xn from Ber(p) (n independent tosses of a coin).

(1) Suggest a reasonable level α test, using the CLT approximation
(2) Calculate the power of the test at p = 3/4
(3) For n = 30, α = 0.05 find the critical region C of the test and evaluate your answer in

the previous questions
(4) Find the approximate value of n so that the power in (2) is greater than 0.99
(5) Argue why the approximation in (1) is well justified by CLT, while (2) is not (consult

the footnotes in Example 8a4)

Problem 8.2. Let x ∼ exp(θ). It is required to test H0 : θ = 1 against H1 : θ = 2 and the
following critical regions are suggested:

C1 = [0, 1), C2 = [1,∞), C3 = [0, 1/2) ∪ (2,∞), C4 = R \ {1}.

Calculate the level and find the power functions of the corresponding tests.

Problem 8.3. In each one of the following problems, find the N-P test based on the i.i.d.
sample X = (X1, ..., Xn) and simplify it as much as possible:

(1) H0 : X ∼ N(0, 1) against H1 : X ∼ N(2, 1)
(2) H0 : X ∼ χ2

(2) against H1 : X ∼ χ2
(6)

(3) H0 : X ∼ exp(2) against H1 : X ∼ exp(3)

Find the power of corresponding level α = 0.05 tests.

Problem 8.4. Let Xi ∼ N(θi, 1) i = 1, ..., 9 independent r.v.’s.

(1) Find the NP level α test for the following problem:

H0 : θi = 0,∀i

H1 : θi =
1

2
, i = 1, ..., 5 and θi = −1/2, i = 6, ..., 9

(2) Specify the test for α = 0.05 and calculate its power

Problem 8.5 (Slope detection problem). Let Xi ∼ N(iθ, 1), i = 1, ..., 10 be independent
r.v.’s. Find the level α N-P test for testing H0 : θ = 0 against H1 : θ = 1.

Problem 8.6.
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(1) Find the N-P level α test, based on a single sample X for

H0 : X ∼ exp(1)

H1 : X ∼ f(x) =
2

2π
exp(−x2/2)I(x ∈ (0,∞)).

(2) Does the test with the critical region C = (0.8, 1.2) yields maximal power in the above
problem. Find its power and level.

Problem 8.7. Let X be a single sample from the c.d.f.

F (x) =


0 x < θ
1
4(x− θ)2 x ∈ [θ, θ + 2)

1 x ≥ θ + 2

, θ ∈ R.

(1) Find the most powerful level α test for the problem:

H0 : θ = θ0

H1 : θ = θ1

with θ1 > θ0.
(2) Specify your test for θ0 = 0, θ1 = 1 and α = 0.36. Calculate its power.

Problem 8.8. Let X1, ..., Xn be a sample from N(µ, σ2) with known µ.

(1) Find the most powerful α level test for the following problem:

H0 : σ = σ0

H1 : σ = σ1,

with σ1 > σ0.
(2) How would your test change if H1 : σ = σ2 with σ2 > σ1 ?
(3) Do your answers above allow to conclude that your test is UMP for testing H0 : σ = σ0

against H1 : σ > σ0 ?
(4) Find the p-value for your test for n = 15, σ21 = 2, σ20 = 1, µ = 0 and the realization x,

which yields 1
n−1

∑n
i=1 x

2
i = 1.25

Problem 8.9. Let X1 be a single sample from the p.d.f.

f(x; θ) = (2θx+ 1− θ)I(x ∈ [0, 1]), θ ∈ [−1, 1].

(1) Find the most powerful level α test for testing H0 : θ = 0 against H1 : θ = 1.
(2) To test the hypotheses H0 : θ ≤ 0 against H1 : θ > 0, consider the critical region

C = {x ∈ R : x ≥ 1/2}. Calculate the corresponding power function and significance
level.

(3) Find the UMP level α test in the previous question (or argue that it doesn’t exist)
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Problem 8.10. Let Y ∼ N(0, 1) and define X =
√
θ|Y | + a, where a ∈ R and θ ∈ R+ are

unknown parameters.

(1) Find the p.d.f. of X
(2) Assuming that θ = 1, find the MLE of a
(3) Assuming that θ = 1, find the GLRT for the problem:

H0 : a = a0

H1 : a ̸= a0

Problem 8.11. Let X ∼ Bin(n, θ) and consider the hypotheses testing problem:

H0 : θ = 1/2

H1 : θ ̸= 1/2

(1) Find that the GLRT has the form {|2X − n| > c}.
(2) Use the normal approximation to find the test with level α = 0.05, when n = 36.
(3) Show that under H0, approximately 2 log λ(X) ∼ χ2

1.

Problem 8.12. Let X1, ..., Xn ∼ N(µ, σ2) and consider testing H0 : σ = σ0 against H1 :
σ ̸= σ0

(1) Find the GLRT statistic and show that it is a function of

U =

∑n
i=1(Xi − X̄n)

2

σ20
.

(2) Show that the acceptance region of the GLRT has the form {c1 < U < c2}.
(3) Show that level α test is obtained if F (c2) − F (c1) = 1 − α, where F is the c.d.f. of

χ2
n−1 distribution.

(4) Show that c1 − c2 = n log(c1/c2) (Hint: use the result in (2)).

Problem 8.13. The horse races fans claim that on the circle hippodrome, the outer track
is disadvantageous against the inner track. Suppose that the hippodrome has 8 circle tracks,
which are numbered from 1 to 8, where the 8-th track has the largest radius. Test whether the
position of the track affects the win rate, summarized in the following table:

track 1 2 3 4 5 6 7 8
win rate 29 19 18 25 17 10 15 11
Table 2. Track position versus win rate

Hint: test the null hypothesis, under which the win rate has uniform distribution, against
the alternative, under which the win rate has multinomial distribution.
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number of girls 0 1 2 3 4 5 6
frequency 13 68 154 185 136 68 16

Table 3. Frequency table

Problem 8.14. A random sample from families with 6 children is summarized in the fol-
lowing table:

(1) Test the hypothesis15 that the number of girls has Bin(6, 1/2) distribution. Calculate
the p-value of the test.

(2) Solve the previous question for the hypothesis Bin(6, p)

Problem 8.15. Let X1, ..., Xn ∼ N(µx, σ
2
x) and Y1, ..., Ym ∼ N(µy, σ

2
y) be independent

samples and consider testing H0 : σx = σy against H1 : σx ̸= σy at the significance level α. None
of the parameters are known.

(1) Find the MLEs of all the parameters under both H0 and H1

(2) Show that the GLRT statistic is equivalent to

λ(X) =

(
σ̂2
)(m+n)/2

(
σ̂2x

)n/2(
σ̂2y

)m/2 ,
where σ̂2 is the MLE under H0 and σ̂2x and σ̂2y are MLEs under H1.

(3) Show that

λ(X) = C

(
1 + n−1

m−1T
)(n+m)/2(

n−1
m−1T

)n/2 =: f(T )

where C is a constant and

T (X,Y ) =
1

n−1

∑n
i=1(Xi − X̄n)

2

1
m−1

∑m
i=1(Yi − Ȳm)2

.

(4) Plot f and show that16 the critical regions Ck = {λ(x, y) > k} are equivalent to the
critical regions

Ck1,k2 = {T (x, y) < k1 ∪ T (x, y) > k2}.

Problem 8.16 (Bayes hypotheses testing). Assuming the prior π on Θ, derive the Bayes
test for the problem of testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, which minimizes the sum of
erros of the two types. Compare your result to GLRT.

15i.e. come up with a reasonable alternative to be tested versus H0
16recall that T has F -distribution with (m− 1, n− 1) degrees of freedom under H0





Exams/solutions

a. 2009/2010 (A) 52303

Problem 1. (The sunrise problem of Laplace)

“What is the probability that the sun will rise tomorrow?” In this problem we shall explore
how the question was answered by P-S. Laplace in 18-th century. Suppose that n days ago17 a
random variable R was sampled from uniform distribution U([0, 1]) and since then the sun raises
each day with probability R. More precisely, let Xi be the indicator of the sunrise on the i-th
morning and assume that X1, X2, ..., are conditionally independent r.v.’s given R, with Ber(R)
distribution: for any n ≥ 1

P(X1 = x1, ..., Xn = xn|R) =
n∏
i=1

P(Xi = xi|R) =
n∏
i=1

Rxi(1−R)1−xi .

(1) Find the distribution of X1.

Solution

X1 takes values in {0, 1} and P(X1 = 1) = EP(X1 = 1|R) = ER = 1/2. Hence
X1 ∼ Ber(1/2).

(2) Are X1, ..., Xn identically distributed ? independent ?

Solution

All Xi’s are Ber(1/2), as was shown in the previous question. They are not inde-
pendent:

P(X1 = 1, X2 = 1) = EP(X1 = 1, X2 = 1|R) =

EP(X1 = 1|R)P(X2 = 1|R) = ER2 =

∫ 1

0
u2du = 1/3,

while
P(X1 = 1) = EP(X1 = 1|R) = ER = 1/2,

which implies

1/3 = P(X1 = 1, X2 = 1) ̸= P(X1 = 1)P(X2 = 1) = 1/4.

17P-S.Laplace has literally taken n to be the number of days from the origin according to the Bible
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(3) Explain why the conditional distribution of Sn(X) =
∑n

i=1Xi, given R is Bin(R,n).

Solution

Since Xi’s are conditionally independent Ber(R) r.v.’s, given R, their sum has
conditionally Binomial distribution, given R (just as if 18 R were a number).

(4) Find19 the p.m.f. of Sn(X):

P(Sn(X) = k) = ...?

Hint: use the “tower property” of conditional expectations

Solution

Sn(X) has uniform distribution on {0, ..., n}:

P(Sn(X) = k) = EP(Sn(X) = k|R) =
(
n
k

)
ERk(1−R)n−k =

n!

k!(n− k)!

∫ 1

0
uk(1− u)n−kdu =

n!

k!(n− k)!

k!(n− k)!

(n+ 1)!
=

1

n+ 1

(5) Prove the following Bayes formula: for a random variable ξ with E|ξ| <∞ and discrete
random variable η (taking integer values), show that

E(ξ|η = k) =
EξI(η = k)

P(η = k)
.

Solution

18As Xi’s are Bernoulli r.v., Sn(X) takes values in {0, ..., n}. The conditional j.p.m.f. of the vector X, given
R is

pX|R(x;R) =

n∏
i=1

Rxi(1−R)1−xi = RSn(x)(1−R)n−Sn(x), x ∈ {0, 1}n.

Note that for all binary vectors x, such that Sn(x) = k, pX|R(x;R) = Rk(1 − R)n−k and there are

(
n
k

)
such

strings. Hence

P(Sn = k|R) = P
( n∑

i=1

Xi = k|R
)
=

(
n
k

)
Rk(1−R)n−k,

which verifies the claim.
19you will find the following integral useful: for nonnegative integers k ≤ n∫ 1

0

uk(1− u)n−kdu =
k!(n− k)!

(n+ 1)!
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Denote

ϕ(k) :=
EξI(η = k)

P(η = k)
.

To verify the formula we have to check the orthogonality property:

E
(
ξ − ϕ(η)

)
h(η) = 0, ∀h.

To this end, we have

Eξh(η) =
∑
k

h(k)EξI(η = k)

and on the other hand:

Eϕ(η)h(η) =
∑
k

ϕ(k)h(k)EI(η = k) =
∑
k

h(k)
EξI(η = k)

P(η = k)
P(η = k) =

∑
k

h(k)EξI(η = k).

These two equalities verify the orthogonality property and thus prove the Bayes for-
mula.

(6) Find E
(
R|Sn(X)

)
.

Solution

Following the hint, we obtain:

E
(
R|Sn(X) = k

)
=

ERI(Sn(X) = k)

P(Sn(X) = k)
.

Further,

ERI(Sn(X) = k) = ERE
(
I(Sn = k)|R

)
= ERP(Sn = k|R) =

ER
(
n
k

)
Rk(1−R)n−k = E

(
n
k

)
Rk+1(1−R)n−k =(

n
k

)∫ 1

0
uk+1un+1−(k+1)du =

n!

k!(n− k)!

(k + 1)!(n− k)!

(n+ 2)!
=

k + 1

(n+ 2)(n+ 1)

and as P(Sn(X) = k) = 1
n+1 ,

E
(
R|Sn(X) = k

)
=
k + 1

n+ 2

(7) Calculate the probability “that the sun will rise tomorrow”:

P(Xn+1 = 1|Xn = 1, ..., X1 = 1).

Solution
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Using the conditional independence of Xi’s

P(Xn+1 = 1|Xn = 1, ..., X1 = 1) =
P(Xn+1 = 1, Xn = 1, ..., X1 = 1)

P(Xn = 1, ..., X1 = 1)
=

EP(Xn+1 = 1, Xn = 1, ..., X1 = 1|R)
EP(Xn = 1, ..., X1 = 1|R)

=
ERn+1

ERn
=

1/n+ 2

1/(n+ 1)
=
n+ 1

n+ 2
.

Problem 2.

A circle C is drawn on a rectangular sheet of paper. Alice and Bob want to estimate the area
A of the circle and suggest two different approaches. Alice exploits the fact that the sheet of
paper is rectangular and the length of its side is known precisely (denote it by b). She suggests
to sample i.i.d. random vectors from the uniform distribution over the sheet and to estimate A
by the proportion of the vectors falling inside the circle.

(1) Show that if X and Y are i.i.d. r.v. with U([0, b]) distribution, then the random
vector (X,Y ) has uniform distribution (i.e. constant j.p.d.f.) on the planar rectangular
[0, b]× [0, b]

Solution

The j.c.d.f. of (X,Y ) is constant outside the rectangular and otherwise is given by:

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) =
1

b2
xy

whenever x, y ∈ [0, b]× [0, b] and thus the j.p.d.f. vanishes outside the rectangular and
otherwise is given by

fXY (x, y) =
∂2

∂x∂y
FX,Y (x, y) =

1

b2
.

(2) Alice generates i.i.d. random vectors (X1, Y1), ..., (Xn, Yn) and writes down Zi =
I
(
(Xi, Yi) ∈ C

)
, i = 1, ..., n. Specify a statistical model, parameterized by A (the area

of the circle), which supports this experiment. Find the minimal sufficient statistic.

Solution

Zi’s are i.i.d. Bernoulli r.v.’s with PA(Zi = 1) = A/b2. Since the sheet is rectan-
gular, the largest circle which is possible in this problem has area Amax := π

4 b
2, i.e.

the parametric space is (0, Amax). As we already know, Z̄n is the minimal sufficient
statistic for this model.

(3) Alice’s estimator of A is Ãn(Z) = b2Z̄n. Is it an unbiased estimator ? If yes, is it
UMVUE ? Calculate the corresponding MSE risk.
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Solution

EAÃn(Z) = b2A/b2 = A and hence Ãn is unbiased. It is also UMVUE by the L-S
theorem (Z̄n is a complete sufficient statistic for the Bernoulli model). The MSE risk
is the variance of Z̄n, i.e. b

4 1
nA/b

2(1−A/b2) = 1
nA(b

2 −A).

Bob suggests the more traditional method: to measure the diameter of the circle with a ruler
and calculate its area by means of the formula A(D) = π

4D
2. Since his measurement is noisy,

he repeats it n times and assumes that his data X1, ..., Xn is a sample from N(D,σ2), where σ2

is known. He suggests to estimate A by the method of moments: Ân(X) = π
4 X̄

2
n.

(4) Is Ân(X) unbiased ? If not, calculate the bias and suggest an unbiased estimator Âun(X)

on the basis of Ân(X).

Solution

The estimator Ân is biased: recall that X̄n ∼ N(D,σ2/n) and thus

ED
π

4
(X̄n)

2 =
π

4

(
D2 + σ2/n

)
= A+

π

4

σ2

n
,

i.e. b(A, Ân) =
π
4
σ2

n . The corresponding unbiased estimator is

Âun(X) =
π

4
(X̄n)

2 − π

4

σ2

n

(5) Are the MSE risks of the estimators Ân and Âun

R(A(D), Ân) = ED(Ân(X)−A(D))2

and

R(An(D), Âun) = ED(Âun(X)−A(D))2

comparable ? If yes, which of the two estimators is inadmissible ?

Hint: the answer can be given without calculations.

Solution

Note that the two estimators differ by a constant and hence have the same variance.
Thus the estimator with smaller squared bias has smaller risk: Âun has zero bias and

hence Ân is inadmissible.

(6) Find the UMVUE estimator of the area A(D).

Solution
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Recall that X̄n is a complete sufficient statistic. Hence by L-S theorem the R-B
procedure yields the UMVUE. However, Âun(X) is already a function of the sufficient
statistic X̄n, and hence it is the UMVUE.

(7) Calculate the C-R bound for the MSE risk of unbiased estimators of the area A(D). Is
the C-R bound attained by the risk of UMVUE from the previous question ? Discuss
the same question for large n ?

Solution

As we have seen the Fisher information for the model is I(D) = n/σ2. Moreover,
ψ(D) = π

4D
2 and hence for any unbiased estimator T (X) of A(D)

varD(T ) ≥
(
ψ′(D)

)2
I(D)

=
π2D2σ2

4n
.

Let’s calculate the risk of the UMVUE from the previous question:

varD
(
Âun(X)

)
= varD

(π
4
(X̄n)

2
)
=
π2

16
varD

(
(X̄n −D +D)2

)
=
π2

16
varD

(
(X̄n −D)2 + 2D(X̄n −D) +D2

)
=
π2

16
varD

(
(X̄n −D)2 + 2D(X̄n −D)

)
=
π2

16
varD

(
(X̄n −D)2

)
+
π2

16
2covD

(
(X̄n −D)2, 2D(X̄n −D)

)
+

π2

16
varD

(
2D(X̄n −D)

)
.

Recall that X̄n −D ∼ N(0, σ2/n), hence

varD

(
(X̄n −D)2

)
= ED(X̄n −D)4 −

(
ED(X̄n −D)2

)2
=

3(σ/
√
n)4 − (σ/

√
n)4 = 2σ4/n2

varD

(
2D(X̄n −D)

)
= 4D2σ2/n

covD

(
(X̄n −D)2, 2D(X̄n −D)

)
= 2DED

(
(X̄n −D)2 − σ2

)
(X̄n −D) = 0.

Assembling all parts together, we get

varD
(
Âun(X)

)
=
π2σ4

8n2
+
π2D2σ2

4n
.

Hence the variance of the UMVUE in this case is strictly greater than the C-R bound.
However, as n increases, the risk is dominated20 by the second term, which is precisely
the C-R lower bound.

20More precisely, varD
(
Âu

n(X)
)
= CR(D) + o(1/n)
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(8) Are the estimators sequences Ân and Âun, n ≥ 1 consistent ?

Solution

By the LLN X̄n → D as n → ∞. Ân is a continuous function of X̄n and hence
converges to A in probability, i.e. Ān is a consistent estimator of A. Āun differs from
Ān be a deterministic sequence, which converges to zero. Hence Āun is also consistent.

Problem 3. (Change point detection)

A factory produces bottles of mineral water. By the health standards, the acidity of the
water should not deviate from zero too much. The quality control department revealed that
the acidity of the water raised to the level a, considered unhealthy. The last measurements of
acidity has been taken n days ago, when it was still normal. The factory has to call out the
bottles from the shops, and it has to find out how many days ago the acidity went wrong.

The home statistician suggests the following way to discover the change: he measures acidity
of the water from the bottles, produced at each one of the last n days and assumes that the
obtained measurements X = (X0, ..., Xn) are sampled from the following statistical model: all
Xi’s are independent, X0, ..., Xθ−1 ∼ N(0, 1) and Xθ, ..., Xn ∼ N(a, 1), where the unknown
parameter θ ∈ Θ = {1, ..., n} is the day, at which the change occurred21.

(1) Show that this model has the likelihood:

Ln(x; θ) =

(
1√
2π

)n+1

exp

(
− 1

2

θ−1∑
i=0

x2i −
1

2

n∑
i=θ

(xi − a)2
)
, x ∈ Rn+1.

Solution

This likelihood is the j.p.d.f. of X

(2) Is this model identifiable ?

Solution

Clearly for each θ, the vector X has different j.p.d.f: e.g.

Eθ
n∑
i=0

Xi = a(n− θ + 1)

which is a one to one function of θ. Hence the model is identifiable.

(3) Show that T (X) = X1, ..., Xn−1 is a sufficient statistic.

Solution

21pay attention that X0 ∼ N(0, 1) and Xn ∼ N(a, 1), which are the days the acidity is known to be normal
and excessive respectively
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Note that X0 ∼ N(0, 1) and Xn ∼ (a, 1) independently of θ (these are the days
at which the acidity is known precisely). Since the sample is i.i.d., the conditional
distribution of X given T (X) = (X1, ..., Xn−1) trivially does not depend on θ:

P(X0 ≤ x0, ..., Xn ≤ xn|X1, ..., Xn−1) = I(X1 ≤ x1)...I(Xn−1 ≤ xn−1)Φ(x0)Φ(xn − a),

where Φ is N(0, 1) c.d.f.

(4) Is T (X) = (X1, ..., Xn−1) minimal sufficient ?

Solution

We have

Ln(x; θ) =

(
1√
2π

)n+1

exp

(
− 1

2

θ−1∑
i=0

x2i −
1

2

n∑
i=θ

x2i + a

n∑
i=θ

xi −
1

2
(n− θ + 1)a2

)
=

(
1√
2π

)n+1

exp

(
− 1

2

n∑
i=0

x2i + a

n∑
i=θ

xi −
1

2
(n− θ + 1)a2

)
.

Let x and y be vectors in Rn+1, then

Ln(x; θ)

Ln(y; θ)
= exp

(
− 1

2

n∑
i=0

(x2i − y2i ) + a

n∑
i=θ

(xi − yi)

)
is not a function of θ if and only if xi = yi for all i = 1, ..., n − 1. Hence T (X) is the
minimal statistic.

(5) For n = 2, find the MLE of θ.

Solution

Note that Ln(x; θ) is maximal if and only if

ϕ(x; θ) :=

n∑
i=θ

xi +
1

2
a2θ

is maximal (why?). For n = 2, θ ∈ Θ = {1, 2} and

ϕ(x; 1) = x1 + x2 +
1

2
a2

ϕ(x; 2) = x2 + a2

and thus the MLE of θ is given by:

θ̂(X) =

{
1 ϕ(X; 1) ≥ ϕ(X; 2)

2 otherwise
=

{
1 X1 ≥ 1

2a
2

2 otherwise
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(6) Suggest an unbiased estimator of θ for any n ≥ 2.

Solution

Since

E
n∑
i=0

Xi =
n∑
i=θ

a = (n− θ + 1)a,

the estimator

θ̃(X) = n+ 1− 1

a

n∑
i=0

Xi

is unbiased.

b. 2009/2010 (B) 52303

Problem 1.

Let Z1, Z2, ... be i.i.d. Ber(θ), θ ∈ (0, 1) r.v.’s. We have seen that there is no unbiased
estimator of the odds θ/(1− θ), based on Z1, ..., Zn for any fixed n ≥ 1. Let

X1 = min{n : Zn = 0},

be the number of tosses till the first 0 occurs. As is well known, X1 has Geo(1−θ) distribution22:

Pθ(X1 = k) = θk−1(1− θ), k ∈ {1, 2, ...}.

(1) Find the MLE θ̂1 of θ on the basis of X1.

Solution

The log-likelihood

logL(X1; θ) = (X1 − 1) log θ + log(1− θ).

On the event {X1 = 1}, the maximum is attained at θ̂(1) = 0 and otherwise θ̂(X1)
solves

∂

∂θ

(
(X1 − 1) log θ + log(1− θ)

)
= (X1 − 1)

1

θ
− 1

1− θ
= 0,

which yields θ̂1 = 1− 1/X1.

(2) Show that the “plug-in” estimator23 η̂1 := θ̂1/(1− θ̂1) is unbiased for η(θ) = θ/(1− θ).
Explain the “contradiction” with the non-existence claim above.

Solution

22Eθ = 1
1−θ

and varθ(X1) =
θ

(1−θ)2

23since η(θ) = θ/(1− θ) is a one-to-one function, η̂ := θ̂/(1− θ̂) is in fact the MLE of η(θ).
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θ̂(X1) = X1 − 1 is an unbiased estimator of θ/(1− θ):

Eθθ̂(X1) = EθX1 − 1 =
1

1− θ
− 1 =

θ

1− θ
.

This does not contradict the above non-existence result, since the statistic θ̂(X1) is a
function of the whole sequence (Zi)i≥1, rather than a fixed number of Zi’s.

(3) Is the obtained estimator above UMVUE ? Calculate its MSE risk.

Solution

Geo(1−θ) distribution belongs to the one parameter exponential family with c(θ) =
log θ, whose range clearly has a non-empty interior. Hence the sufficient statistic X1 is
complete and by the L-S theorem, θ̂(X1) is the UMVUE. Its MSE risk is given by

varθ
(
θ̂(X1)

)
= varθ(X1) =

θ

(1− θ)2
.

(4) Calculate the C-R lower bound for the MSE risk of unbiased estimators of θ/(1 − θ).
Is C-R bound attained ?

Solution

The Fisher information is

IX1(θ) = −Eθ
∂2

∂θ2

(
log θX1−1(1− θ)

)
= −Eθ

∂

∂θ

(
(X1 − 1)

1

θ
− 1

1− θ

)
=

− Eθ
(
− (X1 − 1)

1

θ2
− 1

(1− θ)2

)
=
( 1

1− θ
− 1
) 1

θ2
+

1

(1− θ)2
=

1

θ(1− θ)2
.

The C-R bound for unbiased estimators of ψ(θ) = θ/(1− θ) is given by:

CR(θ) =

(
ψ′(θ)

)2
I(θ)

=

(
1

(1− θ)2

)2

θ(1− θ)2 =
θ

(1− θ)2
,

which coincides with the risk of UMVUE, i.e. the C-R bound is attained in this case.

(5) Encouraged by his progress, the statistician suggests to count the tosses till m ≥ 1
zeros occur:

Xm = min
{
j :

j∑
i=1

(1− Zi) = m
}
.

Argue that the p.m.f. of Xm is given by:

pXm(k; θ) = Pθ(Xm = k) =

(
k − 1
m− 1

)
θk−m(1− θ)m, k ≥ m
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Solution

The event {Xm = k} occurs if and only if the last toss yields zero and there are
m− 1 zero tosses among k− 1 tosses. The binomial coefficient is the number of strings
with m− 1 zeros among k − 1 bits, and the claimed formula follows by independence.

(6) Find the MLE θ̂m of θ on the basis of Xm and the corresponding “plug-in” estimator
η̂m of η(θ)

Solution

We have

logL(Xm; θ) = log

(
Xm − 1
m− 1

)
+ (Xm −m) log θ +m log(1− θ).

Again, if Xm = m, then θ̂(Xm) = 0, otherwise it solves

(Xm −m)
1

θ
=

m

1− θ
,

which gives:

θ̂m = 1− m

Xm
.

Hence

η̂m =
Xm

m
− 1.

(7) (bonus24 +5) Are the plug-in estimators (η̂m)m≥1 consistent for θ/(1− θ) ? If yes, find
the asymptotic rate and the asymptotic error distribution.

Hint: Show that Xm =
∑m

j=1 ξi, where ξi are i.i.d. Geo(1− θ) r.v.’s and apply the
LLN.

Solution

Define

ξ1 = min{k : Zk = 0}
ξi = min{k > ξi−1 : Zk = 0} − ξi−1, j = 2, ...,m

24this question was excluded from the final version of the exam
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the times between consecutive 0’s. Clearly Xm =
∑m

i=1 ξi and ξi’s are independent
Geo(1− θ) r.v.’s:

Pθ(ξ1 = k1, ..., ξm = km) =

Pθ(Z1...Zk1−1 = 1, Zk1 = 0, ..., Zkm−1+1Zkm−1 = 1, Zkm = 0) =

Pθ
(
Z1...Zk1−1 = 1, Zk1 = 0

)︸ ︷︷ ︸
Geo(1−θ)

...Pθ
(
Zkm−1+1Zkm−1 = 1, Zkm = 0)︸ ︷︷ ︸

Geo(1−θ)

.

Now by the LLN limm→∞Xm/m = 1/(1−θ) in Pθ-probability and hence Xm/m−1 →
θ/(1− θ), which verifies consistency.

Note that EθXm/m = Eθ ξ̄m = 1/(1− θ). Then by the CLT:

√
m
(
Xm/m− 1− θ

1− θ

)
=

√
m
(
ξ̄m − 1

1− θ

)
d−−−−→

m→∞
N(0, varθ(ξ1)),

where varθ(ξ1) = θ/(1− θ)2.

Problem 2.

It is required to estimate the expected weight of the fish in a pond, using the fishes sample
caught by the net. The weight of a fish in a pond is assumed to be a r.v. X ∼ U([0, θ]), θ > 0.

Let Z be a random variable taking value 1 if the fish is captured by the net and 0 otherwise.
It is known that smaller fishes are less likely to be caught by the net and a statistician assumes:

Pθ(Z = 1|X) =
X

θ
.

(1) Calculate the probability that a fish is caught by the net Pθ(Z = 1).

Solution

Pθ(Z = 1) = EθPθ(Z = 1|X) = Eθ
X

θ
=
θ/2

θ
= 1/2.

(2) Prove that the conditional p.d.f of X, given the event {Z = 1}, is

f(x; θ) :=
d

dx
Pθ(X ≤ x|Z = 1) =

2x

θ2
I(x ∈ [0, θ])

Solution

We have

Pθ(X ≤ x|Z = 1) =
Pθ(X ≤ x,Z = 1)

Pθ(Z = 1)
,
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where

Pθ(X ≤ x,Z = 1) = EθI(X ≤ x)I(Z = 1) =

EθI(X ≤ x)Eθ
(
I(Z = 1)|X

)
= EθI(X ≤ x)Pθ

(
Z = 1|X

)
=

EθI(X ≤ x)
X

θ
=

1

θ

∫ θ

0
I(s ≤ x)s

1

θ
ds.

Hence for x ≤ θ,

Pθ(X ≤ x,Z = 1) =
1

θ2

∫ x

0
sds =

1

2

(x
θ

)2
,

and for x > θ,

Pθ(X ≤ x,Z = 1) = 1/2.

Hence,

Pθ(X ≤ x|Z = 1) =
(x
θ

)2
, x ∈ [0, θ].

(3) The statistician suggests that the weights Y1, ..., Yn of the n caught fishes are i.i.d. r.v.
sampled from f(x; θ) from the previous question. Explain how this statistical model
fits the inference problem at hand and elaborate the assumptions it is based upon.

Solution

This model takes into account that smaller fishes are less likely to be included in the
sample: the fact that a fish is caught tilts the distribution of its weight towards higher
values, or more precisely, we observe random variables with the c.d.f. Pθ(X ≤ x|Z = 1),
rather than the original uniform c.d.f Moreover, the i.i.d. assumption means that the
weights of the fishes are i.i.d. U([0, θ]) and that the probability of catching the fish
depends only on its own weight and not on the weights of the others:

Pθ(Zi = 1|X1, X2, ...) = P(Zi = 1|Xi).

(4) Is the model identifiable ?

Solution

Obviously, identifiable, since e.g. the support of f(x; θ) is at one-to-one correspon-
dence with θ > 0: e.g. its support is proportional to θ.
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(5) Find the minimal sufficient statistic25

Solution

The likelihood function is

L(Y ; θ) =
( 2

θ2

)n( n∏
i=1

Yi

)
I(max

j
Yj ≤ θ).

By the F-N factorization theorem, maxi Yi is a sufficient statistic. Further,

L(x; θ)/L(y; θ) =

∏n
i=1 xiI(maxj xj ≤ θ)∏n
i=1 yiI(maxj yj ≤ θ)

.

Since
∏n
i=1(xi/yi) does not depend on θ, the latter is independent of θ if and only if

the ratio of indicators is independent of θ. Now minimality follows exactly as for the
U([0, θ]) case (see the lecture notes).

(6) Find the MLE for θ (twice the expected weight). Is it a function of the sufficient
statistic from the previous question ?

Solution

Since 1/θ2n is a decreasing function of θ, the maximum of L(Y ; θ) is attained at

θ̂n(Y ) = max
i
Yi.

(7) Suggest an estimator of θ, using the method of moments.

Solution

The first moment of Y1 is

EθY1 =
∫ θ

0
s
2

θ2
sds =

2

θ2
θ3

3
=

2

3
θ,

and the corresponding method of moments estimator

θ̃n(Y ) =
3

2
Ȳn.

25This question was replaced by ”Find two non-equivalent sufficient statistics” in the exam. One obvious
sufficient statistic is all the data Y1, ..., Yn and the other one is maxi Yi, as discussed in the solution
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(8) Are your estimators consistent for θ as n→ ∞ ?

Solution

θ̃n(Y ), n ≥ 1 is consistent by the LLN. To show that the MLE is consistent, we
have to show that

Pθ(θ −max
i
Yi ≥ ε) → 0, ∀ε.

To this end,

Pθ(θ −max
i
Yi ≥ ε) = Pθ(max

i
Yi ≤ θ − ε) =

n∏
i=1

Pθ(Yi ≤ θ − ε) =

(θ − ε

θ

)2n
=
(
1− ε

θ

)2n n→∞−−−→ 0, ∀ε > 0.

Problem 3.

A cat is following a mouse on a real line. The current position of the mouse is a random
variable X ∼ N(µ, σ2) (with known µ and σ2). The cat is old and hence it doesn’t see the
mouse clearly: it observes Y = X + Z, where Z ∼ N(0, 1) is the “noise”, independent of X.

(1) The cat tries to predict the position of the mouse by the simple predictor gc(Y ) = Y .
Calculate the corresponding MSE.

Solution

The MSE of gc(Y ) is E(Y −X)2 = EZ2 = 1.

(2) Find cat’s optimal (in the MSE sense) predictor g∗c (Y ) of the mouse’s position X

Solution

The optimal predictor is the conditional expectation

g∗c (Y ) = E(X|Y ) = µ+
σ2

σ2 + 1
(Y − µ).

(3) Calculate the MSE of the cat’s optimal prediction:

E
(
X − g∗c (Y )

)2
and compare with the MSE obtained in (1).

Solution
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The MSE of the cat’s predictor is:

E(X − g∗c (Y ))2 = var(X|Y ) = σ2 − σ4

σ2 + 1
=

σ2

σ2 + 1
.

(4) The cat crawls to the predicted position of the mouse g∗c (Y ), so that the mouse cannot
see him. Hence the mouse has to predict the position of the cat g∗c (Y ), when it knows
only its own position X. What is the mouse’s optimal predictor g∗m(X) of the cat’s
position ?

Solution

The cat’s optimal predictor is

g∗m(X) = E
(
µ+

σ2

σ2 + 1
(Y − µ)

∣∣X) = µ+
σ2

σ2 + 1

(
E(Y |X)− µ

)
.

Since X and Z are independent, E(Y |X) = E(X + Z|X) = E(X|X) + E(Z|X) = X
and thus

g∗m(X) = µ+
σ2

σ2 + 1

(
X − µ

)
.

(5) Calculate the MSE of the mouse’s predictor:

E
(
g∗c (Y )− g∗m(X)

)2
.

Compare it to the cat’s MSE from (3).

Solution

The MSE of the mouse’s predictor is

E
(
g∗c (Y )− g∗m(X)

)2
= E

(
µ+

σ2

σ2 + 1
(Y − µ)− µ− σ2

σ2 + 1

(
X − µ

))2
=(

σ2

σ2 + 1

)2

E
(
Y −X

)2
=

(
σ2

σ2 + 1

)2

E
(
Z
)2

=

(
σ2

σ2 + 1

)2

.

The precision of the mouse is better, since σ2/(σ2 + 1) < 1.

(6) Suppose now that X and Z are no longer Gaussian, but still independent with EX = µ,
var(X) = σ2 and EZ = 0, var(Z) = 1. Show by a counterexample, that the predictor
from (2) is no longer optimal in general.

Solution
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E.g. if X ∼ Ber(1/2) and Z has p.d.f. f(x) with zero mean and unit variance,
then, as saw,

E(X|Y ) = P(X = 1|Y ) =
f(Y − 1)

f(Y − 1) + f(Y )
,

which certainly doesn’t have the form of the predictor in (2).

(7) Argue that cat’s optimal predictor of the mouse’s position in the previous question is
at least as precise as before (i.e. that its MSE is not greater than the MSE obtained in
(3)), regardless of the distributions of X and Z.

Hint: what MSE the cat gets if it uses the predictor from (2).

Solution

If the cat uses the predictor from (2), it gets the same precision as before, since
all the calculations involve only the mean and variance. But it is not necessarily its
optimal predictor and hence it’s optimal MSE may be even better.

(8) (bonus26+5) Show that mouse’s predictor has smaller MSE than cat’s predictor, if X
and Z are independent, but otherwise have arbitrary distributions (with finite vari-
ances).

Solution

The MSE of the cat’s predictor is

E
(
X − E(X|Y )

)2
=

E
(
X − E

(
E(X|Y )|X

)
+ E

(
E(X|Y )|X

)
− E(X|Y )

)2 †
=

E
(
X − E

(
E(X|Y )|X

))2
+ E

(
E(X|Y )|X

)
− E(X|Y )

)2
≥

E
(
E
(
E(X|Y )|X

)
− E(X|Y )

)2
,

which is the MSE of the mouse’s predictor. The equality † holds since the prediction
error E

(
E(X|Y )|X

)
− E(X|Y ) is orthogonal to any function of X and in particular to

X − E
(
E(X|Y )|X

)
. Hence the mouse always sees the cat with smaller MSE.

26this question was excluded from the final version of the exam
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Problem 1. Let Z1, Z2, ... be i.i.d. Ber(θ), θ ∈ (0, 1) r.v.’s. We have seen that there is no
unbiased estimator of the odds θ/(1− θ), based on Z1, ..., Zn for any fixed n ≥ 1. Let

X1 = min{n : Zn = 0},

be the number of tosses till the first 0 occurs. As is well known, X1 has Geo(1−θ) distribution27:

Pθ(X1 = k) = θk−1(1− θ), k ∈ {1, 2, ...}.
(1) Find the MLE of θ on the basis of X1.

Solution

The log-likelihood

logL(X1; θ) = (X1 − 1) log θ + log(1− θ).

On the event {X1 = 1}, the maximum is attained at θ̂(1) = 0 and otherwise θ̂(X1)
solves

∂

∂θ

(
(X1 − 1) log θ + log(1− θ)

)
= (X1 − 1)

1

θ
− 1

1− θ
= 0,

which yields θ̂ = 1− 1/X1.

(2) Find the MLE of η(θ) := θ/(1− θ).

Hint: η(θ) is a one-to-one function of θ ∈ (0, 1).

Solution

The MLE η̂ is η̂ = θ̂
1−θ̂

= 1−1/X1

1/X1
= X1 − 1.

(3) Show that MLE η̂ is unbiased. Explain the “contradiction” with the non-existence
claim above.

Solution

θ̂(X1) = X1 − 1 is an unbiased estimator of θ/(1− θ):

Eθθ̂(X1) = EθX1 − 1 =
1

1− θ
− 1 =

θ

1− θ
.

This does not contradict the above non-existence result, since the statistic θ̂(X1) is a
function of the whole sequence (Zi)i≥1, rather than a fixed number of Zi’s.

27Eθ = 1
1−θ

and varθ(X1) =
θ

(1−θ)2
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(4) Is the obtained estimator above UMVUE ? Calculate its MSE risk.

Solution

Geo(1−θ) distribution belongs to the one parameter exponential family with c(θ) =
log θ, whose range clearly has a non-empty interior. Hence the sufficient statistic X1 is
complete and by the L-S theorem, θ̂(X1) is the UMVUE. Its MSE risk is given by

varθ
(
θ̂(X1)

)
= varθ(X1) =

θ

(1− θ)2
.

(5) Calculate the C-R lower bound for the MSE risk of unbiased estimators of θ/(1 − θ).
Is C-R bound attained ?

Solution

The Fisher information is

IX1(θ) = −Eθ
∂2

∂θ2

(
log θX1−1(1− θ)

)
= −Eθ

∂

∂θ

(
(X1 − 1)

1

θ
− 1

1− θ

)
=

− Eθ
(
− (X1 − 1)

1

θ2
− 1

(1− θ)2

)
=
( 1

1− θ
− 1
) 1

θ2
+

1

(1− θ)2
=

1

θ(1− θ)2
.

The C-R bound for unbiased estimators of ψ(θ) = θ/(1− θ) is given by:

CR(θ) =

(
ψ′(θ)

)2
I(θ)

=

(
1

(1− θ)2

)2

θ(1− θ)2 =
θ

(1− θ)2
,

which coincides with the risk of UMVUE, i.e. the C-R bound is attained in this case.

(6) Encouraged by his progress, the statistician suggests to count the tosses till m ≥ 1
zeros occur:

Xm = min
{
n :

n∑
i=1

(1− Zi) = m
}
.

Argue that the p.m.f. of Xm is given by:

pXm(k; θ) = Pθ(Xm = k) =

(
k − 1
m− 1

)
θk−m(1− θ)m, k ≥ m

Solution

The event {Xm = k} occurs if and only if the last toss yields zero and there are
m− 1 zero tosses among k− 1 tosses. The binomial coefficient is the number of strings
with m− 1 zeros among k − 1 bits, and the claimed formula follows by independence.
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(7) Find the MLE of η(θ) = θ/(1− θ) on the basis of Xm.

Solution

We have

logL(Xm; θ) = log

(
Xm − 1
m− 1

)
+ (Xm −m) log θ +m log(1− θ).

Again, if Xm = m, then θ̂(Xm) = 0, otherwise it solves

(Xm −m)
1

θ
=

m

1− θ
,

which gives:

θ̂(Xm) = 1− m

Xm
.

Hence

η̂ =
Xm

m
− 1.

(8) Do MLEs from the previous question form a consistent sequence of estimators of θ/(1−
θ) ?

Hint: Show that Xm =
∑m

j=1 ξi, where ξi are i.i.d. Geo(1− θ) r.v.’s and apply the
LLN.

Solution

Define

ξ1 = min{k : Zk = 0}
ξi = min{k > ξi−1 : Zk = 0} − ξi−1, j = 2, ...,m

the times between consecutive 0’s. Clearly Xm =
∑m

i=1 ξi and ξi’s are independent:

Pθ(ξ1 = k1, ..., ξm = km) =

Pθ(Z1...Zk1−1 = 1, Zk1 = 0, ..., Zkm−1+1Zkm−1 = 1, Zkm = 0) =

Pθ
(
Z1...Zk1−1 = 1, Zk1 = 0

)︸ ︷︷ ︸
Geo(1−θ)

...Pθ
(
Zkm−1+1Zkm−1 = 1, Zkm = 0)︸ ︷︷ ︸

Geo(1−θ)

.

Now by the LLN limm→∞Xm/m = 1/(1−θ) in Pθ-probability and hence Xm/m−1 →
θ/(1− θ), which verifies consistency.
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(9) Find the asymptotic rate and the asymptotic error distribution of the MLE’s found
above

Hint: The hint from the previous question applies

Solution

Note that EθXm/m = Eθ ξ̄m = 1/(1− θ). Then by the CLT:

√
m
(
Xm/m− 1− θ

1− θ

)
=

√
m
(
ξ̄m − 1

1− θ

)
d−−−−→

m→∞
N(0, varθ(ξ1)),

where varθ(ξ1) = θ/(1− θ)2.

Problem 2. A factory started production of a new series of electric lamps and it is required to
estimate their mean lifetime as soon as possible. For this purpose, the statistician suggests the
following experiment: N lamps are powered on for a known period of a hours, during which the
lifetimes of the burnt out lamps are recorded for the purpose of estimation.

Let n be the number of the burnt out lamps and assume that the lamp lifetime has p.d.f.
f(u; θ), u ∈ R+, where θ is the unknown parameter.

(1) Assuming that n ≥ 1, the statistician claims that the obtained data X1, ..., Xn is a
sample from the p.d.f.

ft(x; θ) =
f(x; θ)

F (a; θ)
I(x ∈ [0, a]),

where F (x; θ) =
∫ x
0 f(u; θ)du. Explain his claim.

Solution

The p.d.f. ft(x; θ) is the density of the truncated c.d.f. P(ξ ≤ x|ξ ≤ a), where
ξ ∼ f(x; θ). This corresponds to the fact that an observed lifetime ξ is reported only if
it is less than a, i.e. is conditioned on the event {ξ ≤ a}.

(2) Is the model identifiable if the lifetime has U([0, θ]) distribution with θ > 0 ?

Solution

For U([0, θ]) with θ > a,

ft(x; θ) =
1
θ I(x ∈ [0, θ])

a
θ

I(x ∈ [0, a]) =
1

a
I(x ∈ [0,min(a, θ)]).

Thus if the parameter space Θ = R+, ft(x; θ) ceases to depend on θ for all θ large
enough, which means that the model is not identifiable.
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(3) Assuming hereafter Exp(θ) lifetime with the p.d.f.28

f(x; θ) = θe−θxI(x ∈ R+)

find the minimal sufficient statistic. Is it complete ?

Solution

The likelihood for this model is

Ln(x; θ) =
θn exp

(
− θ

∑n
i=1 xi

)
∏n
i=1

(
1− e−θa

) , x ∈ Rn+,

which by the F-N factorization theorem implies that Sn(x) =
∑n

i=1 xi is a sufficient
statistic. This likelihood clearly belongs to one parameter exponential family with
c(θ) = −θ, whose range has a nonempty interior. Hence Sn(X) is complete and thus
minimal sufficient.

(4) Suggest a consistent sequence of estimators for 1/θ (the mean lifetime).
Hint: consider the method of moments estimator based on the first two moments:

EθX1 =
1

θ
− a

eaθ − 1

EθX2
1 =

2

θ2
−
a2 + 2a1

θ

eaθ − 1

Solution

Let η = 1/θ for brevity, then combining the two equalities and eliminating the term
eaθ − 1, we get

η − EθX1

2η2 − EθX2
1

=
1

a+ 2η
,

which, solved for η, gives:

η =
aEθX1 − EθX2

1

a− 2EθX1
.

Since by the law of large numbers m̂1
n(X) := 1

n

∑n
i=1Xi → EθX1 and m̂2

n(X) :=
1
n

∑n
i=1X

2
i → EθX2

1 in Pθ-probability, the estimators

η̂n(X) =
am̂1

n − m̂2
n

a− 2m̂1
n

converge to 1/θ in Pθ-probability for θ’s with EθX1 ̸= a/2.

28the corresponding c.d.f. is F (x; θ) = (1− e−θx)I(x ≥ 0) and Eθ = 1/θ, etc.
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Unfortunately, none of the lamps in the experiment burnt out, i.e. n = 0 has been
realized. Thus the model above is not applicable. However the statistician doesn’t give
up and suggests another approach as follows.

(5) Let Zi be a random variable, taking value 1 if the i-th lamp among N ones, used in
the experiment, does not burn out by a hours and 0 otherwise. Specify the statistical
model, which assumes that all N lamps used in the experiment are i.i.d. Exp(θ) r.v.’s

Solution

The model (Pθ)θ∈R+ is given by the j.p.m.f. of i.i.d. Ber(e−aθ) r.v.’s.

(6) Suggest a consistent sequence of estimators of 1/θ, based on Z1, ..., ZN , N ≥ 1.

Hint: Pay attention that (Z̄N )N≥1 is a consistent sequence of estimators of θ.

Solution

Note that Z̄N → e−aθ in Pθ-probability. Since x 7→ 1/ log(1/x) is a continuous
function on x > 0,

θ̂N (Z) :=
a

log 1
Z̄N

Pθ−−−−→
N→∞

1

θ
,

which means that θ̂N , N ≥ 1 is a consistent estimator of 1/θ.

(7) Does there exist an unbiased estimator of 1/θ, based on Z = (Z1, ..., ZN )?

Solution

Let T (Z) be an arbitrary statistic, then

EθT (Z) =
∑

u∈{0,1}N
T (u)

(
e−aθ

)Sn(u)(1− e−aθ
)n−Sn(u)

is a bounded function of θ, e.g.:∣∣EθT (Z)∣∣ ≤ 2N max
u∈{0,1}N

|T (u)|,

which means that it cannot equal 1/θ, which is an unbounded function.

Problem 3.
Let Xi = µi + εi, i = 1, ..., n where εi’s are i.i.d. N(0, σ2) with known σ2 > 0. The vector

µ1, ..., µn is a signal to be detected in the noisy observations (X1, ..., Xn).
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(1) Let (βi)i≥1 be a deterministic sequence of nonzero real numbers and assume that µi =
βi, i.e. the received signal has a precisely known shape. Construct the most powerful
level α test for

H0 : µi = 0, for all i ∈ {1, ..., n}
H1 : µi = βi, for all i ∈ {1, ..., n} ,

assuming that σ2 is known.

Solution

We are faced with the problem of testing a simple hypothesis against a simple
alternative, for which the N-P test is the most powerful. Denote by µ1:n = (µ1, ..., µn)
and let µ01:n := 01:n and µ11:n := β1:n. Since σ

2 > 1 is known, the likelihood ratio is

L(x;µ01:n)

L(x;µ11:n)
= exp

(
− 1

2σ2

n∑
i=1

(xi − βi)
2 +

1

2σ2

n∑
i=1

x2i

)
= exp

(
1

2σ2

n∑
i=1

xiβi −
1

2σ2

n∑
i=1

β2i

)
.

Hence the N-P test rejects H0 if and only if{ n∑
i=1

Xiβi ≥ c

}
.

Note that under H0, the test statistic is Gaussian with zero mean variance Bn :=
σ2
∑n

i=1 β
2
i , hence the α level test is obtained with the critical value solving the equa-

tion:

α = P0

( n∑
i=1

Xiβi/
√
Bn ≥ c/

√
Bn

)
= 1− Φ

(
c/
√
Bn

)
,

which yields

c(α) =
√
BnΦ

−1(1− α) = σΦ−1(1− α)

√√√√ n∑
i=1

β2i .

(2) Assume now that µi = µβi, where µ > 0 is the unknown amplitude. Is your test from
the previous question applicable for testing:

H0 : µi = 0, for all i ∈ {1, ..., n}
H1 : µi = µβi,with µ > 0 for all i ∈ {1, ..., n} .

If yes, is it UMP ?

Solution
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The likelihood in this case is

L(x;µ1:n) =

(
1√
2πσ2

)2

exp

(
− 1

2σ2

n∑
i=1

(xi − µβi)
2

)
=

(
1√
2πσ2

)2

exp

(
− 1

2σ2

n∑
i=1

x2i +
µ

σ2

n∑
i=1

xiβi −
µ2

2σ2

n∑
i=1

β2i

)
,

which is one parametric exponential family with the canonical sufficient statistic T (x) =∑n
i=1 xiβi and monotonically increasing c(µ) = µ. Hence by the K-R theorem, the N-P

level α test is UMP in this case.

(3) Formulate the sufficient and necessary conditions on the sequence (βi)i≥1, so that the
power of your test at any µ > 0 in the previous question converges to 1 as n→ ∞ ?

Solution

The power function of the N-P test is given by:

π(µ, δ∗) = Pµ
( n∑
i=1

Xiβi ≥
√
BnΦ

−1(1− α)

)
=

Pµ
(( n∑

i=1

Xiβi − µBn

)
/
√
Bn︸ ︷︷ ︸

∼N(0,1)

≥ Φ−1(1− α)− µBn/
√
Bn

)
=

1− Φ
(
Φ−1(1− α)− µ

√
Bn

)
.

The power of the test converges to one for any µ > 0 if and only if 29 ∑n
i=1 β

2
i → ∞

as n → ∞. Note that the latter condition means that the signal waveform must not
converge to zero too fast: if it does, the test is not consistent, i.e. its power cannot be
made arbitrarily close to one by taking n large enough.

(4) Suppose now that the shape of the signal is unknown. Construct the level α GLRT
test for

H0 : µi = 0, for all i ∈ {1, ..., n}
H1 : µi ̸= 0, for some i ∈ {1, ..., n} .

Solution

29tests with this property are called consistent (think why)
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Under H1, the MLE of µ1:n is µ̂11:n = X1:n and hence the GLRT statistic is

log λ(X) = − 1

2σ2

n∑
i=1

(Xi − µ̂1i )
2 +

1

2σ2

n∑
i=1

X2
i =

1

2σ2

n∑
i=1

X2
i ,

i.e. the test rejects H0 if and only if{ n∑
i=1

X2
i ≥ c

}
.

Under H0, the statistic
∑n

i=1X
2
i /σ

2 has χ2
n distribution (denote its c.d.f. by Fn) and

hence α level test is obtained with the critical level, solving

α = P0

( n∑
i=1

X2
i /σ

2 ≥ c/σ2
)
= 1− Fn

(
c/σ2

)
,

which gives
c(α) = σ2F−1

n (1− α).

(5) Can the GLRT be constructed for the detection problem in (4), if σ2 is unknown ?
Explain.

Solution

The GLRT is not well defined, since under H1, σ
2 and µ1:n can be chosen to yield

arbitrary large values of the likelihood, namely if µ̂11:n = X1:n is taken,

L(x;σ2, µ̂11:n) =

(
1√
2πσ2

)n
→ ∞, σ2 → 0.

d. 2009/2010 (B) 52314

Problem 1.

Let Z1, ..., Zn be i.i.d. r.v.’s with U([0, 1]) distribution and define

Xi = θ + θZi, i = 1, ..., n,

where θ > 0 is the unknown parameter. It is required to estimate θ, given the sample X =
(X1, ..., Xn).

(1) Show that X ∼ U([θ, 2θ]), i.e. its p.d.f. is given by

f(x; θ) =
1

θ
I(x ∈ [θ, 2θ])

Solution
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Let g be the p.d.f. of Z1, then since θ > 0,

P(X1 ≤ u) = P(θ + θZ1 ≤ u) = P(Z1 ≤ u/θ − 1)

and thus

f(u; θ) =
d

du
P(Z1 ≤ u/θ − 1) =

1

θ
g(u/θ − 1) =

1

θ
I(u/θ − 1 ∈ [0, 1]) =

1

θ
I(u ∈ [θ, 2θ]).

(2) Show that (X∗, X∗), where

X∗ := min
i∈{1,...,n}

Xi, X∗ := max
i∈{1,...,n}

Xi,

is a sufficient statistic for θ

Solution

The sufficiency follows from the F-N theorem, since the likelihood has the form

Ln(x; θ) =
1

θn

n∏
i=1

I(xi ∈ [θ, 2θ]) =
1

θn
I(x∗ ≤ 2θ)I(x∗ ≥ θ), x ∈ Rn, θ ∈ R+

(3) Is (X∗, X∗) minimal sufficient ?

Solution

Let x, y ∈ Rn, such that either x∗ ̸= y∗ or x∗ ̸= y∗, then

Ln(x; θ)

Ln(x; θ)
=
I(x∗ ≤ 2θ)I(x∗ ≥ θ)

I(y∗ ≤ 2θ)I(y∗ ≥ θ)

is clearly a function30 of θ: e.g. if, say, x∗ = y∗ and x∗ < y∗, then it equals 1, if θ < x∗

and takes value 0, if θ ∈ (x∗, y∗). Other cases are examined similarly.

(4) Sketch the likelihood as a function of θ and find the MLE θ̂. Calculate31its MSE risk.

Solution

Ln(x; θ) vanishes strictly decreases on the interval [X∗/2, X∗] and vanishes else-
where. Hence

θ̂ = X∗/2.

30with e.g. the conventions 0
0
:= 0 and 1

0
:= ∞
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The risk is given by

R(θ, θ̂) = var(θ̂) + (Eθθ̂ − θ)2 =
1

4
var(X∗) +

(1
2
EθX∗ − θ

)2
=

θ2

4
var(Z∗) +

(1
2
(θ + θEθZ∗)− θ

)2
=
θ2

4

n

(n+ 1)2(n+ 2)
+
θ2

4

( n

n+ 1
− 1
)2

=

θ2

4

2n+ 1

(n+ 1)2(n+ 2)

(5) Is the estimator θ̃ = 1
3(X∗ +X∗) unbiased ?

Solution

Yes:

Eθ
1

3
(X∗ +X∗) = Eθ

1

3
(2θ + θZ∗ + θZ∗) =

1

3

(
2θ + θ

1

n+ 1
+ θ

n

n+ 1

)
= θ.

(6) Find the j.p.d.f. of (Z∗, Z
∗)

Hint: Note that P(Z∗ > u,Z∗ ≤ v) =
(
P(Z1 ∈ [u, v])

)n
, for u ≤ v.

Solution

Since

FZ∗Z∗(u, v) = P(Z∗ ≤ u,Z∗ ≤ v) = P(Z∗ ≤ v)− P(Z∗ > u,Z∗ ≤ v).

and,

P(Z∗ > u,Z∗ ≤ v) =
(
P(Z1 ∈ [u, v])

)n
=

{
(v − u)n, v > u

0 v ≤ u

we have

fZ∗Z∗(u, v) =
∂2

∂u∂v
FZ∗Z∗(u, v) = − ∂2

∂u∂v
P(Z∗ > u,Z∗ ≤ v) =

n(n− 1)(v − u)n−2I(0 ≤ u ≤ v ≤ 1).

31You might find the following formulae useful:

EZ∗ =
1

n+ 1
, EZ∗ =

n

n+ 1

E
(
Z∗

)2
=

2

(n+ 1)(n+ 2)
, E

(
Z∗)2 =

n

n+ 2

varθ
(
Z∗

)
=

n

(n+ 1)2(n+ 2)
var

(
Z∗) =

n

(n+ 1)2(n+ 2)
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(7) Write down the integral, required to compute32

cov(Z∗, Z
∗) =

1

(n+ 1)2(n+ 2)
.

Solution

EZ∗Z
∗ = n(n− 1)

∫
{(u,v):v≥u}

uv(v − u)n−2dudv =

n(n− 1)

∫ 1

0
u

(∫ 1

u
v(v − u)n−2dv

)
du = ... =

1

n+ 2
,

and

cov(Z∗, Z
∗) = EZ∗Z

∗ − EZ∗EZ∗ =
1

n+ 2
− 1

n+ 1

n

n+ 1
=

1

(n+ 1)2(n+ 2)

(8) Calculate the MSE risk of θ̃ and compare it to the risk of θ̂. On the basis of your
calculation, if either of the estimators is inadmissible ?

Solution

Since the estimator is unbiased,

R(θ, θ̃) = var(θ̃) = var
(1
3
X∗ +

1

3
X∗
)
=
θ2

9
var
(
Z∗ + Z∗) =

θ2

9

(
var(Z∗) + 2cov(Z∗, Z

∗) + var(Z∗)
)
=

2θ2

9

( n

(n+ 1)2(n+ 2)
+

1

(n+ 1)2(n+ 2)

)
=

2θ2

9

1

(n+ 1)(n+ 2)
.

To compare the risks, consider the ratio:

R(θ, θ̂)

R(θ, θ̃)
=

9

8

2n+ 1

n+ 1
, n ≥ 1.

Note that the function n 7→ 2n+1
n+1 is increasing and attains its minimum 3/2 at n = 1.

Hence
R(θ, θ̂)

R(θ, θ̃)
≥ 27

16
> 1.68... ∀n ≥ 1

This shows that the MLE θ̂ is inadmissible and, moreover, is strictly inferior to θ̃
asymptotically as n→ ∞.

32no need to proceed with the calculations
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Problem 2.

Bob and Alice toss two different coins with heads probabilities θ1 and θ2, which Claude
wants to estimate. In order to trick Claude, they reveal the outcomes of their tosses, without
telling whose coin was tossed first. Claude knows that Bos’s coin has greater heads probabilities
than Alice’s, i.e. θ2 > θ1.

To estimate θ := (θ1, θ2) Claude assumes that he observes n i.i.d. pairs (X1, Y1), ..., (Xn, Yn)
with

Xi = ZiAi + (1− Zi)Bi

Yi = (1− Zi)Ai + ZiBi,

where Ai ∼ Ber(θ1) (the tosses of Alice), Bi ∼ Ber(θ2) (the tosses of Bob) and Zi ∼ Ber(1/2).
All Ai’s, Bi’s and Zi’s are independent.

(1) Explain how this model fits the experiment and what is the role of Zi’s in it ?

Solution

If the event {Zi = 1} occurs, then (Xi, Yi) = (Ai, Bi), i.e. the first coin comes from
Alice and the second from Bob, and if {Zi = 1} occurs, then (Xi, Yi) = (Bi, Ai). Hence
Claude’s model assumes that in fact Alice and Bob toss a third fair coin and swap their
outcomes accordingly. Such a model supports any sequence of swaps.

(2) Find the distribution of X1

Solution

X1 is Bernoulli r.v. with

Pθ(X1 = 1) = Pθ(Zi = 1, Ai = 1) + Pθ(Zi = 0, Bi = 1) =

Pθ(Zi = 1)Pθ(Ai = 1) + Pθ(Zi = 0)Pθ(Bi = 1) =
1

2
θ1 +

1

2
θ2.

(3) Show that if Claude uses only X1, ..., Xn, he gets non-identifiable model with respect
to θ.

Solution

The distribution of X1 and, by the i.i.d. property, of the whole vector (X1, ..., Xn)
depends on θ, only through θ1 + θ2.
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(4) Show that the j.p.m.f of (X1, Y1) is

pX1,Y1(u, v; θ) =
(
θ1θ2

)uv(
(1− θ1)(1− θ2)

)(1−u)(1−v)
∗(

θ1(1− θ2)

2
+

(1− θ1)θ2
2

)1−uv−(1−u)(1−v)
, u, v ∈ {1, 0}

Solution

We have

Pθ(X1 = 1, Y1 = 1) = P(A1 = 1, B1 = 1) = θ1θ2,

and similarly

Pθ(X1 = 0, Y1 = 0) = P(A1 = 0, B1 = 0) = (1− θ1)(1− θ2).

Further,

Pθ(X1 = 0, Y1 = 1) = Pθ(A1 = 0, B1 = 1, Z1 = 1)+

Pθ(A1 = 1, B1 = 0, Z1 = 0) = (1− θ1)θ2
1

2
+ θ1(1− θ2)

1

2
,

and similarly,

Pθ(X1 = 0, Y1 = 1) = θ1(1− θ2)
1

2
+ (1− θ1)θ2

1

2
.

(5) Find a two-dimensional sufficient statistic for estimating θ from (X1, Y1), ..., (Xn, Yn).

Solution

The j.p.m.f. of the r.v.’s (X1, Y1), ..., (Xn, Yn) is

p(x, y) =
(
θ1θ2

)T0(x,y)(
(1− θ1)(1− θ2)

)T1(x,y)
∗(

θ1(1− θ2)

2
+

(1− θ1)θ2
2

)n−T0(x,y)−T1(x,y)
, x, y ∈ {1, 0}n,

where T0(x, y) =
∑n

i=1 xiyi and T1(x, y) =
∑n

i=1(1 − xi)(1 − yi). Note that these two

statistics is at one-to-one correspondence to the statistic
(∑n

i=1XiYi,
∑n

i=1(Xi+Yi)
)
,

which by the F-N factorization theorem is sufficient. The usual calculation also shows
that it is minimal sufficient.

(6) Is the model identifiable, if all the data (X1, Y1), ..., (Xn, Yn) is used?

Solution
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Note that

s(θ1, θ2) := Eθ(X1 + Y1) = θ1 + θ2

and

r(θ1, θ2) := EθX1Y1 = Pθ(X1 = 1, Y1 = 1) = Pθ(A1 = 1, B1 = 1) = θ1θ2.

The function (θ1, θ2) 7→ (s, r) is invertible33 on θ2 > θ1: the inverse is obtained by
solving34 the quadratic equation θ2 − sθ + r = 0:

θ1 =
s−

√
s2 − 4r

2
, θ2 =

s+
√
s2 − 4r

2
.

Hence the model is identifiable.

(7) How your answer to the previous question would change, if Claude doesn’t know whose
coin has greater heads probabilities ?

Solution

Notice that the distribution of the data is invariant with respect to permuting θ1
and θ2. Hence e.g. for θ = (1/2, 1/3) and θ′ = (1/3, 1/2) one gets exactly the same
distribution, i.e. the model is not identifiable. The condition θ2 > θ1 reduces the
parameter space and eliminates this ambiguity.

(8) Suggest consistent estimators for θ1 and θ2, based on all the data (X1, Y1), ..., (Xn, Yn).

Solution

The formulas, obtained in the previous question, can be used to construct the
method of moments estimators for θ1 and θ2:

θ̃1 =
X + Y −

√
X + Y

2 − 4XY

2
,

θ̃2 =
X + Y +

√
X + Y

2 − 4XY

2
,

where X + Y = 1
n

∑n
i=1(Xi + Yi) and XY = 1

n

∑n
i=1XiYi. However, the expression

under the root may be negative with positive probability (e.g. on the event {X1 =
Y1 = 1, Xi = Yi = 0, i > 1}). Hence the estimators must be modified to be well defined

33note that it is not invertible on (0, 1)× (0, 1)!
34Note that only real roots are possible.
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for any possible outcome of the experiment. For example,

θ̃1 =
X + Y −

√∣∣X + Y
2 − 4XY

∣∣
2

,

θ̃2 =
X + Y +

√∣∣X + Y
2 − 4XY

∣∣
2

,

The consistency follows by the LLN and continuity of the corresponding functions in
the empirical means.

Problem 3.(Change Detection)

A plant produces bottles of mineral water. Production is monitored by a statistician, who
samples the water acidity daily. She suspects that the production line stopped to work properly
within the last n days and suggests to perform a test.

Let (X1, ..., Xn) denote the acidity of the water measured on each one of the days and let
θ ∈ {1, ..., n} denote the day index at which the change have occurred. The statistician wants
to test the hypothesis:

H0 : X1, ..., Xn are i.i.d. N(0, 1) r.v.’s

against the alternative

H1 : X1, ..., Xn are independent,

{
X1, ..., Xθ−1 ∼ N(0, 1)

Xθ, ..., Xn ∼ N(a, 1)
θ ∈ {1, ..., n}

where a > 0 is a known constant.

(1) Find the likelihood function of the data under the alternative

Solution

L(x; θ) =
1

(2π)n/2
exp

(
− 1

2

θ−1∑
i=1

x2i −
1

2

n∑
i=θ

(xi − a)2
)
,

where
∑0

i=1(...) = 0 is understood.

(2) For n = 1, find the most powerful level α test

Solution

When n = 1, we are faced with the simple hypothesis testing problem:

H0 : X1 ∼ N(0, 1)

H1 : X1 ∼ N(a, 1),

for which the most powerful test is given by the N-P likelihood ratio test, rejecting H0

iff
X1 > c.
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The α-level test is obtained by choosing:

P0

(
X1 > c

)
= α =⇒ c := Φ−1(1− α).

(3) Find the α level test, using the test statistic X̄n and calculate its power function.

Solution

The test rejects H0 if and only if

X̄n > c.

Note that X̄n is an N(0, 1/n) r.v. under H0 and hence the α-level test is obtained by
choosing c, which solves

P0(X̄n > c) = P0(
√
nX̄n︸ ︷︷ ︸

∼N(0,1)

>
√
nc) = 1− Φ(c

√
n) = α,

that is

c(α) =
1√
n
Φ−1(1− α).

Under H1, X̄n is a Gaussian r.v. with unit variance and mean

EθX̄n =
1

n

n∑
i=1

EθXi =
1

n

n∑
i=θ

a = a
n− θ + 1

n
.

The power function of the test (for θ ∈ {1, ..., n}) is given by

π(θ) = Pθ
(
X̄n > c(α)

)
= Pθ

(√
n
(
X̄n − a

n− θ + 1

n

)
︸ ︷︷ ︸

∼N(0,1)

>
√
n
(
c(α)− a

n− θ + 1

n

))
=

1− Φ

(√
n
(
c(α)− a

n− θ + 1

n

))
= 1− Φ

(
Φ−1(1− α)− a

n− θ + 1√
n

)
.

(4) Prove that the GLRT test with a critical value c rejects H0 iff

max
θ∈{1,...,n}

n∑
i=θ

(Xi − a/2) > c.

Solution
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The GLRT statistic in this case is:

supθ∈Θ1
L(x; θ)

supθ∈Θ0
L(x)

=

maxθ∈{1,...,n} exp

(
− 1

2

∑θ−1
i=1 x

2
i − 1

2

∑n
i=θ(xi − a)2

)
exp(−1

2

∑n
i=1 x

2
i )

=

max
θ∈{1,...,n}

exp
(
a

n∑
i=θ

(xi − a/2)
)

and the GLRT test rejects H0 if and only if

max
θ∈{1,...,n}

n∑
i=θ

(Xi − a/2) > c,

where c must be chosen to meet the significance error requirement.
Note that this test has a nice implementation advantage, being sequential: H0 is

rejected once the cumulative sum
m∑
i=1

(Xi − a/2), m = 1, 2, ...

exceeds threshold c.

(5) Find the GLRT statistic, if a is unknown and is to be considered as a parameter as
well.

Solution

The test statistic in this case is:

maxθ∈{1,...,n}maxa∈R exp

(
− 1

2

∑θ−1
i=1 x

2
i − 1

2

∑n
i=θ(xi − a)2

)
exp(−1

2

∑n
i=1 x

2
i )

=

max
θ∈{1,...,n}

max
a∈R

exp
(
a

n∑
i=θ

(xi − a/2)
)

For each θ, the maximum w.r.t. a is attained at

a∗ =
1

n− θ + 1

n∑
i=θ

xi

and thus the GLRT rejects H0 if and only if

max
θ∈{1,...,n}

1

n− θ + 1

( n∑
i=θ

Xi

)2
> c.
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e. 2010/2011 (A) 52303

Problem 1.

Let X1, ..., Xn be a sample from the Gaussian distribution N(θ, θ2), where θ > 0 is the
unknown parameter.

(1) Find a sufficient statistic, coarser than the sample X itself

Solution

The likelihood function is

L(x; θ) =

(
1√
2πθ

)n
exp

(
− 1

2θ2

n∑
i=1

(xi − θ)2

)
=

(
1√
2πθ

)n
exp

(
− 1

2θ2

n∑
i=1

x2i +
1

θ

n∑
i=1

xi − n

)

By F-N theorem, the statistic T (X) =
(∑n

i=1X
2
i ,
∑n

i=1Xi

)
is sufficient (in fact, min-

imal).

(2) Calculate the Fisher information for the sample and derive the lower bound for the
unbiased estimators of θ.

Solution

By the i.i.d. property, IX(θ) = nIX1(θ). Further,

log fX1(X1; θ) = − log
√
2π − log θ − 1

2θ2
X2

1 +
1

θ
X1 − 1/2

Hence
∂

∂θ
log fX1(X1; θ) = −1

θ
+

1

θ3
X2

1 − 1

θ2
X1

and
∂2

∂θ2
log fX1(X1; θ) =

1

θ2
− 3

θ4
X2

1 +
2

θ3
X1.

Note that EθX2
1 = varθ(X1) + (EθX1)

2 = 2θ2 and so

IX1(θ) = −Eθ
∂2

∂θ2
log fX1(X1; θ) = −

(
1

θ2
− 3

θ4
2θ2 +

2

θ3
θ

)
=

3

θ2
.

For any unbiased estimator θ̂n(X) of θ, varθ(θ̂n) ≥ 1
3
θ2

n .
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(3) Show that the estimator X̄n of θ is not efficient, i.e. its risk does not attain the C-R
bound.

Solution

X̄n is unbiased and hence its risk is the variance varθ(X̄n) = θ2/n, which is strictly
greater than C-R bound for all θ > 0. Hence it is not efficient.

(4) Is X̄n efficient asymptotically as n→ ∞, i.e.

lim
n

n/IX1(θ)

varθ(X̄n)
= 1

Solution

X̄n is not efficient asymptotically either:

n/IX1(θ)

varθ(X̄n)
= 1/3, ∀n ≥ 1

(5) Explain how the estimator

Tn(X) =

√√√√1

2

1

n

n∑
i=1

X2
i ,

is obtained by the method of moments and show that the sequence (Tn) is consistent
for θ.

Solution

The estimator can be obtained by the method of moments using EθX2
1 = 2θ2. By

the law of large numbers, 1
n

∑n
i=1X

2
i

Pθ−→ 2θ2 and since u 7→
√
u/2 is a continuous

function, Tn(X)
Pθ−→
√

1
22θ

2 = θ, i.e. Tn is consistent for θ.

(6) Show that

varθ(X
2
1 ) = 6θ4

Hint: note that X1 = θ(1 + ξ) with ξ ∼ N(0, 1) and recall that Eξ4 = 3 and
Eξ3 = 0.

Solution
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Note that X1 = θ(1 + ξ) and

varθ(X
2
1 ) = θ4var

(
(1 + ξ)2

)
.

E(1 + ξ)2 = 2 and

var
(
(1 + ξ)2

)
= E(1 + ξ)4 −

(
E(1 + ξ)2

)2
= E(1 + ξ)4 − 4.

Moreover,

E(1 + ξ)4 = E(1 + 4ξ + 6ξ2 + 4ξ3 + ξ4) = 1 + 6 + 3 = 10,

and the claim follows.

(7) Using the Delta method, find the asymptotic error distribution for (Tn) and the corre-
sponding rate. Compare your result with the estimator in (3) and with the C-R bound
from (2). Explain.

Solution

By the LLN, Sn(X) := 1
n

∑n
i=1

1
2X

2
i

P−→ θ2 and by the CLT,

√
n(Sn(X)− θ2)

d−→ N

(
0, varθ

(1
2
X2

1

))
= N

(
0,

3

2
θ4
)

Hence by the Delta method, applied to g(u) =
√
u,

√
n
(
Tn − θ

)
=

√
n
(
g(Sn)− g(θ2)

)
d−→ N

(
0,
(
g′(θ2)

)2 3
2
θ4
)

=

N

(
0,
(1
2

1√
θ2

)2 3
2
θ4
)

= N

(
0,

3

8
θ2
)
.

The asymptotic variance is better than that of X̄n. Comparing to the C-R bound,
found above, is strictly speaking35 irrelevant, since Tn’s are not unbiased (revealed by
an additional calculation).

Problem 2.

A coin is tossed an unknown number of times ν ∈ {1, 2, ...} and the number of heads X is
revealed.

(1) A statistician assumes that X ∼ Bin(ν, p), where both ν and p ∈ (0, 1) are unknown
parameters. What are the assumptions of the model. Specify the parametric space.

Solution

35in fact, the sequence (Tn) is asymptotically unbiased and hence the C-R bound is still very much relevant
(alas, not in the scope of our course)
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The tosses are assumed to be i.i.d. with probability of heads p. The parameter (ν, p)
takes values in (0, 1)× N.

(2) If p is known and ν is unknown, is the model identifiable ? If both p and ν are unknown,
is the model identifiable ?

Solution

If ν is unknown and p is known, the model is identifiable: the number of integers,
on which the p.m.f. of X is positive, equals ν + 1 and hence for two different values of
ν different p.m.f.’s emerge. Alternatively, consider e.g. the statistic T (X) = 1{X=0}.
The function ν 7→ EνT (X) = Pν(X = 0) = (1− p)ν is a one-to-one function of ν.

The model is identifiable also if both parameters are unknown. Let (p, ν) ̸= (p′, ν ′).
If ν ̸= ν ′, the corresponding p.m.f ’s are different by the same argument as in the
previous question: the number of nonzero probabilities is different, regardless of p and
p′. If ν = ν ′ and p ̸= p′, the p.m.f.’s are different, since e.g. their means are different:
νp ̸= νp′.

(3) Assume that p ∈ (0, 1) is known and denote by ν̂(X) the MLE of ν. Find ν̂(0).

Solution

The likelihood function is

L(x; ν) =
ν!

x!(ν − x)!
px(1− p)ν−x, x ∈ {0, ..., ν},

and at x = 0, L(0; ν) = (1− p)ν . Hence

ν̂(0) = argmaxν∈N(1− p)ν = 1,

where the latter equality holds, since ν 7→ (1− p)ν is a decreasing function.

(4) Calculate ν̂(1), if p is known and p = 1− e−1 = 0.6321...
How your answer generalizes to the case of p = 1− e−ℓ, ℓ ∈ {1, 2, ...}?
To p = 1− e−1/ℓ, ℓ ∈ {1, 2, ...} ? To any p ∈ (0, 1)?

Solution

ν̂(1) = argmaxν∈N logL(1; ν) = argmaxν∈N log
(
νp(1− p)ν−1

)
=

argmaxν∈N (log ν + log p+ (ν − 1) log(1− p)) =: argmaxν∈Nϕ(ν).

The function ϕ(u) is well defined for all u ≥ 1 (and not just for integer arguments) and

ϕ′(u) = 1/u+ log(1− p),



246 EXAMS/SOLUTIONS

which vanishes at u∗ = −1/ log(1 − p). Moreover, since ϕ′′(u) = −1/u2 < 0, ϕ(u)
attains its local maximum at u∗. As limu→∞ ϕ(u) = −∞, the global maximum over
u ∈ [1,∞) is attained at max

(
1, u∗

)
.

Note that

max
ν∈N

ϕ(ν) ≤ max
u∈[1,∞)

ϕ(u),

since the maximum in the right hand side is taken over a larger set. For p = 1− e−1,
u∗ = 1 is an integer and the latter inequality is attained, i.e.

ν̂(1) = argmaxν∈Nϕ(ν) = argmaxu∈[1,∞)ϕ(u) = 1.

Similarly, for p = 1− e−ℓ with ℓ ∈ N, u∗ = 1/ℓ and hence ν̂(1) = max(1, 1/ℓ) = 1. For

p = 1− e−1/ℓ, ℓ ≥ 1 we get u∗ = ℓ.
In the general case, p ∈ (0, 1)

ν̂(1) =

{
max(1, ⌊u∗⌋), if logL(1; ⌊u∗⌋) ≥ L(1; ⌈u∗⌉)
max(1, ⌈u∗⌉), if logL(1; ⌊u∗⌋) < L(1; ⌈u∗⌉)

,

where ⌊u∗⌋ denotes the greatest integer less than or equal to u∗ and ⌈u∗⌉ denotes the
smallest integer greater or equal to u∗.

(5) Explain why the model does not belong to the exponential family, if ν is unknown

Solution

If ν is unknown, the support of the Binomial p.m.f. depends on the parameter and
hence doesn’t fit the exponential family form.

(6) Show that if both p and ν are unknown, X is a complete statistic.

Solution

Suppose Ep,νg(X) = 0 for all p ∈ (0, 1) and ν ∈ N, i.e.

Ep,νg(X) =

ν∑
i=0

g(i)

(
ν
i

)
pi(1− p)ν−i =

(1− p)ν
ν∑
i=0

g(i)

(
ν
i

)(
p

1− p

)i
= 0, p ∈ (0, 1), ν ∈ N.

Since for p ∈ (0, 1), the function p/(1 − p) takes values in (0,∞), the latter implies36

that g(i) = 0 for all i ∈ N and hence X is complete.

36recall that a polynomial equals to zero on an open interval if and only if all its coefficients are zeros



F. 2010/2011 (B) 52303 247

(7) Find the UMVUE for pν, if both p and ν are unknown.

Solution

X is an unbiased estimator of pν and X is a sufficient and complete statistic, hence
by the L-S theorem X is UMVUE for pν.

(8) Is X a complete statistic, if ν is unknown and p is known and equals 1/2?

Hint: recall (1− 1)ν =
∑ν

i=0

(
ν
i

)
(−1)i = 0 for any ν ∈ N.

Solution

Consider the statistic g(X) = (−1)X .

Eνg(X) = (1/2)ν
ν∑
i=0

g(i)

(
ν
i

)
= (1/2)ν

ν∑
i=0

(−1)i
(
ν
i

)
=

(1/2)ν
ν∑
i=0

(−1)i1ν−i
(
ν
i

)
= (1/2)ν(1− 1)ν = 0, ∀ν ∈ N.

However g(X) ̸= 0, hence X is not complete.

f. 2010/2011 (B) 52303

Problem 1.[Neyman-Scott] (see in 2010/2011 (A) 52314 below)

Problem 2.

Let X = (X1, ..., Xn) be a sample from the probability density

f(x; θ) = pψ(x) + (1− p)ψ(x− µ), x ∈ R,

where ψ(x) = 1
2e

−|x| is the density of Laplace (two-sided exponential) r.v., µ > 0 is a known
constant and p ∈ [0, 1] is the unknown parameter.

(1) Is the model identifiable ? Would the model be identifiable if both p and µ were
unknown ?

Solution

If µ is known, the model is identifiable: e.g. EpX1 = (1 − p)µ is a one-to-one
function of p (recall that µ ̸= 0). The model is not identifiable if both p and µ are
unknown: if p = 1, the density doesn’t depend on µ.
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(2) Answer the previous question, when p ∈ (0, 1).

Solution

If µ is known, then the model is still identifiable as before. However, if both p ∈ (0, 1)
and µ > 0 are unknown, the model remains identifiable. To see this, consider for
example the first and the second moments of X1:

m1(p, µ) := EX1 = (1− p)µ

m2(p, µ) := EX2
1

†
= 2p+ (1− p)

(
µ2 + 2

)
= 2 + (1− p)µ2,

where in †, we used the expressions∫ ∞

−∞
x2

1

2
e−|x|dx =

∫ ∞

0
x2e−xdx = 2.

If p ∈ (0, 1), then the function (p, µ) 7→
(
m1(p, µ),m2(p, µ)

)
is one-to-one with the

inverse: (
p
µ

)
=

1− m2
1

m2 − 2
m2 − 2

m1

 .

(3) Find the MLE of p on the basis of one sample X1

Solution

The likelihood L1(X; p) = pψ(X1) + (1− p)ψ(X1 − µ) is a linear function of p and
is maximized at an endpoint of the interval [0, 1]. Hence

p̂(X1) = 1{ψ(X1)≥ψ(X1−µ)} = 1{|X1|≤|X1−µ|} = 1{X1≤µ/2}.

(4) Using the first moment of X1, suggest a sequence of unbiased consistent estimators of
p

Solution

Note EpX1 = (1− p)µ, and the method of moments gives p̂n(X) = 1− X̄n/µ. Since

by the LLN, X̄n
Pp→ (1− p)µ, the sequence of estimators (p̂n) is consistent.

(5) Find the asymptotic error distribution and the corresponding rate for the sequence of
estimators from the previous question. What happens to the asymptotic variance when
µ is close to zero ? When µ is very large ? Explain.
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Solution

We have

varp(X1) = EpX2
1 − (EpX1)

2 = 2p+ (1− p)(µ2 + 2)− (1− p)2µ2 = 2 + p(1− p)µ2

and by the CLT

√
n
(
1− X̄n/µ− p

)
=

1

µ

√
n
(
(1− p)µ− X̄n

)
d−→

N

(
0,

1

µ2

(
2 + p(1− p)µ2

))
= N

(
0,

2

µ2
+ p(1− p)

)
Note that X1 = ξ1Z1 + (1 − ξ1)(Z1 + µ), where ξ1 ∼ Ber(p) and Z1 ∼ Lap(1) are
independent. If µ is large, it is easy to guess ξi’s and hence the variance of the error
is as if we observe the ξi’s directly. When µ is large, the observations are not very
informative and hence the observation variance is large.

(6) Prove that the statistic

T (X) =
(
|X1| − |X1 − µ|, ..., |Xn| − |Xn − µ|

)
is sufficient and that it is strictly coarser than the whole sample (X1, ..., Xn).

Solution

The likelihood is

L(X; p) =
n∏
i=1

(
pψ(Xi) + (1− p)ψ(Xi − µ)

)
=

n∏
i=1

(
p
1

2
e−|Xi| + (1− p)

1

2
e−|Xi−µ|

)
=

n∏
i=1

e−|Xi|
(
p
1

2
+ (1− p)

1

2
e|Xi|−|Xi−µ|

)
= e−

∑
i |Xi|

n∏
i=1

(
p
1

2
+ (1− p)

1

2
e|Xi|−|Xi−µ|

)
.

By the F-N factorization theorem T (X) is sufficient. T (X) is strictly coarser than X,
since the function:

|x| − |x− µ| =


µ x ≥ µ

2x− µ 0 ≤ x < µ

−µ x < 0

is not one-to-one on the range of X1 (why ?)

(7) Are your estimators in (4) UMVUE ? Are they admissible ?

Solution
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Note that

Ep
(
X̄n|T (X)

)
=

1

n

n∑
i=1

Ep
(
Xi|T (X)

)
=

1

n

n∑
i=1

Ep
(
Xi

∣∣|Xi| − |Xi − µ|
)
.

Since |Xi| − |Xi − µ| is strictly coarser than Xi,

Ep
(
Xi

∣∣|Xi| − |Xi − µ|
)
̸= Xi

with positive probability37 and hence by R-B theorem, conditioning p̂n(X) on the suffi-
cient statistic T (X) from (6) yields an estimator with strictly better risk. Consequently
p̂n is not UMVUE and is inadmissible.

Appendix

The conditional expectation Ep(X1|T1), where T1 = |X1|− |X1−µ|, is not hard to calculate:

Ep(X1|T1) =



Ep(X11{X1<0})

Pp(X1 < 0)
, T1 < −µ

1

2
(T1 + µ), −µ ≤ T1 ≤ µ

Ep(X11{X1>µ})

Pp(X1 > µ)
, T1 > µ

and

Ep(X11{X1≤0})

Pp(X1 < 0)
=

1
2

∫ 0
−∞ x

(
pex + (1− p)ex+µ

)
dx

1
2

∫ 0
−∞

(
pex + (1− p)ex+µ

)
dx

=

∫ 0
−∞ xexdx∫ 0
−∞ exdx

= −1,

and, similarly,

Ep(X11{X1>µ})

Pp(X1 > µ)
=

1
2

∫∞
µ x

(
pe−x + (1− p)e−x+µ

)
dx

1
2

∫∞
µ

(
pe−x + (1− p)e−x+µ

)
dx

=

∫∞
µ xe−xdx∫∞
µ e−xdx

=
e−µ + µe−µ

e−µ
= 1 + µ.

By the R-B theorem, the estimator

p̃n(X) = 1− 1

µ

1

n

n∑
i=1

(
(1 + µ)1{Ti(Xi)>µ} − 1{Ti(Xi)<−µ} +

1

2

(
Ti(Xi) + µ

)
1{Ti(Xi)∈[−µ,µ]}

)
is an unbiased estimator of p with the better MSE risk than 1− X̄n/µ.

g. 2010/2011 (A) 52314

Problem 1.[Neyman-Scott38]

37see the Appendix, if you are curious what the improved estimator look like
38this classical example in asymptotic statistics shows that in the presence of high-dimensional nuisance

parameter µ, the MLE may be inconsistent
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Let ξ1, ..., ξn, η1, ..., ηn be i.i.d. N(0, 1) random variables and set

Xi = µi + σξi, i = 1, ..., n

Yi = µi + σηi

where µ = (µ1, ..., µn) ∈ Rn and σ ∈ R+ are unknown parameters. It is required to estimate σ2,
given the data (X1, Y1), ..., (Xn, Yn). The vector µ is regarded as nuisance parameter.

(1) Find the likelihood function for this model.

Solution

By independence,

L(x, y;µ, σ2) =

n∏
i=1

1

2πσ2
exp

{
−1

2

(xi − µi)
2 + (yi − µi)

2

σ2

}
=

(
1

2πσ2

)n
exp

{
−1

2

n∑
i=1

(xi − µi)
2 + (yi − µi)

2

σ2

}
with x, y ∈ Rn and θ = (µ, σ2) ∈ Θ = Rn × R+.

(2) Find the MLE of (µ, σ2)

Solution

Using the the elementary formula a2 + b2 = 1
2(a− b)2 + 1

2(a+ b)2, we get

L(X,Y ;µ, σ2) =

(
1

2πσ2

)n
exp

{
−1

2

n∑
i=1

(Xi − µi)
2 + (Yi − µi)

2

σ2

}
=

(
1

2πσ2

)n
exp

{
−1

2

n∑
i=1

1
2(Xi − Yi)

2 + 1
2(Yi +Xi − 2µi)

2

σ2

}
.

The latter is maximized by the choice µ̂i = (Xi + Yi)/2 and σ̂2n = 1
4
1
n

∑n
i=1(Xi − Yi)

2.

(3) Are MLE’s of µi’s biased ? Is MLE of σ2 biased ?

Solution

Eµ,σ2 µ̂i = µi, i.e. the MLE’s of µi’s are unbiased. However, Eµ,σ2(Xi − Yi)
2 = 2σ2

and hence

Eµ,σ2 σ̂2n =
1

2
σ2,
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i.e. the MLE of σ2 is biased.

(4) Are MLE’s of µi’s consistent ? Is MLE of σ2 consistent ?

Solution

The MLE’s of µi’s depend only on two random variables and hence are trivially not
consistent. Note that Xi − Yi ∼ N(0, 2σ2) are i.i.d. and hence by the LLN

σ̂2n(X,Y )
n→∞−−−→ 1

2
σ2

in probability, i.e MLE of σ2 is not consistent either.

(5) Find the minimal sufficient statistic.

Solution

L(x, y;µ, σ2) =

(
1

2πσ2

)n
exp

{
− 1

2σ2

n∑
i=1

(x2i + y2i ) +
1

σ2

n∑
i=1

µi(xi + yi)−
1

σ2

n∑
i=1

µ2i

}
and by the F-N factorization theorem, the statistic

T (X,Y ) = (T1, ..., Tn, Tn+1) =
(
X1 + Y1, ..., Xn + Yn,

n∑
i=1

(X2
i + Y 2

i )
)

is sufficient. Further, for (x, y) and (x̃, ỹ) in Rn × Rn,

L(x, y;µ, σ2)

L(x̃, ỹ;µ, σ2)
= exp

{
− 1

2σ2

(
Tn+1(x, y)− Tn+1(x̃, ỹ)

)
+

1

σ2

n∑
i=1

µi

(
Ti(x, y)− Ti(x̃, ỹ)

)}
.

The latter is not a function of (µ, σ2) only if T (x, y) = T (x̃, ỹ). Hence T (X,Y ) is
minimal sufficient.

(6) Is the minimal sufficient statistic complete ?

Solution

The likelihood belongs to the (n+ 1)-parameter exponential family with

c(µ, σ2) =

(
µ1
σ2
, ...,

µn
σ2
,− 1

2σ2

)
.

The range of c(µ, σ2) is Rn × R−, which is obviously not empty. Hence T (X,Y ) is a
complete statistic.
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(7) Find the UMVUE of σ2 and calculate its MSE risk

Solution

The statistic (a modification of MLE)

σ̃2(X,Y ) =
1

n

n∑
i=1

1

2
(Xi − Yi)

2

is an unbiased estimator of σ2. Since

1

2

∑
i

(Xi − Yi)
2 =

∑
i

(X2
i + Y 2

i )−
1

2

∑
i

(Xi + Yi)
2,

σ̃2(X,Y ) is a function of the complete sufficient statistic and hence by the L-S theorem
it is UMVUE. Note that ξi := (Xi − Yi)/

√
2 ∼ N(0, σ2) and the MSE risk is

R(σ2, σ̃2) = var(σ̃2) = E

(
1

n

n∑
i=1

1

2
(Xi − Yi)

2 − σ2

)2

=

E

(
1

n

n∑
i=1

(ξ2i − σ2)

)2

=
1

n
E(ξ21 − σ2)2 =

1

n

(
3(σ2)2 − 2(σ2)2 + (σ2)2

)
=

2

n
(σ2)2

(8) Find the C-R lower bound for MSE risk of unbiased estimators of σ2, assuming that
µi’s are known. Is it attained by the estimator from the previous question?

Solution

logL(x, y;σ2) = −n log 2π − n log σ2 − 1

2

n∑
i=1

(xi − µi)
2 + (yi − µi)

2

σ2

and hence

∂

∂σ2
logL(X,Y ;σ2) = −n 1

σ2
+

1

2

1

(σ2)2

n∑
i=1

(
(Xi − µi)

2 + (Yi − µi)
2
)

and

∂2(
∂σ2

)2 logL(X,Y ;σ2) = n
1

(σ2)2
− 1

(σ2)3

n∑
i=1

(
(Xi − µi)

2 + (Yi − µi)
2
)
.

The Fisher information is then

In(σ
2) = −Eσ2

∂2(
∂σ2

)2 logL(X,Y ;σ2) = −n 1

(σ2)2
+

1

(σ2)3
n2σ2 =

n

(σ2)2
.
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The bound is not attained, which shall be expected, since if µi’s are unknown, the
problem of estimating σ2 is harder (and, of course, the model is different).

Problem 2. An electronic device monitors the radiation activity, by counting the number
of particles, emitted by a source. The outputs of the device at consecutive time units i = 1, ..., n
are independent random variables X1, ..., Xn with Poisson distribution Xi ∼ Poi(1 + λi), where
λi ≥ 0 is the unknown intensity of the source at time i (and 1 models the known radiation of
the background).

(1) Find the UMP test statistic for the problem

H0 : λ1 = ... = λn = 0

H1 : λ1 = ... = λn > 0

Solution

The problem can be rephrased as testing H0 : X1, ..., Xn
i.i.d.∼ Poi(1) against H1 :

X1, ..., Xn
i.i.d.∼ Poi(1 + r), where r > 0. The likelihood of the model is:

L(x; r) =
n∏
i=1

e−(1+r) (1 + r)Xi

Xi!
= e−n(1+r)(1 + r)nX̄n

/∏
i

Xi!

and the likelihood ratio

R(X; r1, r0) =
L(X; r1)

L(X; r0)
= e−n(r1−r0)

(
1 + r1
1 + r0

)nX̄n

is a strictly increasing function of the statistic X̄n for r1 > r0. Hence by K-R theorem
the likelihood ratio test is UMP. The test statistic is given by

L(X; r)

L(X; 0)
= e−nr (1 + r)nX̄n

and hence the UMP test rejects H0 if and only if {X̄n ≥ c}, where c is the critical value
to be chosen to meet the size requirement.

(2) For which values of the size α, an exact critical value can be found for the UMP test ?

Solution

Recall that under H0, S(X) = nX̄n has Poi(n) distribution, hence c is the smallest
integer satisfying P0(X̄n ≥ c) = α, or∑

k≥nc
e−n

nk

k!
= α,
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which can be evaluated numerically.

(3) Use the CLT to approximate the critical value of the UMP test.

Solution

Write cn to emphasize the dependence of the critical value on n, then

P0

(
X̄n ≥ cn

)
= P0

(√
n
(
X̄n − 1

)
≥

√
n
(
cn − 1

))
.

Now if we choose cn := 1 + z/
√
n with z ∈ R, then

lim
n→∞

P0

(
X̄n ≥ cn

)
= 1− Φ(z),

and hence z := Φ−1(1− α) yields the test with critical value cn = 1 + Φ−1(1− α)/
√
n,

whose size is approximately α.

(4) Is the test with approximate critical value found in (3) consistent39?

Hint: you may find the LLN useful.

Solution

The power function of the approximate UMP test is

πn(r) = Pr
(
X̄n ≥ 1 + Φ−1(1− α)/

√
n
)
=

Pr
(
X̄n − 1− r ≥ −r +Φ−1(1− α)/

√
n
) †
≥ Pr

(
X̄n − 1− r ≥ −r/2

)
≥

Pr
(
|X̄n − 1− r| ≤ r/2

)
= 1− Pr

(
|X̄n − 1− r| > r/2

)
n→∞−−−→ 1,

where the inequality † holds for all sufficiently large n (think why) and the convergence
holds, since X̄n → 1 + r in Pr-probability.

(5) Find the GLRT statistic for the problem in (1). Does the GLRT coincide with UMP
test ?

Solution

39a sequence of tests (δn) is consistent, if the corresponding power functions πn(θ) := Eθδn satisfy:

lim
n
πn(θ) = 1, ∀θ ∈ Θ1.
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Under H1, the log-likelihood

logL(X; r) = −n(1 + r) + nX̄n log(1 + r)− log
∏
i

Xi!

is a continuous function of r on [0,∞). Taking the derivative and equating the result
to zero we get the extremum:

−n+ nX̄n
1

1 + r
= 0 =⇒ r∗ = X̄n − 1,

which is a local maximum (the second derivative is negative). Since limr→∞ logL(X; r) =
−∞ and limr→−1 logL(X; r) = ∞, r∗ is a global maximum on (−1,∞) and hence the
MLE of r is40

r̂n(X) = (X̄n − 1)+.

Hence the GLRT statistic is

Λn(X) :=
supr>0 L(X; r)

L(X; 0)
= e−n(1+r̂n)+n(1 + r̂n)

nX̄n = {
1 X̄n ≤ 1

e−n(X̄n−1)(X̄n)
nX̄n X̄n > 1

Let φ(x) = e−n(x−1)(x)nx and note that (logφ(x))′ = (−nx + n + nx log x)′ =
−n+n(log x+1) = n log x > 0 for x > 1. Since (logφ(x))′ = φ′/φ(x) and φ(x) > 0 for
x > 1, it follows that x 7→ φ(x) is strictly increasing on (1,∞). It can be shown that
the median of the Poisson distribution with mean n ≥ 1 is greater than n and hence
for α < 1/2, the critical value of the UMP test is greater than 1, i.e it accepts H0 if
X̄n ≤ 1. Since the GLRT also accepts H0 for X̄n ≤ 1 and the GLRT statistic is strictly
increasing in X̄n for X̄n > 1, the GLRT coincides with the UMP test.

(6) Find the GLRT statistic for the problem

H0 : λ1 = ... = λn = 0,

H1 : λ1 + ...+ λn > 0

Solution

The log-likelihood under H1 is

logL(X;λ1, ..., λn) =
n∑
i=1

(
− (1 + λi) +Xi log(1 + λi)− logXi!

)
,

40we use the notation x+ = max(x, 0)



H. 2011/2012 (A) 52314 257

which is maximized over Rn+ by λ̂i := (Xi − 1)+. Hence the GLRT statistic is

supλ1+...+λn>0 L(X;λ1, ..., λn)

L(X; 0)
=

∏
i e

−1−(Xi−1)+(1 + (Xi − 1)+)Xi

e−n
=∏

i

e−(Xi−1)+(1 + (Xi − 1)+)Xi =
∏

i:Xi≥1

e1−Xi(Xi)
Xi

(7) It is known that the radiation jumped from 0 to the known level r > 0 at the unknown
time ν ∈ {1, ..., n}:

λ1 = ... = λν−1 = 0, λν = ... = λn = r.

Assuming uniform prior on ν, find the Bayes estimator ν̂(X) with respect to the loss
function ℓ(k,m) = 1{k ̸=m}.

Solution

ν ∈ {1, ..., n} is the only unknown parameter in this problem and the corresponding
likelihood is

L(X; ν) :=

ν−1∏
i=1

e−1 1

Xi!

n∏
i=ν

e−(1+r) (1 + r)Xi

Xi!
=

n∏
i=1

e−1 1

Xi!

n∏
i=ν

e−r(1 + r)Xi .

where
∏0
i=1

(
...
)
= 1 is understood. Recall that the Bayes estimator for this loss

function is the posterior mode:

ν̂(X) = argmaxℓ∈{1,...,n}
L(X; ℓ)π(ℓ)∑
j=1 L(X; j)π(j)

†
= argmaxℓ∈{1,...,n}

L(X; ℓ)∑
j=1 L(X; j)

=

argmaxℓ∈{1,...,n}L(X; ℓ) = argmaxℓ∈{1,...,n} logL(X; ℓ)

where the equality † holds, since the posterior π is uniform over {1, ..., n}, i.e. π(i) =
1/n. Hence

ν̂(X) =argmaxℓ∈{1,...,n} logL(X; ℓ) = argmaxℓ∈{1,...,n} log

n∏
i=ℓ

e−r(1 + r)Xi =

argmaxℓ∈{1,...,n}

n∑
i=ℓ

(
Xi log(1 + r)− r

)
.

h. 2011/2012 (A) 52314

Problem 1. (variations on the regression theme)
Consider the problem of estimating the unknown parameter θ ∈ R from the sample (X1, Y1),

..., (Xn, Yn), n ≥ 3 where
Yi = Xiθ + εi, i = 1, ..., n

where covariates Xi’s and the noise εi’s are i.i.d. random variables with N(0, 1) distribution.
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(1) Show that the likelihood function is given by

L(X,Y ; θ) =
( 1

2π

)n
exp

(
− 1

2

∑
i

X2
i −

1

2

∑
i

(Yi − θXi)
2
)
.

Solution

For any y ∈ R,

Pθ(Y1 ≤ y|X1) = Pθ(ε1 ≤ y − θX1|X1) = Φ(y − θX1),

where Φ is the standard Gaussian c.d.f. This means that Y1 is conditionally Gaussian
given X1 with mean θX1 and unit variance. Hence

fX1Y1(x, y) = fY1|X1
(y;x)fX1(x) =

1

2π
exp

(
− 1

2
(y − θx)2 − 1

2
x2
)

and the claimed expression follows by the i.i.d. assumption.

(2) Find the minimal sufficient statistic for this model.

Solution

We have

L(X,Y ; θ) =
( 1

2π

)n
exp

(
− 1

2

∑
i

(X2
i + Y 2

i ) + θ
∑
i

XiYi −
1

2
θ2
∑
i

X2
i

)
and by the factorization theorem the statistic

T (X,Y ) =
(∑

i

XiYi,
∑
i

X2
i

)
is sufficient. Further, for x, y, x′, y′ ∈ Rn and θ ∈ R,

log
L(x, y; θ)

L(x′, y′; θ)
= −1

2

∑
i

(x2i + y2i ) +
1

2

∑
i

(x′2i + y′2i )+

θ
(∑

i

xiyi −
∑
i

x′iy
′
i

)
− 1

2
θ2
(∑

i

x2i −
∑
i

x′2i

)
.

The latter does not depend on θ, only if T (x, y) = T (x′, y′), which implies minimality
of T .

(3) Find the MLE of θ.

Solution
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the log-likelihood function is a parabola in θ with the unique maximum at

θ̂(X,Y ) :=

∑
iXiYi∑
iX

2
i

.

(4) Is the MLE unbiased ?

Solution

The MLE is unbiased

Eθθ̂(X,Y ) = Eθ
∑

iXi(θXi + εi)∑
iX

2
i

= θ + Eθ
∑

iXiEθ(εi|X1, ..., Xn)∑
iX

2
i

= θ.

(5) Is the statistic found in (2) complete ?

Solution

For the function g(t) = t2 − n, t = (t1, t2) ∈ R2 we have

Eθg(T (X,Y )) = Eθ
∑
i

X2
i − n = 0, ∀θ ∈ R,

while Pθ
(
g(T (X,Y )) = 0

)
= 0. Hence the statistic is not complete.

(6) Find the Cramer-Rao bound for the MSE risk of the unbiased estimators of θ.

Solution

The Fisher information for this problem is

In(θ) = − ∂2

∂θ2
logL(X,Y ; θ) = Eθ

n∑
i=1

X2
i = n,

and hence

Eθ(θ̃(X,Y )− θ)2 ≥ 1/n, ∀θ ∈ R,
for any unbiased estimator θ̃.

(7) Is the MLE from (2) efficient for n ?

Hint: for ξ ∼ χ2
n and n ≥ 3, E1

ξ = 1
n−2

Solution
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Since ξ =
∑n

i=1X
2
i ∼ χ2

n,

R(θ̂, θ) = Eθ
(∑

iXiεi∑
iX

2
i

)2

= Eθ
(

1∑
iX

2
i

)2∑
i

∑
j

XiXjEθ(εiεj |X1, ..., Xn) =

Eθ
(

1∑
iX

2
i

)2∑
i

X2
i = Eθ

1∑
iX

2
i

=
1

n− 2
.

Hence the MLE is not efficient for any n, but the sequence of MLEs is asymptotically
efficient as n→ ∞ (in agreement with the general asymptotic results on MLEs).

(8) Is the estimator θ̃(X,Y ) = 1
n

∑n
i=1XiYi unbiased ? efficient ? Do the risk of θ̃ and the

risk of MLE compare ? Is it improvable through the R-B procedure ?

Solution

We have

Eθθ̃ =
1

n

n∑
i=1

EθXi(Xiθ + εi) = θ,

i.e. θ̃ is unbiased. It’s risk is given by

R(θ, θ̃) = Eθ

(
1

n

n∑
i=1

(X2
i − 1)θ +

1

n

n∑
i=1

Xiεi

)2

=
1

n

(
θ2Eθ(X2

i − 1)2 + 1
)
=

1

n

(
2θ2 + 1

)
.

Hence θ̃ is not efficient, either for a fixed n or asymptotically. It’s risk is not comparable
with the risk of the MLE. The R-B procedure does not change the estimator and hence
doesn’t yield an improvement.

(9) Argue that if the UMVUE exists for this problem it has to be efficient (i.e. to attain
the C-R bound).

Hint: Consider the estimators of the form

1

n

n∑
i=1

XiYi −
1

n

n∑
i=1

θ0(X
2
i − 1)

for various values of θ0.

Solution

Note that for any θ0, the estimator

θ̌ =
1

n

n∑
i=1

XiYi −
1

n

n∑
i=1

θ0(X
2
i − 1)
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is unbiased. Its risk is given by

R(θ, θ̌) = Eθ
( 1
n

n∑
i=1

(X2
i − 1)(θ − θ0) +

1

n

n∑
i=1

Xiεi

)2
=

1

n

(
2(θ − θ0)

2 + 1
)
.

Suppose the UMVUE θ̂∗ exists, then

R(θ0, θ̂
∗) ≤ R(θ0, θ̌) = 1/n.

Since θ0 was arbitrary, the claim follows.

Problem 2.

Consider the problem of detection of a sparse signal in noise. More precisely, we sample
independent random variables X = (X1, ..., Xn) with Xi ∼ N(θi, 1) and would like to test the
hypotheses

H0 : θ = 0

H1 : θ ∈ Θ1

where Θ1 is a subset of Rn \ {0} with a particular structure, specified below.

(1) Let ei be a vector with 1 at the i-th entry and zeros at all others and assume that

Θ1 = {e1, ..., en}.

Find the level α test which rejects H0 if and only if {X̄n ≥ c}, and find its power
function. Does the power function converge as n → ∞ and if yes, find the limit?
Explain the result.

Solution

This is the standard calculation:

α = P0(X̄n ≥ c) = P0(
√
nX̄n ≥

√
nc) = 1− Φ(

√
nc),

which yields cα = 1√
n
Φ−1(1− α). The power function is

π(ei; δ) = Pei(X̄ ≥ cα) = Pei
(√
n(X̄n − 1/n) ≥

√
n(cα − 1/n)

)
=

= 1− Φ
(√

n(cα − 1/n)
)
= 1− Φ

(
Φ−1(1− α)− 1/

√
n)
)

which does not depend on the alternative. Note that limn π(e1, δ) = α, which should be
expected, since for large n the zero signal and the signal with just one unit entry are
hard to distinguish.

(2) Find the level α GLRT for the problem from (1) and calculate its power function. Does
the power function converge as n→ ∞ ? If yes, find the limit. Explain the result.
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Solution

The GLRT statistic is

λ(X) =
supθ∈Θ1

L(X; θ)

L(X; 0)
=

maxi≤n exp
(
− 1

2

∑n
m̸=iX

2
m − 1

2(Xi − 1)2
)

exp
(
− 1

2

∑n
m=1X

2
m

) =

max
i≤n

exp
(
− 1

2
(Xi − 1)2 +

1

2
X2
i

)
= max

i≤n
exp

(
Xi −

1

2

)
= exp

(
max
i
Xi −

1

2

)
and hence GLRT rejects H0 on the event {maxiXi ≥ c}. Further,

P0

(
max
i
Xi ≥ c

)
= 1− P0

(
max
i
Xi < c

)
= 1− Φn(c) = α,

which gives cα = Φ−1( n
√
1− α). Using the symmetry of the test statistic,

π(ei; δ) = Pei(max
j
Xj ≥ cα) = 1− Pe1

(
max

(
X1,max

j>1
Xj

)
< cα

)
=

1− Φ(cα − 1)Φn−1(cα) = 1− Φ
(
Φ−1( n

√
1− α)− 1

)
(1− α)1−1/n.

Once again limn π(ei; δ
∗) = α.

(3) Is either of the tests in (1) and (2) UMP ?

Solution

Suppose δ∗(X) = {maxiXi ≥ cα} is UMP and let δ(X) be the N-P test for the
problem

H0 : θ = 0

H1 : θ = e1
(†)

Note that δ is still a legitimate level α test in the composite problem of (2). Since δ∗

is UMP

Ee1δ∗(X) ≥ Ee1δ(X).

But then by the converse of N-P lemma, δ∗(X) and δ(X) coincide off the event {δ(X) =
cα}. The N-P test for (†) rejects H0 on the event {X1 ≥ c′α} and hence differs from δ∗

with positive probability (why?). The obtained contradiction shows that δ∗ is not UMP.
Similarly, the test from (1) is not UMP.

(4) Consider the alternative subspace

Θ1 =
{
θ ∈ Rn :

n∑
i=1

1{θi ̸=0} = 1
}
,

i.e. all vectors with only one nonzero entry. Find the level α GLRT and its power
function (leave your answer in terms of appropriate c.d.f)
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Solution

The GLRT statistic is

log λ(X) = log
supθ∈Θ1

L(X; θ)

L(X; 0)
= max

a∈R
max
i

(
− 1

2
(Xi − a)2 +X2

i

)
=

max
a∈R

(
amax

i
Xi −

1

2
a2
)
=

1

2
max
i
X2
i

and GLRT rejects H0 one the event {maxiX
2
i ≥ c}. The critical value cα and the

power function of the level α test are those found in (2), with Φ replaced by the c.d.f.
Ψ of χ2

1 distribution.

(5) Consider the alternative subspace

Θ1 =
{
θ ∈ Rn : θm ∈ {0, 1},

n∑
m=1

θm ≤ p
}
,

where p is a fixed integer. In words, Θ is the set of binary vectors with no more than
p nonzero entries. Find the GLRT test statistic in this case.

Solution

The GLRT statistic is

log λ(X) = log
supθ∈Θ1

L(X; θ)

L(X; 0)
= max

|I|≤p

(
− 1

2

∑
m̸∈I

X2
m − 1

2

∑
m∈I

(Xm − 1)2 +
1

2

n∑
m=1

X2
m

)
=

max
|I|≤p

∑
m∈I

(Xm − 1/2) = max
|I|≤p

(∑
m∈I

Xm − |I|/2
)

i. 2012/2013 (A) 52314

Problem 1. (German tank problem)

The enemy has produced an unknown amount of tanks N ∈ {1, 2, ...}. According to the
intelligence, all the tanks are numbered from 1 to N . Our goal is to estimate N , given the serial
numbers of k tanks, spotted in the battlefield. Let X = (X1, ..., Xk) be the list of the observed
serial numbers in the increasing order.

(1) Construct the statistical model for the obtained data and find the corresponding likeli-
hood function, assuming that any k serial numbers out of N could have been observed
with equal probability.

Solution
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There are

(
N
k

)
ways to choose k serial numbers out of N . Since the list of the k

numbers is ordered, the likelihood function is

L(X;N) = Pn(X1 = x1, ..., Xk = xk) =
1(
N
k

)1{x1<...<xk≤N}, xi ∈ {1, ..., N}

where the unknown parameter N takes its values in the natural numbers N.

(2) Find the MLE of N

Solution

For a fixed value of M(x), the function L(x;N) vanishes for N < M(x) and de-

creases in N for N ≥ M(x). Hence the MLE of N is N̂ = M(X) = Xk, i.e. the
maximal serial number among those observed.

(3) Find the minimal sufficient statistic.

Solution

Note that

L(x;N) =
1(
N
k

)1{x1<...<xk}1{xk≤N}

and by the F-N factorization theorem, the statistic M(x) = maxi xi = xk is sufficient.
Further, let x and y be two k-tuples of ordered distinct integers, such that M(x) ̸=
M(y). Then the ratio

L(x;N)

L(y;N)
=

1{M(x)≤N}

1{M(y)≤N}

is a nonconstant function of N and hence M(x) is minimal sufficient.

(4) Prove that the p.m.f. of M(X) = maxiXi = Xk is

PN
(
M(X) = j

)
=

(
j − 1
k − 1

)
(
N
k

) , j = k, ..., N.

Solution

Clearly, if k serial numbers are observed, the maximal one cannot be less than k and
hence PN (M(X) = j) = 0 for j < k. For j ≥ k, the event {M(X) = j} is comprised of
k-tuples of serial numbers, containing the integer j and any k− 1 of the j − 1 integers,

smaller than j. There are

(
j − 1
k − 1

)
such numbers and the claimed formula follows.
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(5) Prove that M(X) is a complete statistic

Solution

Let g be a real valued function on {k, ..., N}. Then

ENg(M) =

N∑
j=k

g(j)

(
j − 1
k − 1

)
(
N
k

) , N ≥ k.

We shall argue that ENg(M) = 0 for all N ≥ k implies g(i) = 0 for all i ≥ k. To this
end, suppose that g(i) = 0 for all i = k, ..., n, then

En+1g(M) = g(n+ 1)

(
n

k − 1

)
(
n+ 1
k

)
and En+1g(M) = 0 implies g(n + 1) = 0, i.e. g(i) = 0 for all i = 1, ..., n + 1. Since
Ekg(M) = g(k), it follows that Ekg(M) = 0 implies g(k) = 0 and the claim holds by
induction.

(6) Find the UMVUE of N

Hint: you may find useful the combinatorial identity

N∑
j=k

(
j
k

)
=

(
N + 1
k + 1

)
, N ≥ k.

Solution

Let’s first see where the hinted combinatorial identity comes from. Summing up
over the p.m.f. of M we get

N∑
j=k

(
j − 1
k − 1

)
(
N
k

) = 1.

Replacing k with k + 1 and N with N + 1 we obtain

1 =

N+1∑
j=k+1

(
j − 1
k

)
(
N + 1
k + 1

) =

N∑
j=k

(
j
k

)
(
N + 1
k + 1

) ,
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which is the claimed identity. Hence

ENM(X) =
1(
N
k

) N∑
j=k

j

(
j − 1
k − 1

)
=

1(
N
k

) N∑
j=k

j
(j − 1)!

(k − 1)!(j − k)!
=

k(
N
k

) N∑
j=k

j!

k!(j − k)!
=

k(
N
k

) (N + 1
k + 1

)
=
k(N − k)!k!(N + 1)!

N !(k + 1)!(N − k)!
= (N + 1)

k

k + 1
.

Hence the estimator

Ñ =M(X)
(
1 + 1/k

)
− 1

is unbiased and, since M is complete, it is the UMVUE.

(7) A calculation shows that

varN
(
M(X)

)
=

k

(k + 1)2(k + 2)
(N − k)(N + 1), 1 ≤ k ≤ N.

Are the estimator M(X) and the UMVUE comparable for k ≥ 2 ? Is any of these
estimators inadmissible ?

Solution

The formula for varN (M) is obtained by calculations, similar to those in the previous
question. The risk of the UMVUE is

R(Ñ ,N) = varN (Ñ) = varN
(
M
)(
1 + 1/k

)2
,

while the risk of M(X) is

R(M,N) = varN (M) +
(
ENM

)2
.

Hence for all N and k

R(M,N)

R(Ñ ,N)
=

(
k

1 + k

)2
(
1 +

(
ENM

)2
varN

(
M
)) =(

k

1 + k

)2(
1 +

(N + 1)k(k + 2)

(N − k)

)
≥
(

k

1 + k

)2 (
1 + k2

)
.

For k ≥ 2, the right hand side is greater than 1 for all N and hence the MLE M(X) is
uniformly inferior to UMVUE. In particular, MLE is inadmissible.

Problem 2.

It is required to test whether the blood pressure of the patients depends on the deviation
of their weight from the nominal value. To this end, n patients are examined and their blood
pressures and weight deviations are recorded. The blood pressure of the i-th patient is assumed
to satisfy the linear regression model

Yi = axi + b+ εi,
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where εi’s are i.i.d. N(0, 1) random variables, xi is the (non-random) measured weight deviation
of the i-th patient and a and b are parameters. Under these assumptions, the lack of dependence
corresponds to the value a = 0.

(1) Assuming that b is known and x ̸= 0, find the most powerful test of size α for the
problem:

H0 : a = 0

H1 : a = a1,

where a1 > 0 is a known number. Calculate the corresponding power.

Solution

By N-P lemma the likelihood ratio test is the most powerful. The likelihood function
in this problem is

L(Y ; a, b) =
1

(2π)n/2
exp

(
−1

2

n∑
i=1

(Yi − axi − b)2

)
and hence the LRT statistic for the problem at hand is

L(Y ; a1, b)

L(Y ; 0, b)
= exp

(
−1

2

n∑
i=1

(Yi − a1xi − b)2 +
1

2

n∑
i=1

(Yi − b)2

)
=

exp

(
1

2

n∑
i=1

a1xi(2Yi − 2b− a1xi)

)
= exp

(
a1

n∑
i=1

xi(Yi − b)− 1

2

n∑
i=1

a21x
2
i

)
.

Hence the LRT test rejects H0 if and only if ⟨x, Y − b⟩/∥x∥ ≥ c. Note that under P0,

⟨x, Y − b⟩/∥x∥ =
n∑
i=1

xiεi/∥x∥ ∼ N(0, 1)

and hence

P0

(
⟨x, Y − b⟩/∥x∥ ≥ c

)
= 1− Φ(c).

Equating this expression to α and solving for c gives

cα = Φ−1(1− α).

To recap the most powerful α-level test rejects H0 if and only if

⟨x, Y − b⟩
∥x∥

≥ Φ−1(1− α).

The power of this test is given by

P1

(
⟨x, Y − b⟩/∥x∥ ≥ cα

)
= P1

(
⟨x, a1x+ ε⟩/∥x∥ ≥ cα

)
=

P1

(
⟨x, ε⟩/∥x∥ ≥ cα − a1∥x∥

)
= 1− Φ

(
Φ−1(1− α)− a1∥x∥

)
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(2) Again assuming that b is known, find the UMP test for the problem of deciding whether
the dependence is negative or positive, i.e.

H0 : a < 0

H1 : a ≥ 0.

Solution

By the K-R theorem, the LRT test from the previous question is UMP for this
problem, since the likelihood functions corresponds to the 1-exponential family.

(3) Assuming that both a and b are unknown and that not all xi’s are equal, find the GLRT
statistic for the problem of testing the dependence

H0 : a = 0

H1 : a ̸= 0

Solution

The MLE of b under H0 is b̂0 = Ȳ and

sup
θ∈Θ0

logL(Y ; θ) = −n
2
log(2π)− n

2

1

n

∑
i

(Yi − Ȳ )2 =: −n
2
log(2π)− n

2
v̂ar(Y )

Under H1, the MLE’s of a and b are the familiar regression coefficients

b̂1 = Ȳ − â1x̄,

and, assuming v̂ar(x) > 0,

â1 =
1
n

∑
i(Yi − Ȳ )(xi − x̄)
1
n

∑
i(xi − x̄)2

=:
ĉov(x, Y )

v̂ar(x)
.

Hence

sup
θ∈Θ1

logL(Y ; θ) = −n
2
log(2π)− n

2

(
v̂ar(Y )− ĉov2(x, Y )

v̂ar(x)

)
.

Consequently, the GLRT statistic is given by

log λ(Y ) = −n
2

(
v̂ar(Y )− ĉov2(x, Y )

v̂ar(x)

)
+
n

2
v̂ar(Y ) =

n

2

ĉov2(x, Y )

v̂ar(x)
,

and H0 is rejected if and only if

|ĉov(x, Y )|√
v̂ar(x)

≥ c.
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(4) Find the critical value of level α GLRT test.

Solution

Under H0,

ĉov(x, Y ) =
1

n

∑
i

(Yi − Ȳ )(xi − x̄) =
1

n

∑
i

(εi − ε̄)(xi − x̄).

Let ξi := εi − ε̄ and note that

Eξiξj =

{
1− 1/n, i = j

−1/n, i ̸= j
= δij − 1/n

Hence

E

(∑
i

(εi − ε̄)(xi − x̄)

)2

=
∑
i

∑
j

Eξiξj(xi − x̄)(xj − x̄) =

∑
i

∑
j

(δij − 1/n)(xi − x̄)(xj − x̄) =

∑
i

(xi − x̄)2 − 1

n

∑
i

(xi − x̄)
∑
j

(xj − x̄) = nv̂ar(x)

and
ĉov(x, Y )√

v̂ar(x)
∼ N

(
0,

1

n

)
. (0i1)

Consequently,

P0

(∣∣∣∣∣ ĉov(x, Y )√
v̂ar(x)

∣∣∣∣∣ ≥ c

)
= P0

(
√
n

∣∣∣∣∣ ĉov(x, Y )√
v̂ar(x)

∣∣∣∣∣ ≥ √
nc

)
= 2Φ(−

√
nc),

and cα = − 1√
n
Φ−1(α/2).

(5) A sequence of tests is said to be consistent if their powers converge to 1 as n→ ∞ at all
alternatives. Derive the sufficient and necessary condition on the sequence (xi) under
which the corresponding sequence of tests from the previous question is consistent.

Solution

Note that for a ̸= 0 and b ∈ R,

ĉov(x, Y ) =
1

n

n∑
i=1

(xi − x̄)(Yi − Ȳ ) =

1

n

n∑
i=1

(xi − x̄)
(
a(xi − x̄) + εi − ε̄

)
= av̂ar(x) +

√
v̂ar(x)

n
Z,
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where Z ∼ N(0, 1). Hence the power of GLRT is given by

Pa,b

(∣∣∣∣∣ ĉov(x, Y )√
v̂ar(x)

∣∣∣∣∣ ≥ cα

)
= Pa,b

(∣∣∣√na√v̂ar(x) + Z
∣∣∣ ≥ −Φ−1(α/2)

)
=

1− Pa,b
(∣∣∣√na√v̂ar(x) + Z

∣∣∣ ≤ −Φ−1(α/2)
)

n→∞−−−→ 1,

where the convergence holds if and only if nv̂ar(x) → ∞ as n→ ∞.

(6) Show that if all xi’s are equal to a nonzero constant, no consistent sequence of tests
exists for the problem from (3).

Solution

Suppose δn is a consistent sequence of level α tests, i.e.

E0δn ≤ α, ∀n ≥ 1

and xi ≡ x for all i’s. Let (a∗, b∗) be such that b∗ = −ax∗, e.g., a∗ = 1 and b∗ = −x,
then Pa∗,b∗ = P0 and hence the power satisfies Ea∗,b∗δn ≤ α for all n ≥ 1, which
contradicts consistency.

(7) Answer the questions (3) and (4), assuming that the covariates Xi’s are i.i.d. r.v. with
density f , independent of εi’s.

Solution

The log-likelihood in this case is

logL(Y,X; θ) = −n
2
log(2π)− 1

2

∑
i

(Yi − a− bXi)
2 +

n∑
i=1

log f(Xi)

Since Xi’s have density, v̂ar(X) > 0 with probability one and hence the GLRT statistic
doesn’t change. Further, under H0,

ĉov(X,Y )√
v̂ar(X)

=
ĉov(X, ε)√
v̂ar(X)

.

Since εi’s and Xi’s are independent,

E exp

(
it
ĉov(X,Y )√

v̂ar(X)

)
= EE

(
exp

(
it
ĉov(X, ε)√
v̂ar(X)

)∣∣∣∣X1, ..., Xn

)
= exp

(
− t

2

2

1

n

)
,

where the last equality follows from (0i1). Hence

ĉov(X,Y )√
v̂ar(X)

∼ N

(
0,

1

n

)
,

and the critical value remains the same as in the previous question.
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Problem 1. (Fisher’s Nile problem41)

LetX = (X1, ..., Xn) and Y = (Y1, ..., Yn) be independent samples from Exp(θ) and Exp
(
1/θ
)

respectively, where θ ∈ R+ is the unknown parameter to be estimated from (X,Y ).

(1) Find the minimal sufficient statistic.

Solution

The likelihood function is

L(X,Y ; θ) = exp

(
−θ
∑
i

Xi −
1

θ

∑
i

Yi

)
,

and (X̄n, Ȳn) is a sufficient statistic. To check minimality, let (x, y) and (x′, y′) be such
that (x̄, ȳ) ̸= (x̄′, ȳ′), then

L(x, y; θ)

L(x′, y′; θ)
= exp

(
−θn(x̄− x̄′)− n

θ
(ȳ − ȳ′)

)
,

is a non-constant function of θ. Hence the statistic is minimal sufficient.

(2) Is the minimal sufficient statistic complete?

Solution

Note that

EθX̄nȲn − 1 = EθX̄nEθȲn − 1 = 0, ∀θ > 0,

while X̄nȲn − 1 is not a constant random variable. Hence the statistic is incomplete.

(3) Apply the R-B lemma to Y1, using the minimal sufficient statistic, to obtain an improved
unbiased estimator of θ

Hint: avoid complicated calculations

Solution

By independence of X and Y ,

Eθ(Y1|X̄n, Ȳn) = Eθ(Y1|Ȳn) = Ȳn.

(4) Find the C-R bound for the MSE risk of unbiased estimators of θ. Is the estimator,
found in the previous question, efficient?

Solution

41The question of existence of the UMVUE for the setting of this question is known as Fisher’s Nile problem
and remains open already for many years (see, however, the recent progress in http://arxiv.org/abs/1302.0924)
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The Fisher information of (X1, Y1) is

I(θ) := −Eθ∂2θ log exp
(
− θX1 −

1

θ
Y1

)
=

2

θ3
EθY1 =

2

θ2

and hence the variance of any unbiased estimator is greater or equal to θ2

2
1
n . Since

varθ(Ȳn) = θ2 1
n , the estimator Ȳn is not efficient.

(5) Find the MLE of θ.

Solution

Differentiating the log-likelihood w.r.t. θ and equating to zero, we get

θ̂ =
√
Ȳn/X̄n,

which is readily checked to be the only maximum, by inspecting the second derivative.

(6) Is the MLE consistent?

Solution

By the LLN, X̄n
Pθ→ 1/θ and Ȳn

Pθ→ θ and hence by Slutsky’s lemma and continuity

of the square root, θ̂n
Pθ→ θ, for all θ > 0, i.e., MLE is consistent.

(7) Consider the sequence of estimators

θ̂n =
1

2

(
Ȳn +

1

X̄n

)
.

Is it consistent? Asymptotically normal? If yes, find the asymptotic variance and
compare it to the C-R bound from (4).

Solution

The sequence of estimators is consistent, similarly to (6). Since
√
n(X̄n − 1/θ)

d→
N(0, 1/θ2), the ∆-method applies to g(s) = 1/s and s = 1/θ:

√
n
( 1

X̄n
− 1

1/θ

)
=

√
n
(
g(X̄n)− g(s)

)
d−→ N

(
0, V (s)

)
,

with

V (s) =
(
g′(s)

)2
s2 =

( 1

s2

)2
s2 =

1

s2
= θ2.

Since Ȳn and X̄n are independent, and
√
n(Ȳn − θ)

d→ N(0, θ2), it follows that

√
n(θ̂n − θ)

d−→ N
(
0,
θ2

2

)
.

The asymptotic variance coincides with the Fisher information rate, i.e. the estimator
is asymptotically efficient in Fisher’s sense.
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Problem 2.

An integer valued quantity (e.g., the number of emitted particles per second) is measured by
a device, which is suspected to introduce censoring at some level K. More precisely, let Z1, ..., Zn
be a sample from Geo(p) distribution with known p ∈ (0, 1) and define Xi = min(Zi,K + 1),
where K is the unknown censoring level.

Below we shall explore hypothesis testing problems for K, given the censored data X =
(X1, ..., Xn). For notational convenience, we shall regard K = ∞ as a point in the parametric
space N ∪ {∞} and interpret it as no censoring, i.e. X1, ..., Xn are i.i.d Geo(p) r.v. under P∞.

(1) Show that for K ∈ N the likelihood function is given by the formula

Ln(X;K) = (1− p)Sn(X)−npn−Cn(X;K)1{Mn(X)≤K+1},

where

Sn(X) =
n∑
i=1

Xi

Mn(X) = max
i
Xi

Cn(X;K) =

n∑
i=1

1{Xi=K+1}

Solution

For K <∞

PK(X1 = m) =


p(1− p)m−1 m = 1, ...,K

(1− p)K m = K + 1

0 m > K + 1

and hence the likelihood function is given by

Ln(X
n;K) =

n∏
i=1

(
p(1− p)Xi−11{Xi≤K} + (1− p)K1{Xi=K+1}

)
1{Xi≤K+1}

= 1{maxiXi≤K+1}

n∏
i=1

(
p(1− p)Xi−11{Xi≤K} + (1− p)Xi−11{Xi=K+1}

)
= 1{maxiXi≤K+1}

n∏
i=1

(1− p)Xi−1
(
p1{Xi≤K} + 1{Xi=K+1}

)
= 1{maxiXi≤K+1}(1− p)

∑
i(Xi−1)p

∑
i 1{Xi≤K}

= 1{Mn(X)≤K+1}(1− p)Sn(X)−npn−Cn(X;K)
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(2) Find the most powerful test statistic for the problem of testing for presence of the
known censoring level K0:

H0 : K = K0

H1 : K = ∞

Solution

The most powerful test rejects H0 if and only if{
Ln(X

n;∞) ≥ cLn(X
n;K0)

}
={

1{Mn(X)≤K0+1}p
−Cn(X;K0) ≤ 1

c

}
={

Mn(X) > K0 + 1
}∪{

p−Cn(X;K0) ≤ 1

c

}
={

Mn(X) > K0 + 1
}∪{

Cn(X;K0) ≤ c′
}
,

where c′ = log c/ log p, i.e., either when the maximum exceeds K0 + 1 or when the
number of censorings is low.

(3) Using the CLT approximation, find the asymptotic MP test of size α ∈ (0, 1).

Solution

Under H0,
{
Mn(X) > K0 + 1

}
= ∅ and Cn(X;K0) ∼ Bin(pK0 , n) and hence

PK0

(
{Mn(X) > K0 + 1} ∪ {Cn(X;K0) ≤ c′}

)
= PK0

(
Cn(X;K0) ≤ c′

)
=

PK0

 1√
n

n∑
i=1

1{Xi=K0+1} − (1− p)K0√
(1− p)K0(1− (1− p)K0)

≤
c′√
n
−

√
n(1− p)K0√

(1− p)K0(1− (1− p)K0)

 .

If we choose

c′ := Φ−1(α)
√
n(1− p)K0(1− (1− p)K0) + n(1− p)K0 ,

the level of the test will converge to α as n→ ∞ by the CLT.

(4) Is the obtained test consistent, i.e. does its power converge to 1 as n→ ∞ ?

Solution

The test is consistent:

P∞

(
{Mn(X) > K0 + 1} ∪ {Cn(X;K0) ≤ c′}

)
=

1− P∞

(
{Mn(X) ≤ K0 + 1} ∩ {Cn(X;K0) > c′}

)
≥

1− P∞

(
Mn(X) ≤ K0 + 1

)
= 1−

(
P∞
(
X1 ≤ K0 + 1

))n n→∞−−−→ 1.
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(5) Prove that the GLRT for the problem of testing for presence of an unknown censoring
level:

H0 : K <∞
H1 : K = ∞

rejects H0 if and only if {
n∑
i=1

1{Xi=Mn(X)} ≤ c

}

for some critical value c > 0.

Solution

Note that the likelihood Ln(X;K) is maximized by the maximizer K̂ of

pn−Cn(X;K)1{Mn(X)≤K+1},

over K ∈ N. Clearly, K̂ ≥ Mn(X) − 1 and, since Cn(X;K) = 0 for K > Mn(X) − 1

and Cn(X;K) > 0 for K = Mn(X) − 1, we get K̂ = Mn(X) − 1. Consequently, the
GLRT statistic is given by

λn(X) =
Ln(X;∞)

maxK∈N Ln(X;K)
=

1

maxK∈N p−Cn(X;K)1{Mn(X)≤K+1}
=

pCn(X;Mn(X)−1) = p
∑

i 1{Xi=Mn(X)}

and hence the GLRT rejects H0 if and only if the number of maxima in the sample is
small

n∑
i=1

1{Xi=Mn(X)} ≤ c,

where c is the critical value.

(6) Show that for any K ∈ N

1

n

n∑
i=1

1{Xi=Mn(X)}
PK−−−→
n→∞

(1− p)K .

Hint: Find the limit of Mn(X) under PK and figure out how to apply LLN

Solution
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Under PK , Mn(K) converges to K + 1 and hence 1
n

∑n
i=1 1{Xi=Mn(X)} essentially

behaves as 1
n

∑n
i=1 1{Xi=K+1} for large n. More precisely, sinceMn(X) ≤ K+1, PK-a.s.

1

n

n∑
i=1

1{Xi=Mn(X)} =

1

n

n∑
i=1

1{Xi=K+1}1{Mn(X)=K+1} +
1

n

n∑
i=1

1{Xi=Mn(X)}1{Mn(X)<K+1} =

1

n

n∑
i=1

1{Xi=K+1} +
1

n

n∑
i=1

(
1{Xi=Mn(X)} − 1{Xi=K+1}

)
1{Mn(X)<K+1}.

The first term converges in PK-probability to (1 − p)K by the LLN, while the second
term converges to zero:

EK

∣∣∣∣∣ 1n
n∑
i=1

(
1{Xi=Mn(X)} − 1{Xi=K+1}

)
1{Mn(X)<K+1}

∣∣∣∣∣ ≤
2PK(Mn(X) < K + 1) ≤ 2

(
PK(X1 < K + 1)

)n
= 2
(
1− (1− p)K

)n n→∞−−−→ 0,

and the claim follows by Slutsky’s lemma.

(7) It can be shown that for any γ > 0,

1

nγ

n∑
i=1

1{Xi=Mn(X)}
P∞−−−→
n→∞

0.

Using this limit and the result of the previous question, suggest a sequence of critical
values cn, so that the corresponding sequence of GLRT’s significance levels converge to
0 for any fixed null hypothesis and the power converge to 1 as n→ ∞.

Solution

Take any γ ∈ (0, 1) and let cn = nγ , then for any K ∈ N, the significance level
converges to zero:

PK

(
n∑
i=1

1{Xi=Mn(X)} ≤ cn

)
= PK

(
1

n

n∑
i=1

1{Xi=Mn(X)} ≤ nγ−1

)
=

PK

(
1

n

n∑
i=1

1{Xi=Mn(X)} − (1− p)K ≤ nγ−1 − (1− p)K

)
n→∞−−−→ 0.

where the convergence holds by (6). On the other hand, the power converges to 1:

P∞

(
n∑
i=1

1{Xi=Mn(X)} ≤ cn

)
= P∞

(
1

nγ

n∑
i=1

1{Xi=Mn(X)} ≤ 1

)
n→∞−−−→ 1.

Where does the claimed limit come from? Under P∞, Mn(X) → ∞ and hence the
number of times the maximum is attained till time n might grow slower than linearly.
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In fact, according to the claim, it grows slower than polynomially. Let’s see why this
is true. Since Xi’s are i.i.d.

P∞
(
Xi =Mn(X)

)
= P∞

(
X1 =Mn(X)

)
= P∞

( n∩
i=2

{Xi ≤ X1}
)
=

E∞P∞

( n∩
i=2

{Xi ≤ X1}|X1

)
= E∞

(
1− (1− p)X1

)n−1
.

For any z > 0,

E∞
(
1− (1− p)X1

)n−1
=

E∞
(
1− (1− p)X1

)n−1
1{X1≤z} + E∞

(
1− (1− p)X1

)n−1
1{X1>z} ≤(

1− (1− p)z
)n−1

+ P∞(X1 > z) =
(
1− (1− p)z

)n−1
+ (1− p)z =(

1− e−z| log(1−p)|
)n−1

+ e−z| log(1−p)|

Let δ ∈ (0, 1) and zn := lognδ

| log(1−p)| . Then e
−zn| log(1−p)| = n−δ and

P∞
(
X1 =Mn(X)

)
≤ 2(1− e−zn| log(1−p)|)n + e−zn| log(1−p)| =

2(1− n−δ)nδ+n(1−δ) + n−δ ≤ 2 exp(−n(1− δ)) + n−δ ≤ 2n−δ,

for all n large enough, where we used the bound (1 − x−1)x ≤ e−1 for x ≥ 1. Conse-
quently, with γ := 1− δ(1− δ) and some constant C,

E∞n
−γ

n∑
i=1

1{Xi=Mn(X)} = E∞n
−1+δ(1−δ)

n∑
i=1

1{Xi=Mn(X)} ≤

Cn−1+δ(1−δ)nn−δ = Cn−δ
2 n→∞−−−→ 0,

as claimed.
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