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1. Nonparametric Estimators

EXERECISE 1.1.

(1) Argue that any symmetric kernel K is a kernel of order 1 whenever the function u
uK (u) is integrable.

(2) Find the maximum order of the Silverman kernel:

K(u) = %exp (= lul/V2) sin (Jul/V2 + 7/4).

Hint: Apply the Fourier transform and write the Silverman kernel as

[ cos(27tu)
K= [T

Solution

Note that u > |u|/ K (u) is integrable for any j > 1 and hence
/umK(u)du =imKM™0), m>1,

where K (t) = [ €™ K (u)du is the Fourier transform of K, given by

Hence for m =1,
- 43

K0)=————"s =0

(1 + w4)2 ’w:ZO

which is also obvious by symmetry. Further, a calculation reveals that K”(0) = K" (0) = 0,
while K®*)(0) = —2r - 24. Hence the Silverman kernel is of order 3.

EXERECISE 1.2. Kernel estimator of the s-th derivative p(®) of a density p € P(B,L), s < B,

can be defined as follows:
. 1 Z" X;—x
Pn,s(7) = nhstl — K( h >

Here h > 0 is a bandwidth and K : R — R is a bounded kernel with support [—1, 1] satisfying
for ¢ = |5]:

/qu(u)du —0, jE{0,..00\ {s} (1.1)
/usK(u)du = sl. (1.2)

(1) Prove that, uniformly over the class P(3, L), the bias of p, s(z¢) is bounded by ch?~*

and the variance of p, s(z¢) is bounded by #;H, where ¢ and ¢ are appropriate
constants and xg is a point in R.



2(B—s)
(2) Prove that the maximum of the MSE of py, s(xo) over P(3, L) is of order O(n_ 26+1 )

as n — oo if the bandwidth h := h,, is chosen optimally.

(3) Let (vm) be the orthonormal Legendre basis on [—1, 1]. Show that the kernel

Z P (0)m (W) Lijuj<ry

satisfies the conditions (1.1) and (1.2).
Solution

(1) The variance of the estimate py, s(xo) is

~ ~ 2 1 X1 — X0 Xl — X0 2
ot~ Eo) = e (6(22) - (252))

T E, K ( - > h25+1 /K p(zo + vh)dv < Kmaxihgsﬂ,

i.e. the claim holds with ¢/ := K2, =
The bias term satlsﬁes

ba0) = Epnan) — 1) = iy [ 16 ( M5 ot~ 9 ) =

= maXye[1 1) [K(z)].

1/Kmmm+mme@@w=

/K plzo) + pP(2o)vh + ... + =p (2o + th)(vh)z> dv — p®(z0).

evp
By the conditions (1.1) and (
‘ zo)| < E‘ s /’ ) (g + Tvh) —p(g)(xo)>(vh)£’dv <
5, s /|K )| L|vh|P~ €|vh|‘dv < g'hﬁ S/|K(v)||u|ﬁdv =: chP~s.
(2) For any n > 1 and h > 0,

sup  Ep(pns(x0) — p(w0))? = b2(20) + 0% (x0) < ch?P=9) 4

pEP(B.L) nh25+1

The right hand side is minimized over h by

d(2s+1) BT A
<2dﬁ—s)> "

hy =

n *

so that
~ 2 _2(B—s)
sup Ep(pn,s(wo) —p(ﬂﬁo)) < Cn 2841,
peP(8,L)
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3) Since ¢; is a complete orthonormal basis in L([—1,1]), the functions u/ satisfy
¥

J
= Z bji%’(u)
i=1

with some constants bj;. Hence for j € {0, ..., ¢},

J
ds dé .
) (0)bsm = b, = (5zwd) .
Z Pm ( ) im dus (mzzosom(u) jm> - dusu o
The latter term vanishes both for j < s and j > s. For j = s, fqu(u)du = s! is obtained.

EXERECISE 1.3. Consider the estimator of the two dimensional kernel density p(x,y) from
the i.i.d. sample (X1,Y1), ..., (Xn, Yn)

1 « X,—x Yi—vy
=1

Assume that the density p belongs to the class of all probability densities on R? satisfying the
Holder condition

Ip(z,y) — p(=',y)] < L(Iﬂf — 2P+ y— y’\ﬁ), (z,y), (z'y') € R?,

with given constants 0 < 8 < 1 and L > 0. Let (29, yo) be a fixed point in R?. Derive the upper
bounds for the bias and the variance of p,(xo, yo) and an upper bound for the mean squared risk
at (xo,y0). Find the minimizer h = h} of the upper bound of the risk and the corresponding
rate of convergence.

Solution

The variance is given by

o*(x0,y0) = Ep(An(fﬂO,yO) — Epﬁ(x07y0)>2 —
2
n2h4 (ZK< > <m;y>—EpK(Xih—f’f>K<E;y>> _
nh4//K2< >K2<vhy0>p(u,v)dudv:
;11

11 2
2 2 < = 2 ==
! h2 //K VK (0)p(x0 + uh, yo + vh)dudv < ~ thmaX</K (u)du> e ~ 3
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where p(x,y) < pmax 18 assumed (later we shall see that under the assumptions of the problem,
such ppax indeed exists). The bias term can be bounded as follows

. 1 uU—x v —
b(3707y0) = Eppn(w(by()) _p(x()ay()) = }LQ//K< h 0>K< hy0>p(u,v)dudv _p(x()ay()) -

[ [ @) (oo + uhyo +oh) ~ plan, ) ) dud.

Using the Holder property we get

bz, y0)| < / / K (@)K (0)|L(Juh)? + [oh)? ) dudv =
hﬁ//)K(u)K(v)(L(mWJr|u|ﬁ)dudv —: chP.

Note that if K is taken to be bounded, then |Epp,(zo,y0)] < K2, and hence |p(zo,y0)| <
K2+ ¢ =: pmax for h < 1. Hence the MSE is given by

m.

11
MSE(z0, yo) = b*(0, y0) + o> (20, y0) < *h* + clfﬁ,
n
which is optimized by
h; = Cnfﬁ

where C is a constant. This gives

s
MSE(zo,y0) = O(nfﬂ?ﬁ) n — 00.

EXERECISE 1.4. Define the LP(¢) estimators of the derivatives f(*)(z), s = 1,...,£ by
T,

fus(@) = (UO©O) bu(x)h,

where U®)(z) is the vector whose coordinates are the s-th derivatives of the corresponding
coordinates of U(x).

(1) Prove that if B, (z) > 0, then the estimator f,(z) is linear and it reproduces the s-th

derivative of polynomials of degree less than or equal ¢, i.e. if fns(q:) is applied to
Y; := Q(X;), i = 1,...,n where Q is a polynomial with deg(Q) < ¢, it yields Q) (x).

(2) Prove that, under the assumptions similar to the case s = 0, the maximum of the MSE
2(B—s)

of fns(x) over ¥(B,L) is of order O(ni 25+1 > as n — oo if the bandwidth is chosen
optimally.

Solution

1. If B,(z) > 0, then
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and hence

with

W (z) = #(U(s)(o))TBgl(x)U (X,h— 117> K <th— a:)

i.e. the estimator fns is linear.
If @ is a polynomial of order ¢, then

QX)) =Q(z) + Q' (2)(X; — ) +... + %QM)((IZXXi — a?)g = Q(l“)TU(¥>7

where
a(2) = (Q(2), Q' (@)h, ... Q)
Consequently,
R - X; — 2 X —
0p(x) =argmingepe+1 Z (Q(Xi) — HTU( . x)) K( A x) =
i=1
' " Xi—a\\2,. (X —
argmingcpes1 Z ((q(x) — G)TU( . a:)) K( 5 m) = q().
i=1
Note that
&y L]0 $>0
U7 (x) = d:csj!x = (j_ls)yfﬂj_s s<j ji=1,...,¢

and hence the s-th entry of the vector U ;8)(0) is 1 and all the rest are zeros.
Hence if fp(z) is applied to Y¥; = Q(X;) it yields

o) = (U9)) a0 = (U9(0)) a0~ = QO (a).

In particular,

> (&

=1

m)kwg;*(x) _ {0 ke{0,...00\ {s}

sl k=s

2. The weights W,**(z) satisfy the properties

(1) maxi<icn [Wii (2)| < Cuppes
(i) Yo7, [Wik(@)| < Cugls

(iii) Wp*(x) = 0 whenever | X; —z| > h

(1.3)
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with a constant C, and h > i. Indeed,

max [Wi(z)] =
() o (557) (%5
(th ) <z x>H1{|Xi—$|§h}§

nhl+s 1<z<n

nhlts 1<z<n
1 max 7
nhHs )\0 1<z<n U( h )Hl{|X x|<h}<
1 Kmax Kmax
< .
ahE 2 1T M= h1+s o

Similarly,

s T _ Xi—l’ Xi—l’
WZ‘(U()(O)) Bnl(x)U< W >K< W )‘1{Xi—x|<h}§

1 K 1 <
e TN =D Lx—any <
nizl
1 Kmax 1 4I(maxao

1
e HU()Haomax<2h o) S e

and (i) and (ii) hold with e.g. C. QK"‘*"‘ (14 2ag). The claim (iii) is obvious.
Further,

~ 2
Er (fusle) = 1O (@) =
Ey <fns(37) - Effns(x)>2 + (Effns(x) - f(s)(a:))2 = o%(x) + b*(2).

For the variance term we have

" 2 1 1
= Ef ( Z ‘SZWS* ) < Umax Z (er: (x)> < UI%]&XCEW = nhl+2s’
=1

The bias term can be bounded as follows:

b(x) = Epus(e) — fO)(a Zf X)Wk (@) — fO () =

n

Z (f(x) + (@)X — ) + ...+ Eff(x + 7(Xi — 2)) (X; — $)£>W7§§k($) — f9(2) =

IS (P4 (X =) — £1(2)) (X~ 2/ Wi (o),
=1
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where |7;] < 1 and we used (1.3). Hence

b)) < 51 S| 70X = ) = 7 (@) |1 — 2l I )] <
i=1

L B8 S% LG, B—s B—s
7 Z |z — X" W5 (2) [ 1qja—x,<n} < 7 hP™% =i qoh” 7.
e~ !
Assembling all parts together we obtain
. 2 1
E ( _ (s ) < 25,2(8—s)
2 ©r et~ 1061)" <0 i 4
The optimal choice of the bandwidth is k), := en” T for which we get
~ 2 _2(B—s)
sup sup Ey (fns(x) — f(s)(x)> < Cn~ 2611
FEX(B,L) z€[0,1]
with a constant C' > 0, for all sufficiently large n.
EXERECISE 1.5. Show that the rectangular kernel
1
K(u) = 5Tl < 1)
and the biweight kernel
15
K(u)= (1~ u?)?1 <1y
are inadmissible.
Solution
The Fourier transform of the rectangular kernel is
K(w) = 1/1 e dy = i - e = sin(w)'
2J)4 24w w
This is a continuous function (when extended to zero by continuity) and K (37/2) = —2x/3.

Hence the kernel is inadmissible by Proposition 1.8.

For the biweight kernel
- 15
K(w)= —((3 —w?)sinw — 3w cosw).

_w5

The kernel is inadmissible by continuity, since K (2m) < 0.

EXERECISE 1.6. Let K € Ly(R) be symmetric and such that K € Ly (R). Show that
(1) the condition

_ 11— K(t)]
JA <oo: esssup BT < A, (1.4)

teR\{0}
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is equivalent to

1—K(t
dtg, Ag < o0 :  ess sup M

< A, (1.5)
o<lti<ito]  It1P

(2) for integer [ the condition (1.4) is satisfied if K is a kernel of order 5 — 1 and
J ul?| K (w)]du < oo

Solution

1. Suppose (1.5) holds, then

1 - K1) 1 - K@) 1 - K@)
€ss SUp 7= < esS SUp 7 Fess sup ——z— <
er\foy ] o<lti<lto] Il >t [t

1+ | Kl
g LIS
lto|?

which verifies (1.4). The other direction is obvious.

2. If [ |u|’ K (u)du < oo, the Fourier transform is 3 times differentiable at zero and K (0) =
0 for¢t=1,...,8—1, since K is of order § — 1. Hence,

K{t)=1+ ;,fdﬂ) (rt)t?,

where 7 € [—1,1]. Hence

11— K1)

sup < =
B! se[—1,1]

[t<1

where we used the fact that K'(t) is bounded on [—1, 1], being continuous on it. By the Riemann-

Lebesgue lemma, lim;_,~, K (t) = 0 and by continuity K is bounded. The claim now follows from
1.

EXERECISE 1.7. Let P be the class of all probability densities p on R such that

[ explalullpw)Pde < 2,

where o > 0, » > 0, L > 0 are given constants and ¢ is the Fourier transform of p. Show
that for any n > 1 the kernel density estimator p with the sinc kernel and appropriately chosen
bandwidth h = h,, satisfies

N 2
Sup Ep/ (bn(@) — p(2)) dz < C———,

where C > 0 is a constant dependng only on r, L and «a.

Solution
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Recall that
27 MISE = 27rEp/ (Pn () —p(az))2dw = / 11— K(hw)‘2\g0(w)|2dw+
o 1R Pd— & [ 1R ()Pl P
For the sinc kernel K (u) = S2% with K(w) = 1{ju|<1}, the latter gives

1 1
27TMISE2/1{|w|>1/h}|90(w)|2dw+n/1{|w|g1/h}dw— n/l{w|g1/h}|90(w)|2dw =

/ el = -2 [ o) <
R\[—1/h,1/h] nh nJ_ i, -

T T 2
—alw|” jolw] 24 il
e e p(w)| dw + <
/R\[—l/h,l/h] ()l nh
2

T s 2 T
—a|1/h] / ofw] 2 4 2 < polt/mr2 . 2
e e p(w w + <e L~ + .
R\[fl/h,l/h] ’ ( )’ nh nh

O{l/r

For h,, = ———+
I Qlog )

we get the bound

)

1/1
MISE < — <L2 +
2 n

1/r 1/r
1 2(logn) > < C(logn)

allr n n

with an obvious constant C.

EXERECISE 1.8. Let P,, where a > 0, be the class of all probability densities p on R such
that the support of the characteristic function ¢ is included in a given interval [—a,a]. Show
that for any n > 1, the kernel density estimator p,, with the sinc kernel and appropriately chosen
bandwidth h satisfies

sup / (ﬁn(:c) —p(m))2d3: < a.

pej:’a ™

This example, due to Ibragimon and Hasminskii (1983), shows that it is possible to estimate
the density with rate y/n on sufficiently small nonparametric classes of functions.

Solution

As in the previous problem,

2rMISE < / lo(w)dw + l
R\[—1/h,1 /K] nh

The claim follows with the choice h := 1, since p(w) = 0 for |w| > a.

EXERECISE 1.9. Let (X7, ..., X;,) be an i.i.d. sample from a density p € L2[0, 1].

(1) Show that ¢; are unbiased estimators of the Fourier coefficients ¢; = fol p(x)p;(x)dx
and find the variance of ¢;.
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(2) Express the MISE of the estimator p, n as a function of p and the sequence (g;).
Denote it by MISE(N).

(3) Derive an unbiased risk estimation method. Show that

E, (J(N)) = MISE(N) — / P,

where

7 _ 42
J(N)—n_lz< Zgo] 1)cj>.
Propose the data driven selector of V.

(4) Suppose now that (y;) is the trigonometric basis. Show that the MISE of p, y is
bounded by

N+1
+pNa
n

where py = ZJ N+l J Use this bound to prove that uniformly over the class of all
the densities p belonging to the Sobolev class of periodic functions WP (5, L), f > 0
2

and L > 0, the MISE of p,, x is of the order O (nfm) for an appropriate choice of
N = N,,.

Solution

1. Clearly, ¢; are unbiased:
Epéj = Epps(X1) = ¢
and

vary (&) = Ep(&j — ¢5)* = %Ep(%(Xl) —¢j)’ = %(Epsojz(Xl) - C§> = i(/@p— (/stp)Q)

2. Note that

N
Epnn (@) =Y cjps(x)
j=1
and N
varp<pnN( )) = Ep(Z(éj CJ)SDJ($)>2
=1
Hence j
N
MISEV) =, [ (30— ei)er) + /(Zcm Zcm) _

j=1

o0

N N 00
YR+ Y@= (B -d)+ Y 2

j=1 j=N+1 j=1 j=N+1
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3. Following the suggestion

N n
Ep(j(N))_n_lzGZEp% — (n+1)Epé ):
i=1

nil i <2Eps0?(X1) —(n+ 1)(%(5,%()(1) ~3)+é )) _
1Y ]
52< p% (X1) — (n—l—l)c?>

J=1

and hence

m

»(J(N)) — MISE(N) =

N N

> (Bl — 4 108) = 3 (B (X = 6) = 3 & =

Jj=1 J

Ya=- [

J=1

where we used Parseval’s identity. X
Since the same N maximizes both MISE(N) and E,(J(N)), it makes sense to select

)

3\’—‘
3\H

I

L

<

[

=2

=

N := argmin > J (N
and to plug it into p, n.
4. Recall that for even j
j(x) = V2 cos(mjz),

and hence
1+ cos(2mjx
Px) = gl tcos@mjz)

1
5 ﬁ‘;@j(x)-
Similarly, for odd j
pj(x) = V2sin(n(j — 1)z),

" (2x(j ~ 1))
1 —cos(2m(y — 1)z 1
903(55) =2 9 =1- \ﬁ@?(j—l)(x)'
Hence
1 o, j is even
Epoi(Xy)=14+—4 7
p(p]( 1) \/§ {62(j—1) j is odd
Consequently, e.g. for even N
N N
1 N 1 1 N+1
MISE(N) = = 3~ (Epgﬁ(xl) - c§) toN = s - Sty <
j=1 j=1

The same bound holds for odd N’s.

+pN7
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If p € WPeT(B, L), then the sequence of Fourier coeflicients (c¢;) belong to the Sobolev ellipsoid
0(B, Q) with Q = L?/7?# and hence

1
Now the choice N, := |an?5+1 | with a constant a > 0 yields the claimed upper bound.

EXERECISE 1.10. Consider the nonparametric regression model under Assumption (A) and
suppose that f belongs to the Sobolev class of periodic functions WP (3, L) with 5 > 2. The
aim of this exercise is to study the weighted projection estimator

Fan(@) = X050 (),
j=1

where \;’s are real constants (weights), 6; = 1 S Vip;(X;) are the Fourier coefficients esti-

~n
mates.
(1) Prove that the risk MISE of fn’A is minimized with respect to \;’s by !
oo 00+ o)
T2+ (0 4 aj)?’

where £2 = ag /n ()\;’s are the weights corresponding to the weighted projection oracle).

i=1..,n

(2) Check that the corresponding value of the risk is

n 6292-
MISE(\) = Y  —————— + pn,
(%) j;gQ—i-(Qj—i-aj)Q r
where p, =372 1y 0]2.
(3) Prove that
n 5202 n 6292
J _ 1 1 ) J
252+(0j+a3)2 ( o) ;824-92
(4) Prove that
1+o0(1)) =0
p”_( to Z e2 4+ 62
j=n+1 J

(5) Deduce from the above results that
MISE(X*) = A% (1 +0(1)), n— oo,

Lyecall that

0 = 3 1i/mesifn) - [ 1
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where
o] 8292
* J
An ; g2 + 0?2

(6) Check that?
Ay < minA, n.
N>1
Solution
1. Recall that for 1 <j <n —1 (an in fact for j = n as well, check!)

Eéjzﬁj—i—aj, E(ej—éj)QZUg/n-i-Oé?:@Z-i-Oé?.
Hence

Since
E(A0j — 0;)" = E(\(0; = 0) + (0 = 1)0;)" =
NFE(0; = 03)" 4+ 2XE(0; = 0;)(\; = 1) + (A = 10 =
A2(e2 4 af) + 200N — 1)6; + (N — 1)%607 =
Xe? o+ (A + (A — 1)9j)2,
we obtain

MISE()) = zn: <A§e2 + (e + (- 1)ej)2) + P

j=1
The summands in the first term are parabolas, minimized by
v il +0;)
el (o +0;)2
2. Direct calculation shows that the corresponding MISE is given by
n 6292-
MISE(X*) = —_—
(A7) Z62+(Oéj+9j)2 + Pn

J=1

15

02
2An,N = ETN + pn is the leading term (for 8 > 1 in the upper bound for the MISE of the simple projection

estimator we studied in class.)
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3. We have
202 202 2 2
€ Gj € Gj € +«9j B

2+ (0 +0)° 2+ +(a;+0,)°
£267 <1+ 932'—(aj+9j)2> _ &6 (1 a; (o + 205) )

2+ 62 e2 + (o + 05)? 2 467 e2 + (o + 05)?
Further,
2
aj(eg + 205) 2a(yj + 6;) a; 2
— < levs ;
2+ (aj+0,)2| |24 (ay+65)2 2+ (ay+65)2| /el + Jeg/e

where we used the elementary inequality — ‘ | 5> < %%, x € R. Recall that for 8 € ©(5, Q) with
g >1/2

max |a;| < Cgon BTY/2
(Jnax oyl < Cao :

and that ¢ = ag/n. Hence for 8 > 2,
jaj/e] + |aj/e]? < Cin™PHY,
for all n, large enough. Consequently,

n 202 n 8202 n 202

o b ‘
J J —B+1
_ <C ’
Z€2+(Oéj+9j)2 Zs2+02 1n 252 02
j=1 7j=1 J

which verifies the claim for g > 1.
4. Note that

202 2
o S0 e U
S N

Since Y2, 62a2 < Q < oo, the sequence rj = 0?@3 converges to zero as j — co. Hence

j=1Y;9;
> atn-n S hat
Pt 52—1-92 - 62 = a 52+92 -

00 202 00 2n2

1 8Upj>n4 7Ty Z e°0; <C 1 SUpPj>p417; e°0;

2 2 2, g2 = -1 2 2 : 2 g2’
€ nt1 j=n+1 e 9]' n (n+1)2 j=n+1 e 9]’

Hence for 5 > 1,

B i 62(932 B i e i 82032 _
o j=n+1 62+932 - j=n+1 ! Jj=n+1 62+0J2 -
00 2 00 202
> Balgy ap
Jj=n+ Jj=n
as claimed.

5. Obviously follows from (3) and (4).
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. . . 2.2 4
6. Using the identity y? = ny ot ﬁ, we get
2 N 9]
o N
. . . 13 o . 2 2 o
pignsy =i (S +ow) =i | '+ 3 ) =
7=1 j=N+1
A = > 207 01
Tnin Z<2J2+2 2>+Z(232+2]2) =
N21\ e +05 &2+ 07 Plra il +0;  e*+0;
o) 5202 N 84 (9 94
J : J *
ey | oINS o L/ B
2 02 2 2 2, 2 n
i +05  N>1 e + 07 i +0;

EXERECISE 1.11. Consider the nonparametric regression model under the Assumption (A).

The smoothing spline estimator f,ﬁp (x) is defined as a solution of the following minimization
problem

" ) 1 & 9 1 )
[P = argmingcyy (nz (Yi — f(Xy)) +/</ (f"(x))"dx |,
i=1 0
where k is the smoothing parameter and W is one of the sets of functions defined below.
(1) First suppose that W is the set of all the functions : [0, 1] — R such that f’ is absolutely
continuous. Prove that the estimator f;’ reproduces polynomials of degree < 1 if n > 2

(2) Suppose next that W is the set of all the functions f : [0,1] — R such that (i) f’

is absolutely continuous and (ii) the periodicity condition is satisfied: f(0) = f(1),
1(0) = f'(1). Prove that the minimization problem is equivalent to

r(r;lglz ( — Qéjbj + b?(mr‘"a? + 1)(1 + O(n_l)))a
J _]21

where b; are the Fourier coefficients of f, the term O(n 1) is uniform in (b;) and a; are
defined as for the Sobolev ellipsoid.

(3) Assume now that the term O(n~!) in the latter minimization problem is negligible.

Formally replacing it by zero, find the solution and conclude that the periodic spline
estimator is approximately equal to a weighted projection estimator

with the weights A7 written explicitly.
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(4) Use (3) to show that for sufficiently small x the spline estimator f2P is approximated
by the kernel estimator

1 " X@ — T
fal@) = MZIYK( =),
1=
where h = k/4 and K is the Silverman kernel.

Solution

1. Let Q be the space of linear polynomials, then

min li (Vi — f(X-))2 + I'i/l (f”(ac))2dx <
few \ n — ! ! 0 o
n 1
min (i ; (Yi - F(x0)" + ”/o (f”(w))2dw> =
e 2
fégﬁl{n;(n_b_a)(i) .

IfY; =0 + dX; and n > 2, the latter expression vanishes and the minimizing constants are
exactly @ and ¥, i.e. fiP(z) =V + d'z as claimed.

2. In this case, f(z) = > 72, bjp;(x), where (¢p;) is the trigonometric Fourier basis. Note
that for even j

d? d2 j .
T2 %i(@) = 75 cos (2”5"’“") =T i),

and for odd j
d? d? . j—1 9 . 9
= pj(x) = 7,2 Sin (27T 5 x) =—7m7(j — 1)*pj(x),

i.e. forany j >0

@%‘(x) = —m ajp;i(z),

where a;’s are as in the definition of the Sobolev ellipsoid, corresponding to 8 = 2.
Hence, if we assume that f” is square integrable?, by the Parseval identity

[e.e]

1
/0 (f"(2))2dw = 3 (w2azb;)*.

j=1
Further,

1 ¢ 1o 2 1
EZ(Yi—f(Xi))Q = EZYf—EZYif(Xi)ﬂLngQ(Xi)-
i=1 i=1 i=1 i=1
For the design X; = i/n,

%Zyif(Xi) = %ZYZ > bipi(i/n) = bib;.
- L. :

3if f” is not square integrable, then the original minimization problem is ill defined
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1. NONPARAMETRIC ESTIMATORS

Also
fZﬂ /f2 bek Zsoj ifn)en(i/n) — ZbQ

7j=1 k=1
Zzbbk Z% i/n)en(i/n) — Z

j=nk=n

and applying the Cauchy Schwarz inequality, we get

<22 S (SInl) + D8 <
=1 j=n j=n

IS ey [p
nizlfom/of

o o
1 1
226332 it >t = Y 8a? 2Y 5t Cn~t S b,
Jj=n J noj=1 j=1 j=n J n j=1
where C' is an absolute constant
Assembling all parts together, we get
- 2 ! 2
() 4k [ (@) e =
0
o0 o0
2 2
bja;,

=1
Jj=1

1
no (Vi
—ZYQ—ZZI)G +Zb2+0 —3) Zba + KT Z
j=1

which verifies the claim. X
3. Note that the expression —26;b; + bz(mr‘la? + 1) is minimized by

oo i
J /<c7r4a]2» +1

and hence the approximate equality holds with



20

4. Suppose that h := %/{1/ 4 is small enough to justify the approximation:

i = S (% ) Ly [T,
1> 00 cos( ) i COS(QW](X—x))

Yy SN 2
nh g 1+ (27rh] e 1+ (27hy)
n

1 = cos(2mjX;) cos(2mjx) + sin(2mj X;) sin(27jx)
DNGDs -

4
i j:_ooj#o 1+ (27hj)
1 Z Y, Z 2 cos(2mj X;) cos(2mjx) + 2sin(27wj X;) sin(27jx)
1+ (2mwhj)? B

P25 (Xi)p2j () + 254+1(Xi)p2j+1(x)
Ny, =
Z Z 1+ (2whj)*

92j¢2j($)+92j+1</>2j+1( r) Oioi(x) 4o
Z 1+ (27hj)* Z 1+ mika’ = Jn"(@);

j=1 j=1
2. Lower bounds on the minimax risk

EXERECISE 2.1. Give an example of measures Py and Py such that p.; is arbitrarily close
to 1.

Hint: consider two discrete measures on {0, 1}.
Solution

Let X ~ Ber(p) under Py and X ~ Ber(q) under P;. Since X € {0, 1}, the only possible
(non-randomized) tests are ¢'(X) = X and ¢”"(X) =1 — X. For the test ¢/(X) = X, we have

Po(¢/(X) =1) =Po(X =1) =p, Pi(/(X)=0)=1-¢
and
Po("(X)=1)=Po(X =0)=1—-p, P1("(X)=0)=P1(X=1)=q.
Hence
pes = inf <PO(¢ = 1) VP (y = 0)> = min <p V(1—q),(1-p)V q),
which approaches 1 as e.g. both p and ¢ approach 1.
EXERECISE 2.2. Let P and Q be two probability measures with densities p and ¢ w.r.t. the

Lebesgue measure on [0, 1] such that

0<ec <p(x),q(r) <cy<oo, Vrelol].



2. LOWER BOUNDS ON THE MINIMAX RISK 21

Show that the Kullback divergence K (P, Q) is equivalent to the squared Lo distance between
the two densities, i.e.

b [o- 0P <KP.Q <k [0
where k1, ko are constants (independent of p and ¢). The same true for the x? divergence.
Solution
Since both densities are bounded,
0<crfe2 <qx)/p(x) < ca/er < 0.

Since 1 € [c1/c2, c2/c1], by the Taylor theorem
11
logr=2—1—=—=(z—1)>2 z€lei/co,ca/ci]
2£2
where ¢ is a point, possibly dependent on x, such that | — 1| < |z — 1|. Hence for all z €
[c1/c2, c2/cn]

1 1
z—1-— 5((:2/(:1)2(x —1)<logr<z—1- 5(61/62)2(90 - 1)

Since p(z) > ¢; and ¢(z) > ¢1, P ~ Q and
KP.Q) =~ [plog? <~ [p(%-1-F(/e?(afp-1?) -
s/l [sap =12 < (/ar s [a-p*

Similarly, the lower bound is obtained.

EXERECISE 2.3. Prove that if the probability measures P and Q are mutually absolutely
continuous (i.e. equivalent), then

K(P,Q) < x*(Q,P)/2.
Solution

The claim is apparently false, as the following counterexample shows. Let P and Q be Ber(p)
and Ber(q) distributions. Then

1_
K(P,Q) =plog§+(1*p)log1 L

and

%x2(Q, P) = ;p@ - 1>2 + 1(1 —p)(iiz - 1>2~

For p = 0.5 and ¢ = 0.1, the numerical calculation yields
K(P,Q) =0.5108...

and 1
5X2(Q, P) = 0.3200...
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EXERECISE 2.4. Consider the nonparametric regression model
Yi=f(i/n)+ &, i=1,...,n

where f is a function on [0, 1] with values in R and ¢; are arbitrary random variables. Using the
technique of two hypotheses show that

lim inf sup E¢||T, — f|lo = +o0,
n—oo In feClo,1]

where C]0, 1] is the space of al continuous functions on [0, 1]. In words, no rate of convergence
can be attained uniformly on such a large functional class as C|0, 1].

Solution

Consider the hypotheses fo,(x) =0 and

fin(x) = n<1 — |2nz - 1!)1{956[0,1/74}, z € [0,1].
Clearly, fin, € C[0,1], i =0,1 and

d(fons fin) = || finllee = 1 := 2s,

with s := Ay, ¥, = n and A = 1/2. Further, since Po = Py, K(Py,P1) = 0 and hence
Pe,1 > 1/2. Consequently,

inf sup Efn_l”Tn —fllo > ¢
Tn recio,i]

with a constant ¢ > 0, which verifies the claim.

EXERECISE 2.5. Suppose that Assumptions (B) and (LP2) hold and assume that the random
variables &; are Gaussian. Prove (2.38) using Theorem 2.1.
Solution

Take the same hypotheses as in the text, i.e. fon(z) =0 and fi,(x) = thK(%) where

K is a nonnegative function in C*°(R) N (5, 1/2) satisfying K (u) > 0 if and only if |u| < 1/2.
Clearly, Py ~ P1 and

dPo _ 11 pe¥) Sy v s LN N
oy~ v = g = <_ 2 Nt g ;ﬁ”(m> )

=1

exp <_ Zfzfln(Xz) — % Z ffn(Xz)> =: exp <UnZ — ;(7721> 7
i=1 i=1

where Z ~ N(0,1) under Py and 02 = Y7, f2,(X;). As in the text (page 94), under the
assumption (LP2), 02 := sup,, 02 < co and hence

Pl(ZE? >1) =Py (22 %an) >Pi(72 %a) = ®(~0/2),

and consequently,

T dPO 1 dPO 1
> — > > Pi(=—=—>1)>=®(—
Pe,1 —§§%{1+7P1< T)} > 2P1( _1) > 2(1)( a/2) >0,
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and the claim follows from the general reduction scheme.

EXERECISE 2.6. Improve the bound of Theorem 2.6 by computing the maximum on the right
hand side of (2.48). Do we obtain that pe as is arbitrarily close to 1 for M — oo and o — 0, as
in the Kullback case (cf. (2.53)) ?

Solution

The function
M~

:1+MT

o(7) (1 — (0 + 1))

is maximized at

= % (\/1 + M/(a +1) — 1)

O(r*) = (1_’/0%4) (1—0‘*]\;1 (~/1+a*]\il —1>>.

For the choice ay := aM, we get

aM +1 aM +1 M
I (Y e S _ 1 1
¢ () ( aM+1+M><1 M ( T oM 1 ))
1
M(l— a >(1—a( 1+-—1]]=
a+1 o

(1— a >(1—\/&( a+1-va)) 221

a+1

with

EXERECISE 2.7. Consider the regression model with random design:
Yi=f(X)+&, i=1..n

where X; are i.i.d. random variables with density pu(-) on [0, 1] such that u(z) < pp < oo for
all z € [0,1], the random variables §; are i.i.d. with density p¢ on R, and the random vector
(X1, ..., Xy) is independent of ({1, ...,&,). Let f € X(5,L), 5 >0, L> 0 and let 29 € [0,1] be a
fixed point.

(1) Suppose first that pe satisfies

/ (\/pg(y) - \/pg(y+t))2dy < pt?, teR,

with a positive constant p,. Prove the bound

8 ~ 2
lim inf sup 7T (fulwo) = f(0)) > e
n—oo fn feX(B,L)

where ¢ > 0 depends only on (3, L, p10, Px-
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(2) Suppose now that the variables &; are i.i.d. and uniformly distributed on [—1,1]. Prove
the bound

28 /. 2
lim inf sup EgnA+t <fn($o) — f($0)> >,
n—0o fn fEX(B,L)

__B_
where ¢ > 0 depends only on 3, L, j19. Note that the rate here is n~ #+1, which is faster
5

__B __B_
than the usual rate n= 28+1. Furthermore, it can be proved that ,, = n A#+1 is the
optimal rate of convergence in the model with uniformly distributed errors.

Solution

(1) We shall use the following property of the Hellinger distance. Define the convolution
the subscript £ in pg is omitted for brevity
3

1
(p*p)(z) = /0 p(:r — f(y)),u,(y)dy, z € R.

By the Jensen inequality

1
Vor@ \/ / — F(9))uly)dy > /0 (e — ) ) dy,
and hence

H*(p,p*p) = /(v% Vp*umﬂfd$=
2—2/v% (p* p)( dx<2—2/\//ﬁﬂ z—f y)dydx =
[ (22 [ VoGVt T ) )iy =

/01/(\/19( —/plx— f( ) druly )dy<p*/ F2)u(y)dy.

To prove the required bound, we shall use the two hypotheses as in the text (see eq. (2.32)-(2.33))
fon(x) =0, and ﬁM@:L%K<x;%>,xemgy

It is left to show that p.1 > ¢ > 0 with a constant ¢ independent of n. To this end, we shall use
the bound

1
H*(Pg,P1) <a<2 = pe1> 5 (1 —Va(l - a/4)> .
By the independence, Py corresponds to the density

Hp(ui), u e R”

and Pq to the density
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H2(Po,P1) = 2 <1 _ (1 _ HQ(p’Qp*“)y) :

it is left to show that inf,, (1 — %HQ(p,p * ,u))n > 0 or equivalently

Since

supnH?2(p,p* p) < oco.
n

1
For fi1, as above, we have (recall that h,, = con ™ 25+1)

1 1
y—x
nH?(p,p* ) < np*/o Fin@)n(y)dy = L2p*nh%’3/0 K <h0> py)dy <

1
2.1
LQP*HKHgonhiB/O L{jy—zo|<hn /2y () dy < L?p.|| K |2 ponh2P T = 21)

2 1
L2p. || K |2 poc™™,

as required.
(2) For the uniform density p(z) = %1{‘x|§1}, we have

/ (Voly) — Voly + 1)) *dy = ;/ (Lgyi<1y — Lijyarj<ny) “dy = min(2, |1]) <

and as in (1)

il

1
H(p,p * ) S/O | () |n(y)dy.
1
Choosing h,, = con” #+1 and proceeding as in (1), we get

1 1
y—x
i) < v [ty = Dot [ 5 (L) utyhay <

L||K [lsoponh*' < LI K ||copocs ™,

which yields the claimed result.

EXERECISE 2.8. Let X, ..., X}, be i.i.d. random variables on R having density p € P(5, L),
8 >0, L >0. Show that

28 2
lim inf sup E, n?2ft (ﬁn(fﬂo) - p(l‘o)) e
n—oo fn peP(B,L)

for any zg € R, where ¢ > 0 depends only on 5 and L.
Solution
Consider the hypotheses
po(2) = @o (), P1a(T) = 9o (2) + gn(2),

where ¢, is the N(0,0?) density with some o > 0 to be chosen later,

gn(x) := thR(%ﬂxo)
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and R is a bounded Cs (R)NXr(, 1/2) function, supported on an interval A C R, [ R(z)dz =0
and R(0) > 0. For example, one can take R(x) = K(z) — K(x — 1), where K is defined in (2.34)
of [1].

Note that since R is bounded and [ R(z)dz = 0, pin(z) is a probability density for all n
large enough. Following the reduction scheme presented in text, we shall check the conditions

(i) pin € B(B,L)
(ii) |po(z0) — pin(wo)| = 28 = 244y, where 1y, = T and A >0

(iii) K(P1,Pp) <a < oo
The condition (i) obviously holds for o large enough, since ¢ and its derivatives are bounded
(similarly to eq. (2.35) in [1]). Further,

[po(w0) = p1a(@o)| = [pin(wo)| = Lhy"|R(0)| = 2A¢,
i.e. (ii) holds with A = L|R(0)|/2 > 0.
Finally, since X;’s are i.i.d. both under Py and P1, using the elementary inequality log(a +
x) <loga+ z/a, we get

K (P1,Po) = nK(pin, po) = n/ (%(w) + gn(x)) log W

o i) = [ B

nL2h RIS =: o,

dr =

infmGA 1%(1‘)
which completes the proof.

EXERECISE 2.9. Suppose that Assumptions (B) and (LP2) hold and let xy € [0,1]. Prove
the bound (Stone, 1980)

2
lim lim inf su P (nm To(xo) — f(xg)| > a) =1.
lim lim inf feE(}B),L) s T (o) — f(x0)|

Hint: introduce the hypotheses

fon(l’) = O, fjn(l') = HthﬁK (.%' ; $0> s

n

with 0; = j/M, j=1,...,M.
Solution

Recall that

8
inf sup Pf<’Tn(:c0) — f(xo)’ > an_m> > De.M
Tn fex(p,L)

v
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whenever
d(fin, fen) = | fin(20) = frn(w0)| > 24%y,, j#k (2.3)
with A = a/2 and ¢, = n”TF and
1
MZK(PjaPO) < alog M, (2.4)
j=1

for some a > 0. )
For the hypotheses appearing in the hint with h,, = con™ 28+1,

ik
(o) ~ finao)l = L L c(0) > LR O,

and hence (2.3) holds, if we choose
o aM \ /B
07 \LK(0))

KPP0 = 3 [ petuytog = fﬁgj(mdu <P D fX) <

Further,

n
pe(G/MPLPRP | K120 D 11x, gl <hn/2) <

=1

PG/ M) L2 || K | onag max(hn, 1/n) < pa|K||Za0L” (/M) cg” ™ =

p*HKH2 a0L2(j/M)2 aM Y —. CjQMl//BGZJrl/B
~ LK(0)

and hence
| M M
17 2 K (Pj.Po) < CMVEa2 By 72 < C'(ab)* 1P,
j=1 j=1

Now choose a := —+ and M := 1/a, then for any a € (0,1),

log %

__B
lim inf sup Pf<‘Tn(x0) — f(wo)| = an 25+1> >
n—oo In fex(s,L)

1 1
= l1-9 _
1++a log

as claimed.

EXERECISE 2.10. Let Xi,..., X,, be i.i.d. random variables on R with density p € P(8, L)
where 6 > 0 and L > 0. Prove the bound

28
lim inf sup Epn?+1|T, —plf>c
n—oo In peP(B,L)
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where ¢ > 0 depends only on 5 and L.

Solution

Using the notations of Section 2.6.1 [1], define

ou(z) = LHK" (h

n

>, k=1,...m, xz€R

where K’ is the derivative of the function, defined in (2.34) of [1]. Let
1 N ,
pin(@) = ~¢(e/o) + Y wlgi(@), j=0,..M, zeR
k=1

where ¢ is the standard Gaussian density, ¢ > 0 is a constant to be chosen shortly and w@)’g
are m-tuples in the Varshamov-Gilbert subset of = {0,1}" (see Lemma 2.9, [1]). Since
[ gi(x)dz = 0 and sup,cp |gx(z)| < L||K'||sohl, all pjn’s are probability densities for sufficiently
large n. Following the reduction scheme presented in the text, the claimed bound follows from
the conditions (see Theorem 2.7)

(1) Pjn € :P(BaL)7 J=0, e M
8
(ii) ||pjn — Pinll2 > 25 = 244y, where 1, =n 25+1 and A >0

(iii) & M, K(P;,Po) < alog M for some a € (0,1/8).

The condition (i) is obvious for sufficiently large o, since ¢ and all its derivatives are bounded
(see eq. (2.35) in [1]). Further,

m 2
[pjn — pinll2 = / <Z (W — w’(;))gk(x)> dx =
k=1

j i)\ 2 i .
loall3 Y (o = ) = L2RPK (D, ),
k=1

where p(-,-) is the Hamming distance. By the Varshamov-Gilbert lemma p(w®,w@)) > m/8
and hence (ii) holds if m := 1/h,,, as in the text.
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Using the elementary inequality log(a + z) < log(a) + £ (and setting ¢q(z) := Lo(2/0) for
brevity):

K(pjn,pjo) = /pjn(:n) log Z)Zgg do =

/<%@+Z¢%m»(m(m@+24%mﬁ—m%uOMS
k=1 k=1

m m - (5) m WP g ’
/(soa(x)+2w;ij)gk(x)> L gk(I)dxzfl (Ziel ) da <
0

Yo () ¢o ()

||91H2Zwk < o7 (1) L2 K'|[3p25H m =: Ch2P,

where we used m = 1/h,,. Note that n = cgﬁﬂh;%_l and hence
K(P;,Pg) < Cnh?® = C'h;t = C'm < alog M,

where we used the V-G inequality M > 2™/%. The design constant ¢y can be chosen so that
a € (0,1/8) and hence (iii) holds. This completes the proof.

EXERECISE 2.11. Consider the nonparametric regression model

Y= fi/n)+ &, =1,

where the random variables &; are i.i.d. with distribution N(0,1) and where f € WP (5, L),
L >0and § € {1,2,...}. Prove the bound

28—1

n 2p 9
lim inf  sup EfTn — flloe > ¢
B.L)

n—oo In fewmrer( logn
where ¢ > 0 depends only on 5 and L.
Solution

Consider the hypotheses

fon(z) =0, fjn(x>=Lhﬁ‘1/2K<”“"_')7 j=1,.,M

L ,
where h, = ¢ (L) ¥ M = [1/h,] and z; = ]71\2/2 and K is the function defined in eq.

logn
(2.33) [1]. To prove the claimed bound, we shall check
(1) fjn € Wper(ﬁ,L)’ Jj=1 e M

_B=1/2
(i) [l fin = Finlloo > 25 = 248, with 4, = (25) 7

(i) 7 >, K(Pj,Po) < alog M with o € (0,1/8)
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Note that by construction, f;,’s and all their derivatives vanish at = 0 and x = 1 and

1 1 o 2
[ (80@) ao = 2 P2 [ (0 (1) ) o= s
0 0 h’fl

and (i) holds, if we adjust K appropriately (i.e. choose a small enough in eq. (2.34), [1]).

Next we have
K (1) - w (552)| = i) = 20,

o — LKB-1/2

with A = 3L ||K(0)]|, 05—1/2, and thus (ii) is satisfied.
Finally, since &;’s are i.i.d N(0, 1),

1 225—1n o (Xi—j
K(Pj,Po) = Z )= L Z}K Mo )=
_ 1 _
§L2hiﬁ K2, Z L{x,—aj|<M/2) = §L2hiﬁ ' K||% Card{ X; € supp(fjn)}
=1

and hence
M 1 M
Z P],Po LthﬁlHKHgOM;Card{Xi € supp(fjn)} —
SR o/ M = SIAK |22 = £ 22Kl logn.
For sufﬁciently large n,

1 1
log M > logh, ' =logcy + %(logn—loglogn) > @logn

and (iii) follows, if ¢y is chosen small enough.

3. Asymptotic efficiency and adaptation

EXERECISE 3.1. Consider an exponential ellipsoid

(o.)
_ 0o . 20 2
j=1
where a > 0 and @ > 0.
(1) Give an asymptotic expression, as € — 0, for the minimax linear risk on ©.

(2) Prove that the simple projection estimator defined by
ék:ykl{kSN*}a k:1,2,...

with an appropriately chosen integer N* = N*(¢), is an asymptotically minimax lin-
ear estimator on the ellipsoid ©. Therefore it shares this property with the Pinsker
estimator for the same ellipsoid.



3. ASYMPTOTIC EFFICIENCY AND ADAPTATION

Solution

1. We shall first find the asymptotic of x applying Lemma 3.1 [1] to a; = e

g2 £ & 2 &
:—E aj(l—naj)+:—g e (1 — re™) —E e (1 — ke
K K K
=1 j=1 j=1

where M = Lé log %J Using the geometric series summation formula

M ; aM 1 M+l "
= = 1 1 1
Za a—— a—l( +o0(1)), a>1, — 00
we get

2 M 2 _a(M+1) 2a(M+1)
€ e‘e g€
R;ew (1 — ke = a1 (1+0(1))—5 e T (1+0(1)):
2 « 2 2a 2 «
e e e“ e € e
?ea_l(l—i_o(l)) _?620‘—1(14_0(1)) :?620‘—1(1—1_0(1))

and consequently
c ea/2

QU/2 (e — 1)1/2(
Next we shall apply Lemma 3.2 [1] to calculate the optimal risk:

[es) M
D* :522 (1 - /%Lj)Jr :522 (1 —/ﬁeo‘j) =
j=1 j=1

ea(M 1) e’
g? (M - /{ea—l(l + o(l))) = ¢? (1 log 1 — (1+ 0(1))>

« K e” —

K= 1+0(1)) = k" (1+0(1))

1, 1
—e“log — (1 1 —0
046 ogg( + o( )), €

2. The risk of the suggested estimator (i.e. \; = 1{j§N*}) is given by
RAO) =) (1-X)207+2XN =N"+ Y 07 =
j=1 j=N*+1

S)
€2N* + Z 6—2aj62ajej2 _ €2N* + e—2o¢N* Z e—2o¢( —N*) 204]'0]2 <

j=N*+1 j=N*+1

00
EQN*—|-6_2QN § :e2aj9]2 < €2N*+6_2aN Q
j=1

If we choose N} = élog %, we obtain the upper bound

1 1 1 1
R(\,0) < —%log - +e2Q = —&%log —(1+o(1)),
« 5 a €

31
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which coincides with the lower bound obtained in (1) and hence the simple estimate is asymp-
totically minimax among the linear estimators.
EXERECISE 3.2. Suppose that we observe

yj:0j+£j, jZl,...,d
where the random variables &; are i.i.d. with distribution N(0,1). Consider the estimation of
parameter § = (61,...,04). Take O(Q) = {6 € R? : [|6]|> < Qd} with some Q > 0, where | - ||
denotes the Euclidian norm on R?. Define the minimax risk

* . L 5
Ri(©(Q) = inf sup Eo=[10— 0]
0 0e0(Q)

where Eg is the expectation with respect to the joint distribution of (yi,...,y4). Prove that

Jim Ri(0Q) = 5%

Hint: to obtain the lower bound on the minimax risk, take 0 < § < 1 and apply the scheme of
Section 3.3.2 with the prior distribution N(0,0Q) on each of the coordinates of 6.

Solution

We shall derive the upper bound in two ways: by means of the James-Stein estimator and
by explicit calculation of the risk of the linear minimax estimator.

The upper bound 1.

Recall that the James-Stein estimator 0 Jjs = (1 — ﬂ) y has the risk

(IR
1o T o2 =1 e (d —2)? . (d —2)? 1
~Eg||0gs — =l-=-Bp—m—=1- 0 .
d d = lyl? d? allyl?
Denote by P the probability induced by the vector &, then
1_ - (d —2)? 1
R3(0(Q)) < sup —Egllfys — 0> = sup (1- Eo =
( ) 9co(Q) 4 0c0(Q) d? 2Nyl
(d—2)% . 1

1— inf E— .
d*  eco(Q) [|6+ €2

Calculations similar to those in Lemma 3.7 [1] and the dominated convergence theorem imply

continuity of the function h(f) := Ew on R? for d large enough. Since ©(Q) is compact,
d
the infimum in the latter expression is attained at a point 8 € ©(Q). Hence
_ 1 f
lm R5(0(Q) <1 lmE- <
d—o0 d( ) d—00 é”@; + 5”2
1 ¥ 1
1-E <1-

— <1-E _ .
Tiges oo 5(|;9;;|y2 +2(05,€) + ||£!!2) Q + 1+ im0 265, €)
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where the inequality { holds by the Fatou lemma and the bound I holds by the law of large
numbers and since 0 € ©(Q). Finally, note that for each d large enough, n := (65,£)/|05|| ~
N(0,1) and hence

e8] 1 4 e8] Q2 .
Soe|0n9| <X Genl <o
d=1 d=1

The Borel-Cantelli lemma now implies limg_, oo %(92, &) = 0 P-a.s. and the upper bound follows:

__Q
Q+1 Q+1

Tim R3(6(Q)) <1-

The upper bound II.

Consider the linear estimator 9(>\) with the weights A;, 7 = 1,...,d and the corresponding
risk

d d d
1

R(\,0) = —Ey > Ny — 05 == Z Aj—1)? Z

i=1 i=1 i=1

To find the maximal risk over ©(Q), note that for § € ©(Q),
1< 1
p Z(/\] — 1)2932 < max(\; — 1)2g Z 9]2 < 1}133(()\] —-1)%Q,
j=1 j=1 =

where j* = argmax;4(\; — 1)%. Hence

SHE
=

sup R(\,0) = max(\; — 1)%Q +

2
0 i<d )\‘7
€0(Q) J=

1

J

The entries of the minimizer of the latter expression over A € R% are confined to the interval
[0, 1], since otherwise the risk can be reduced. Further, for any A € [0, 1]¢ the risk can be reduced
by decreasing all the entries to be equal to the minimal one. Hence the minimum is attained by
A € [0,1]? with constant entries i.e.:

Q
inf sup R(\0) = inf ((t-1)%Q+#) = ==
AR 926(0) 0= t€[0,1] t=ve Q+1
To recap, the linear minimax (Pinsker) estimator has constant weights
Q .
lj=—"— =1,..,d
J Q + 1a J PREES)

and the corresponding risk is

Q
inf sup R(A,0)=R{,0)=——.
AeRd%@FQ) (A, 0) = R(¢,0) O+ 1
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The lower bound.

To derive the lower bound, define the prior density

d
= HuéQ(gl)a 0 e Rda
where i, () is the density of N(0,0?) distribution. Then

R;(©(Q)) = inf sup Ee*H@ o> L
6eRdeee(Q)

1 A
inf  sup E9—||9 0|?> > inf / Eo— 10 — 0))°1(0)do =
0€0(Q) 0e0(Q) ico@) Jo@) d

1 A 1 .
nt ([ B0 -0 @)~ [ Ea o 6lPuo)ds ) >
bco@) \Jre d oc(Q) d

inf [ Egli|0 — 02u(0)d0 — sup / Eg 116 — 0|2(6)d6 := I — R,
ferd Jra  d 6eo(Q) /©°(Q) d

where 1 holds since ©(Q) is closed and compact and hence projecting § onto O(Q) only re-
ducesthe risk. The term I contributes the main asymptotic:

I:Ainf/ E9—||0 0|12u(0)do > = me/ Eo(0; — 0;)21(0)do =
R4 R4

d
SN 116‘

d 5Q
Z: / Eo (0 — 0:)°p ZaQH 5Q+1’

where in T we used the explicit formula for the Bayes risk in the problem of estimating 6; ~
N(0,0Q) given y; = 0; +&;, j = 1,...,d with independent §;’s and &;’s and &; ~ N(0,1).
Next we shall bound the residual term:

1 .
R=swp [ g6 0u(0)ds <
bco(q)lor@ d

2 2 .
/ 01 w(0)do + / sup 2y 10 u(6)d6 <
0%(Q) “(Q) beo(Q)

2 C 2 C
B0 pcor) +2QP4(0%) < =B, 0]14/P.(0 € ©°) + 2QP,(6°) <

65Q+/P.(0 € ©°) + 2QP,(0°),

4see the exact explanation following eq. (3.36) page 149 [1]
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where in the last inequality we used the bound
d 2 d
EMHQH4 =E, (Z 93) = ZENGZZEP«Q? + Z]EMH? =
i=1 i#£j i=1
d
D (6Q)* + > EL3(0Q)* < 3d2(0Q)*.
i] i=1
For any 0 < 6 < 1,

d d
P,(6°) = B, (2293 > Q) = (;Z (02 - 6Q) > 6)@) <

=1

1 1 1 d i
im1 i=1
d 1 2(6Q)%  dsee
(1- 2@? d?E“; T d(1-0)2Q? N
and hence
6Q

lim Rj(0(Q) 2 55

The claimed asymptotic follows by taking § — 1.

EXERECISE 3.3. Consider the setting of Exercise 3.2
(1) Prove that the Stein estimator

A d
fg — (1_)y
> MIE

as well as the positive part Stein estimator

A d
b= (1 )
lyll*/ 4

are adaptive in the exact minimax sense over the family of classes {©(Q),Q > 0}, that

is, for all Q > 0
Q
lim sup Egy ( 16—0 2>
d—o0 0€0(Q) ‘ H Q + 1’

with 6 = g or § = 05+. (Here, we deal with adaptation at an unknown radius @ of
the ball ©(Q)).
Hint: apply Lemma 3.10

(2) Prove that the linear minimax estimator on ©(Q) (the Pinsker estimator) is inadmis-
sible on the class ©(Q’) such that 0 < Q' < @ for all d > dy, where d; depends only on

Q and Q.
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Solution

1. By Lemma 3.10, for all d > 4 and 0 € O(Q),

Aol 4 _ @
ZEglls —OF < phiat— + 5 <
olls =0 < o T+ 3= g

_|_

9

QI

which proves the claim (the same bound holds for fg.).
2. In Exercise 3.2(2) we saw that the linear minimax (Pinsker) estimator has constant
weights

G=1r5 J=Ll.d

The corresponding risk function is

d
R((,0) = EOH9 —9)? = d;(é—l 02+£2)—

where

r= Q+1 (ZeQ ) Q+1) (@ -Q) <0, Veo(Q).

Hence for any 6 € ©(Q’) and all sufficiently large d’s

o 4 ~
R((,0) > R(6s.,0) — — +r > R(6s.0).

EXERECISE 3.4. Consider the Model 1 of Section 3.4. Let 7 > 0.
(1) Show that the hard thresholding estimator 67 with the components

0,0 = Ly >7yY5. J=1,....4d,
is the solution of the minimization problem

d d
min § > (45 = 0)° +7° > _ L, 20)
OcRe | < X
j=1 j=1
(2) Show that the soft thresholding estimator fsr with the components
T

éj,ST: (1_> Yis ]:177d
+

‘yj‘
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is the solution of the minimization problem

d

d
min Z(yj —0;)% +27F Z 6]
OcR? =

j=1
Solution

1. Since

(yj — 0)* + 7°1g, 20y = ((yj —0;)* + f2> L T
P Lig 0+ yjLig,=or = 7 AYj,

it follows that for any 6 € R?
d d

d d
D=0+ L= ((yj —0;)* + %21{9#0}) >N PAyl
Jj=1 Jj=1

j=1 7=1

This lower bound is attained at the suggested estimator, since
i 2 | =2 _ ~9 2 ~2 5.2
(Wi = O5.11)" + T Lyg, rzoy = Wiusl>1 T+ Liyl<iyty = 7° Ay

2. As before, the minimization can be carried out componentwise. The scalar function
t = (t) == (y; — t)* + 27|t| is smooth, except for t = 0. Hence it’s local minima over R\ {0}
must satisfy

d .
@w(t) = —2(y; —t) + 27sign(t) = 0.
The latter has two solutions: ¢4 :=y; —7,if y; > 7, and t_ :=y; + 7, if y; < —7. For y; > 7

W(ts) =72+ 27(y; — 7) = yi — (y; —7)° <y = ¥(0)
and hence t; is the global minimum in the case y; > 7. Similarly, ¢_ is the minimum if y; < —7.
When |y;| < 7, the function 9 (t) doesn’t have any extrema on R\ {0} and hence the global
minimum is at the origin. To recap, the minimum is given at

. , N 7 7
07 = (yj — sign(y;) 7)1y, |57 = (1 - > Yil{ly,|>7 = <1 - > Y
|yj| \?JJ| +

as claimed.

EXERECISE 3.5. Consider Model 1 of Section 3.4. Using Stein’s lemma, show that the
statistic

d
J(F) =) (28 + 7 —y}) 1y, 127
=1

J

is an unbiased estimator of the risk of the soft thresholding estimator éST, up to the additive
term [|0]|? that does not depend on 7:

EoJ1(7) = EollOsr — 0]* — 0]

Based on this, suggest a data-driven choice of the threshold 7.
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Solution

On one hand, we have

d 2
]

Jj=1

29 Pollysl <7) + EHZ( — Tsign(y;) — 9j>21{|yj\z%} =

Jj=1 Jj=1
d

d
> 67 +Eg Y <y§- = 2(y; — 0;)7sign(y;) + 7* - 29jyj> Yl 127y =
i=1 j=1

d d

d
D0 +E0 ) (P =)y — 2D Bol6 — ) (i),
j=1 7=1 =t

where
f(u) = (u — %sign(u))1{|u|2;}, u € R.
Note that f(u) = [;'1 {]s|>73ds and hence f(u) is absolutely continuous and by the Stein lemma

Eo(0; — yj) f(yj) = —€*Eolyy, 57},

which verifies the claim.

Ideally we would choose 7 so that the risk or, equivalently, EgJ;(7) is minimized. This is
impractical, since such choice depends on the unknown 6 and hence it is not unreasonable to
choose 7 to minimize J1 (7). A close look reveals that J; doesn’t have a minimum, but its version
with the strict inequality in the indicator

d

N(F) = (287 + 7 — g Ly, 157
j=1

does and the optimal value 7* belongs to the data set {y1,...,yq}, since otherwise the value of
J1 can be decreased by setting it to the greatest y; less than 7*. Moreover, 7* does not exceed
the greatest y; smaller than V/2¢, which is checked by contradiction. These properties reduce
finding 7* to a simple computationally efficient search.

EXERECISE 3.6. Consider Model 1 of Section 3.4. Let 7 > 0.
(1) Show that the global hard thresholding estimator

Ocrr = 1>y
is a solution of the minimization problem
d

min < Y “(y; — 0;)% + 7120}
fcRd =



3. ASYMPTOTIC EFFICIENCY AND ADAPTATION 39

(2) Show that the global soft thresholding estimator

A T
OgsT = <1 - ) Y
lyll /) +

is a solution of the minimization problem

d
i —0;)* + 270
min ;(y; j)? + 2716
Solution
1. We have
d
D (=05 + 1{||e||¢0}—zyjl{||en 0y + (T +Z )1{\\0\#0} > yll* A7
7=1

The inequality is saturated by the choice 6 := 1{|IyHZT}y7 and the claim follows.
2. The function

d
9(8) =) (y; — ;) + 2|0
j=1
is differentiable on R?\ {0} and hence all of its extrema on this set satisfy Vg(6) = 0, i.e.

0

o (1) =

This means that the extremum 6* has the same direction as y, i.e. it has the form o = yt,
where t > 0 solves the scalar equation

.
(14 ) =1
(4 2

This equation doesn’t have a solution when ||y|| < 7 and has the unique solution t = 1 —

which yields

.
Tyl
otherwise. Hence when [|y|| < 7 the only possible minima is outside R?\ {0}, i.e. at the origin.
When ||y|| > 7 the only extremum of g(#) over R?\ {0} is

m:@_7>y
vl

This point is clearly a local minimum, since g(6) — oo as # — 0. To decide when it is a global
minimum, we shall compare the values of g(0) = ||y and

9(0") = llylI* — 200, y) + [16"]]* + 27]|6"|| =

o0 =2 (1= )+ (1 ||> b+ 2 (1= o) 1 =

9(0) = (lyll = 7)*.
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Hence for ||y|| > 7, the 6* is the global minimum, which verifies the suggested solution.

EXERECISE 3.7. Consider the Model 1 of Section 3.4 Define a global hard thresholding
estimator of the vector § = (01, ...,04) as follows

0 = 1{jy>r1Y;

where 7 = 2eV/d.
(1) Prove that for ||0]|? < £2d/4 we have

Pg(é =y) < exp(—cod),

where ¢y > 0 is an absolute constant.
Hint: Use the following inequality

d t2d
P Z(é}z —1)>td | <exp <_8> , te(0,1].

j=1

(2) Based on (1) prove that
Eollf — 0]1* < [16]]* + cre’d exp(—cod/2),

for ||0]|> < e2d/4 with an absolute constat ¢; > 0.

(3) Show that, for all # € R?,
Eoll6 — 0] < 9¢%d.

(4) Combine (2) and (3) to prove the oracle inequality
de?||0]”
de? 41612

where ¢y > 0 is an absolute constant.
Hint: min(a,b) < 2% for all a > 0, b > 0.

Eolld — 0] < ¢z + c1e?dexp(—cod/2), 6 € RY,

(5) We switch now to the Gaussian sequence model (3.10):
y; =0;+¢&, j>1.
Introduce the blocks B; of size card(B;) = j and define the estimators
O = L{jy|;y>myUk for k€ By, j=1,2,...J,
where 7; = 2ey/j, J > 1/¢2, and ), = 0 for k > Z}-le card(B;). Set 6 = (01,02, ...).
Prove the oracle inequality

Eqllf — 6> < cs min R(\,0) + cie®, 0 € lo(N),
E mo

n

where c3 > 0 and ¢4 > 0 are absolute constants.
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(6) Show that the estimator @ define in (5) is adaptive in the minimax sense on the family
of classes {O(5,Q),5 > 0,Q > 0}, i.e. for all sufficiently small € > 0,

sup  Eglld — 0] < C(8,Q)e™T, V3 >0,Q >0,
0O (8,Q)

where C'(3, Q) is a constant depending only on £ and Q.
Solution

1. For any 0 € R%,

. 0
Po(0 = y) = Po(llyll > 7) = Po(ll6 + =€l > 7) < Po(l6] + i€l > 7) = Po (Hél! ..

2evd — 1ev/d 9 d )
P (Hé” ” M) =Pe <H§‘2 = 4d> =Py 2(5]2 -1)> Zd < exp <_1258d> )

j=1

i.e. the claim holds with ¢y = 25/128.
2. By the Cauchy-Schwarz inequality and the bound from (1)

Eollf — 611 = 101*Po(llyll < 7) + Ealll*Lysry < 1617 + > VEaIENVPlyll > 7)

and the claim follows with ¢; := /3, since by the Jensen inequality

d d
Bollell* = EG(Z€?)2S dEp Y &4 =V/3d> < V/3d.
Jj=1 j=1

3. For § € RY,
Eoll0 — 01> = 10]°Pa(llyll < ) + Eally — 0*Lyysry < 101°Po(llyll < 7) + *d.
For ||0|| > 7, by the symmetry of the Gaussian distribution °
Po(llyll < 7) = Po(lle€ +0||* < 7%) = Po(lle€ + v||* < 7%) =

d
Po | (61 +1181)2 +22 Y6 <7 | <Py ([ex +16ll/<| < 7/) =
j=2

T/e=0ll/= T/e=0ll/e
/ p(z)dz < / p(z)de = (/e — 0] /¢).

—7/e=l0ll/¢ —o0

Hence

1017Pa(llyll < ) = l161*Ps(llyll < T)Lgjay<ry + 101Po(llyll < )1ppsry <
2+ sup [|0]°®(7/c — [|0]|/e) = 7° +&* sup 2*®(7/e — 7).

leln=r z>7/E

5y is the vector with all but one zero entries which equals ||| and ¢ and ® are the N(0,1) density and the

c.d.f. respectively
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A calculation shows that for d > 2, the supremum is attained at = := 7/ and hence
612PoClyll < 7) < 72+ 57

%7'2 and hence

. 3
Eqll6 — 6> < 572 +e2d<72d, 9eR? d>1,

For d = 1, the supremum is less than

as claimed.
Remark. Only a slightly worse bound is obtained in a simpler way:

Eoll0 — 011> < 2E0 )10 — yl|* + 2Eolly — 011 = 2E0ly[* Ly <ry + 26°Eqllé]* =
272 + 262E4||€|1> = 102d
4. Following the hint, for ||0]|? < £2d/4
Eoll6 — 0> < ||10]|> + c1e%d exp(—cod/2) < min (1611%, €%d) + c1e*d exp(—cod/2) <

2(|6]|%2%d
s g + ool 2).
On the other hand, for any 6 € R,
0 2 2 ~
Hy|2” + cre’dexp(—cod/2) > 9e%d > Eg||0 — 6]

and hence the claimed bound in fact holds with ¢y := 9 for any 6 € R )
5. Let 0(;) and ;) denote the restrictions of the sequences 6 and 6 to the block B; and

Nmax = Z}]:1 card(Bj) = 5J(J + 1). Recall that

card(B;)e? (|05
: ton — 0 2 — J J
glelﬁ H ]y(]) (J)H C&I‘d(Bj)EQ + ||9(]) ”2
and hence by the oracle inequality from (4),

Eqgllf — 0]° = 259”9 N—0plP+ D 6 <

k>dex

CQZmlnHtjy —9(])|| —I-Zcu-: card(Bj)e” Freard(B Z 07 =

j 1 k>Nmax

cQ

J
T
Co mf R(\,0) +01622j6 2 <

7j=1
ca (1 + 17) inf R, 0) + c2e®Ty + cie Z]e T = €3 inf  R(\,0) + cse?

E mon E mon
7j=1
where c3 := 2¢9 and

(o]
. 0
c4:=cCo+ g E je 27 < co.
j=1
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and the bound t holds® by Lemma 3.11 on page 175 [1], with n := 1 and T} := 1.
6.Pinsker’s weights belong to A,,.,. Hence for sufficiently small € > 0

min R(\,0) < R(¢,0) = C*e¥+1 (1 + o(1))

ENmon

and the claim follows from the bound, obtained in (5).

6Note that Lemma 3.11 is valid for any Nmax (Nmax = [1/52] is not assumed). In our case, Nmax J? = 1/54.
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