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1. Nonparametric Estimators

Exerecise 1.1.

(1) Argue that any symmetric kernel K is a kernel of order 1 whenever the function u 7→
uK(u) is integrable.

(2) Find the maximum order of the Silverman kernel:

K(u) =
1

2
exp

(
− |u|/

√
2
)

sin
(
|u|/
√

2 + π/4
)
.

Hint: Apply the Fourier transform and write the Silverman kernel as

K(u) =

∫ ∞
−∞

cos(2πtu)

1 + (2πt)4
dt.

Solution

Note that u 7→ |u|jK(u) is integrable for any j ≥ 1 and hence∫
umK(u)du = imK̂(m)(0), m ≥ 1,

where K̂(t) =
∫
eituK(u)du is the Fourier transform of K, given by

K̂(ω) =
2π

1 + ω4
.

Hence for m = 1,

K̂ ′(0) = − 4ω3

(1 + ω4)2 ∣∣ω:=0

= 0

which is also obvious by symmetry. Further, a calculation reveals that K̂ ′′(0) = K̂ ′′′(0) = 0,

while K̂(4)(0) = −2π · 24. Hence the Silverman kernel is of order 3.

Exerecise 1.2. Kernel estimator of the s-th derivative p(s) of a density p ∈ P(β, L), s < β,
can be defined as follows:

p̂n,s(x) =
1

nhs+1

n∑
i=1

K

(
Xi − x
h

)
.

Here h > 0 is a bandwidth and K : R 7→ R is a bounded kernel with support [−1, 1] satisfying
for ` = bβc: ∫

ujK(u)du = 0, j ∈ {0, ..., `} \ {s} (1.1)∫
usK(u)du = s!. (1.2)

(1) Prove that, uniformly over the class P(β, L), the bias of p̂n,s(x0) is bounded by chβ−s

and the variance of p̂n,s(x0) is bounded by c′

nh2s+1 , where c and c′ are appropriate
constants and x0 is a point in R.
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(2) Prove that the maximum of the MSE of p̂n,s(x0) over P(β, L) is of order O
(
n
− 2(β−s)

2β+1

)
as n→∞ if the bandwidth h := hn is chosen optimally.

(3) Let (ϕm) be the orthonormal Legendre basis on [−1, 1]. Show that the kernel

K(u) =
∑̀
m=0

ϕ(s)
m (0)ϕm(u)1{|u|≤1}

satisfies the conditions (1.1) and (1.2).

Solution

(1) The variance of the estimate p̂n,s(x0) is

Ep
(
p̂n,s(x0)− Epp̂n,s(x0)

)2
=

1

nh2(s+1)
Ep

(
K

(
X1 − x0

h

)
− EpK

(
X1 − x0

h

))2

≤

1

nh2(s+1)
EpK

2

(
X1 − x0

h

)
=

1

nh2s+1

∫
K2(v)p(x0 + vh)dv ≤ K2

max

1

nh2s+1
,

i.e. the claim holds with c′ := K2
max = maxx∈[−1,1] |K(x)|.

The bias term satisfies

b(x0) = Epp̂n,s(x0)− p(s)(x0) =
1

hs+1

∫
K

(
u− x0

h

)
p(u)du− p(s)(x0) =

1

hs

∫
K(v)p(x0 + vh)dv − p(s)(x0) =

1

hs

∫
K(v)

(
p(x0) + p(1)(x0)vh+ ...+

1

`!
p(`)(x0 + τvh)(vh)`

)
dv − p(s)(x0).

By the conditions (1.1) and (1.2),

|b(x0)| ≤ 1

`!

1

hs

∫ ∣∣∣K(v)
(
p(`)(x0 + τvh)− p(`)(x0)

)
(vh)`

∣∣∣dv ≤
1

`!

1

hs

∫
|K(v)|L|vh|β−`|vh|`dv ≤ L

`!
hβ−s

∫
|K(v)||v|βdv =: chβ−s.

(2) For any n ≥ 1 and h > 0,

sup
p∈P(β,L)

Ep
(
p̂n,s(x0)− p(x0)

)2
= b2(x0) + σ2(x0) ≤ ch2(β−s) +

c′

nh2s+1
.

The right hand side is minimized over h by

h∗n :=

(
c′(2s+ 1)

2c(β − s)

) 1
2β+1

n
− 1

2β+1

so that

sup
p∈P(β,L)

Ep
(
p̂n,s(x0)− p(x0)

)2 ≤ Cn− 2(β−s)
2β+1 .
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(3) Since ϕi is a complete orthonormal basis in L([−1, 1]), the functions uj satisfy

uj =

j∑
i=1

bjiϕi(u),

with some constants bji. Hence for j ∈ {0, ..., `},

∫
ujK(u)du =

∑̀
m=0

ϕ(s)
m (0)

j∑
i=1

bji

∫ 1

−1
ϕi(u)ϕm(u)du =

j∑
m=0

ϕ(s)
m (0)bjm =

ds

dus

( j∑
m=0

ϕm(u)bjm

)
u=0

=
( ds
dus

uj
)
u=0

.

The latter term vanishes both for j < s and j > s. For j = s,
∫
ujK(u)du = s! is obtained.

Exerecise 1.3. Consider the estimator of the two dimensional kernel density p(x, y) from
the i.i.d. sample (X1, Y1), ..., (Xn, Yn)

p̂n(x, y) =
1

nh2

n∑
i=1

K

(
Xi − x
h

)
K

(
Yi − y
h

)
, (x, y) ∈ R2.

Assume that the density p belongs to the class of all probability densities on R2 satisfying the
Holder condition∣∣p(x, y)− p(x′, y′)

∣∣ ≤ L(|x− x′|β + |y − y′|β
)
, (x, y), (x′y′) ∈ R2,

with given constants 0 < β ≤ 1 and L > 0. Let (x0, y0) be a fixed point in R2. Derive the upper
bounds for the bias and the variance of p̂n(x0, y0) and an upper bound for the mean squared risk
at (x0, y0). Find the minimizer h = h∗n of the upper bound of the risk and the corresponding
rate of convergence.

Solution

The variance is given by

σ2(x0, y0) = Ep
(
p̂n(x0, y0)− Epp̂(x0, y0)

)2
=

1

n2h4
Ep

(
n∑
i=1

K

(
Xi − x
h

)
K

(
Yi − y
h

)
− EpK

(
Xi − x
h

)
K

(
Yi − y
h

))2

=

≤ 1

n

1

h4

∫ ∫
K2

(
u− x0

h

)
K2

(
v − y0

h

)
p(u, v)dudv =

1

n

1

h2

∫ ∫
K2(u)K2(v)p(x0 + uh, y0 + vh)dudv ≤ 1

n

1

h2
pmax

(∫
K2(u)du

)2

=: c′
1

n

1

h2



6

where p(x, y) ≤ pmax is assumed (later we shall see that under the assumptions of the problem,
such pmax indeed exists). The bias term can be bounded as follows

b(x0, y0) = Epp̂n(x0, y0)− p(x0, y0) =
1

h2

∫ ∫
K

(
u− x0

h

)
K

(
v − y0

h

)
p(u, v)dudv − p(x0, y0) =∫ ∫

K(u)K(v)
(
p(x0 + uh, y0 + vh)− p(x0, y0)

)
dudv.

Using the Holder property we get

|b(x0, y0)| ≤
∫ ∫ ∣∣∣K(u)K(v)

∣∣∣L(|uh|β + |vh|β
)
dudv =

hβ
∫ ∫ ∣∣∣K(u)K(v)

∣∣∣L(|u|β + |v|β
)
dudv =: chβ.

Note that if K is taken to be bounded, then |Epp̂n(x0, y0)| ≤ K2
max and hence |p(x0, y0)| ≤

K2
max + c =: pmax for h < 1. Hence the MSE is given by

MSE(x0, y0) = b2(x0, y0) + σ2(x0, y0) ≤ c2h2β + c′
1

n

1

h2
,

which is optimized by

h∗n := Cn
− 1

2β+2

where C is a constant. This gives

MSE(x0, y0) = O
(
n
− 2β

2β+2

)
, n→∞.

Exerecise 1.4. Define the LP (`) estimators of the derivatives f (s)(x), s = 1, ..., ` by

f̂ns(x) =
(
U (s)(0)

)>
θ̂n(x)h−s,

where U (s)(x) is the vector whose coordinates are the s-th derivatives of the corresponding
coordinates of U(x).

(1) Prove that if Bn(x) > 0, then the estimator f̂ns(x) is linear and it reproduces the s-th

derivative of polynomials of degree less than or equal `, i.e. if f̂ns(x) is applied to

Yi := Q(Xi), i = 1, ..., n where Q is a polynomial with deg(Q) ≤ `, it yields Q(s)(x).

(2) Prove that, under the assumptions similar to the case s = 0, the maximum of the MSE

of f̂ns(x) over Σ(β, L) is of order O
(
n
− 2(β−s)

2β+1

)
as n → ∞ if the bandwidth is chosen

optimally.

Solution

1. If Bn(x) > 0, then

θ̂n(x) =
n∑
i=1

Yi
1

nh
B−1
n (x)U

(
Xi − x
h

)
K

(
Xi − x
h

)
,
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and hence

f̂ns(x) =
(
U (s)(0)

)>
θ̂n(x)h−s =

n∑
i=1

YiW
s∗
ni (x),

with

W s∗
ni (x) =

1

nh1+s

(
U (s)(0)

)>
B−1
n (x)U

(
Xi − x
h

)
K

(
Xi − x
h

)
i.e. the estimator f̂ns is linear.

If Q is a polynomial of order `, then

Q(Xi) = Q(x) +Q′(x)(Xi − x) + ...+
1

`!
Q(`)(x)(Xi − x)` = q(x)>U

(Xi − x
h

)
,

where

q(x) =
(
Q(x), Q′(x)h, ..., Q(`)h`

)
.

Consequently,

θ̂n(x) =argminθ∈R`+1

n∑
i=1

(
Q(Xi)− θ>U

(Xi − x
h

))2
K
(Xi − x

h

)
=

argminθ∈R`+1

n∑
i=1

(
(q(x)− θ)>U

(Xi − x
h

))2
K
(Xi − x

h

)
= q(x).

Note that

U
(s)
j (x) =

ds

dxs
1

j!
xj =

{
0 s > j

1
(j−s)!x

j−s s ≤ j
, j = 1, ..., `

and hence the s-th entry of the vector U
(s)
j (0) is 1 and all the rest are zeros.

Hence if f̂ns(x) is applied to Yi = Q(Xi) it yields

f̂ns(x) =
(
U (s)(0)

)>
θ̂n(x)h−s =

(
U (s)(0)

)>
q(x)h−s = Q(s)(x).

In particular,
n∑
i=1

(Xi − x
h

)k
W s∗
ni (x) =

{
0 k ∈ {0, ..., `} \ {s}
s! k = s

(1.3)

2. The weights W s∗
ni (x) satisfy the properties

(i) max1≤i≤n
∣∣W s∗

ni (x)
∣∣ ≤ C∗ 1

nh1+s

(ii)
∑n

i=1

∣∣W s∗
ni (x)

∣∣ ≤ C∗ 1
hs

(iii) W s∗
ni (x) = 0 whenever |Xi − x| > h
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with a constant C∗ and h ≥ 1
2n . Indeed,

max
1≤i≤n

∣∣W s∗
ni (x)

∣∣ =

1

nh1+s
max

1≤i≤n

∣∣∣∣(U (s)(0)
)>
B−1
n (x)U

(
Xi − x
h

)
K

(
Xi − x
h

)∣∣∣∣ ≤
1

nh1+s
max

1≤i≤n

∥∥∥∥B−1
n (x)U

(
Xi − x
h

)
K

(
Xi − x
h

)∥∥∥∥1{|Xi−x|≤h} ≤

1

nh1+s

Kmax

λ0
max

1≤i≤n

∥∥∥∥U (Xi − x
h

)∥∥∥∥1{|Xi−x|≤h} ≤

1

nh1+s

Kmax

λ0
max

1≤i≤n
‖U (1)‖ ≤ 2

nh1+s

Kmax

λ0
.

Similarly,
n∑
i=1

∣∣W s∗
ni (x)

∣∣ =

1

nh1+s

n∑
i=1

∣∣∣∣(U (s)(0)
)>
B−1
n (x)U

(
Xi − x
h

)
K

(
Xi − x
h

)∣∣∣∣1{|Xi−x|≤h} ≤
1

h1+s

Kmax

λ0
‖U (1)‖ 1

n

n∑
i=1

1{|Xi−x|≤h} ≤

1

h1+s

Kmax

λ0
‖U (1)‖ a0 max

(
2h,

1

n

)
≤ 1

hs
4Kmaxa0

λ0
,

and (i) and (ii) hold with e.g. C∗ := 2Kmax
λ0

(1 + 2a0). The claim (iii) is obvious.
Further,

Ef

(
f̂ns(x)− f (s)(x)

)2
=

Ef

(
f̂ns(x)− Ef f̂ns(x)

)2
+
(
Ef f̂ns(x)− f (s)(x)

)2
= σ2(x) + b2(x).

For the variance term we have

σ2(x) = Ef

( n∑
i=1

ξiW
s∗
ni (x)

)2
≤ σ2

max

n∑
i=1

(
W s∗
ni (x)

)2
≤ σ2

maxC
2
∗

1

nh1+2s
:= q1

1

nh1+2s
.

The bias term can be bounded as follows:

b(x) = Ef f̂ns(x)− f (s)(x) =

n∑
i=1

f(Xi)W
s∗
ni (x)− f (s)(x) =

n∑
i=1

(
f(x) + f ′(x)(Xi − x) + ...+

1

`!
f `
(
x+ τi(Xi − x)

)
(Xi − x)`

)
W s∗
ni (x)− f (s)(x) =

1

`!

n∑
i=1

(
f `
(
x+ τi(Xi − x)

)
− f `

(
x
))

(Xi − x)`W s∗
ni (x),
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where |τi| < 1 and we used (1.3). Hence

|b(x)| ≤ 1

`!

n∑
i=1

∣∣∣f `(x+ τi(Xi − x)
)
− f `

(
x
)∣∣∣|Xi − x|`|W s∗

ni (x)| ≤

L

`!

n∑
i=1

|x−Xi|β|W s∗
ni (x)|1{|x−Xi|≤h} ≤

LC∗
`!

hβ−s =: q2h
β−s.

Assembling all parts together we obtain

sup
x∈[0,1]

Ef

(
f̂ns(x)− f (s)(x)

)2
≤ q1

1

nh1+2s
+ q2

2h
2(β−s).

The optimal choice of the bandwidth is h∗n := cn
− 1

2β+1 for which we get

sup
f∈Σ(β,L)

sup
x∈[0,1]

Ef

(
f̂ns(x)− f (s)(x)

)2
≤ Cn−

2(β−s)
2β+1

with a constant C > 0, for all sufficiently large n.

Exerecise 1.5. Show that the rectangular kernel

K(u) =
1

2
I(|u| ≤ 1)

and the biweight kernel

K(u) =
15

16
(1− u2)21{|u|≤1}

are inadmissible.

Solution

The Fourier transform of the rectangular kernel is

K̂(ω) =
1

2

∫ 1

−1
eixωdx =

eiω − eiω

2iω
=

sin(ω)

ω
.

This is a continuous function (when extended to zero by continuity) and K̂(3π/2) = −2π/3.
Hence the kernel is inadmissible by Proposition 1.8.

For the biweight kernel

K̂(ω) =
15

ω5

(
(3− ω2) sinω − 3ω cosω

)
.

The kernel is inadmissible by continuity, since K̂(2π) < 0.

Exerecise 1.6. Let K ∈ L2(R) be symmetric and such that K̂ ∈ L∞(R). Show that

(1) the condition

∃A <∞ : ess sup
t∈R\{0}

∣∣1− K̂(t)
∣∣

|t|β
≤ A, (1.4)
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is equivalent to

∃t0, A0 <∞ : ess sup
0<|t|<|t0|

|1− K̂(t)|
|t|β

≤ A0. (1.5)

(2) for integer β the condition (1.4) is satisfied if K is a kernel of order β − 1 and∫
|u|β|K(u)|du <∞

Solution

1. Suppose (1.5) holds, then

ess sup
t∈R\{0}

∣∣1− K̂(t)
∣∣

|t|β
≤ ess sup

0<|t|<|t0|

|1− K̂(t)|
|t|β

+ ess sup
|t|≥|t0|

∣∣1− K̂(t)
∣∣

|t|β
≤

A0 +
1 + ‖K̂‖∞
|t0|β

,

which verifies (1.4). The other direction is obvious.

2. If
∫
|u|βK(u)du <∞, the Fourier transform is β times differentiable at zero and K̂(i)(0) =

0 for i = 1, ..., β − 1, since K is of order β − 1. Hence,

K̂(t) = 1 +
1

β!
K̂(β)(τt)tβ,

where τ ∈ [−1, 1]. Hence

sup
|t|≤1

|1− K̂(t)|
|t|β

≤ 1

β!
sup

s∈[−1,1]
|K̂(β)(s)| <∞,

where we used the fact that K̂(t) is bounded on [−1, 1], being continuous on it. By the Riemann-

Lebesgue lemma, limt→∞ K̂(t) = 0 and by continuity K̂ is bounded. The claim now follows from
1.

Exerecise 1.7. Let P be the class of all probability densities p on R such that∫
exp(α|ω|r)|ϕ(ω)|2dω ≤ L2,

where α > 0, r > 0, L > 0 are given constants and ϕ is the Fourier transform of p. Show
that for any n ≥ 1 the kernel density estimator p̂ with the sinc kernel and appropriately chosen
bandwidth h = hn satisfies

sup
p∈P

Ep

∫ (
p̂n(x)− p(x)

)2
dx ≤ C (log n)1/r

n
,

where C > 0 is a constant dependng only on r, L and α.

Solution
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Recall that

2πMISE = 2πEp

∫ (
p̂n(x)− p(x)

)2
dx =

∫ ∣∣1− K̂(hω)
∣∣2|ϕ(ω)|2dω+

1

n

∫
|K̂(hω)|2dω − 1

n

∫
|K̂(hω)|2|ϕ(ω)|2dω.

For the sinc kernel K(u) = sinu
πu with K̂(ω) = 1{|ω|≤1}, the latter gives

2πMISE =

∫
1{|ω|>1/h}|ϕ(ω)|2dω +

1

n

∫
1{|ω|≤1/h}dω −

1

n

∫
1{|ω|≤1/h}|ϕ(ω)|2dω =∫

R\[−1/h,1/h]
|ϕ(ω)|2dω +

2

nh
− 1

n

∫ 1/h

−1/h
|ϕ(ω)|2dω ≤∫

R\[−1/h,1/h]
e−α|ω|

r
eα|ω|

r |ϕ(ω)|2dω +
2

nh
≤

e−α|1/h|
r

∫
R\[−1/h,1/h]

eα|ω|
r |ϕ(ω)|2dω +

2

nh
≤ e−α|1/h|rL2 +

2

nh
.

For hn :=
α1/r

(log n)1/r
we get the bound

MISE ≤ 1

2π

(
1

n
L2 +

1

α1/r

2(log n)1/r

n

)
≤ C (log n)1/r

n
,

with an obvious constant C.

Exerecise 1.8. Let Pa, where a > 0, be the class of all probability densities p on R such
that the support of the characteristic function ϕ is included in a given interval [−a, a]. Show
that for any n ≥ 1, the kernel density estimator p̂n with the sinc kernel and appropriately chosen
bandwidth h satisfies

sup
p∈Pa

∫ (
p̂n(x)− p(x)

)2
dx ≤ a

πn
.

This example, due to Ibragimon and Hasminskii (1983), shows that it is possible to estimate
the density with rate

√
n on sufficiently small nonparametric classes of functions.

Solution

As in the previous problem,

2πMISE ≤
∫
R\[−1/h,1/h]

|ϕ(ω)|2dω +
2

nh
.

The claim follows with the choice h := 1
a , since ϕ(ω) = 0 for |ω| > a.

Exerecise 1.9. Let (X1, ..., Xn) be an i.i.d. sample from a density p ∈ L2[0, 1].

(1) Show that ĉj are unbiased estimators of the Fourier coefficients cj =
∫ 1

0 p(x)ϕj(x)dx
and find the variance of ĉj .
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(2) Express the MISE of the estimator p̂n,N as a function of p and the sequence (ϕj).
Denote it by MISE(N).

(3) Derive an unbiased risk estimation method. Show that

Ep
(
Ĵ(N)

)
= MISE(N)−

∫
p2,

where

Ĵ(N) =
1

n− 1

N∑
j=1

(
2

n

n∑
i=1

ϕ2
j (Xi)− (n+ 1)ĉ2

j

)
.

Propose the data driven selector of N .

(4) Suppose now that (ϕj) is the trigonometric basis. Show that the MISE of p̂n,N is
bounded by

N + 1

n
+ ρN ,

where ρN =
∑∞

j=N+1 c
2
j . Use this bound to prove that uniformly over the class of all

the densities p belonging to the Sobolev class of periodic functions W per(β, L), β > 0

and L > 0, the MISE of p̂n,N is of the order O
(
n
− 2β

2β+1

)
for an appropriate choice of

N = Nn.

Solution

1. Clearly, ĉj are unbiased:

Epĉj = Epϕj(X1) = cj

and

varp(ĉj) = Ep(ĉj − cj)2 =
1

n
Ep
(
ϕj(X1)− cj

)2
=

1

n

(
Epϕ

2
j (X1)− c2

j

)
=

1

n

(∫
ϕ2
jp−

(∫
ϕjp
)2)

2. Note that

Ep̂n,N (x) =
N∑
j=1

cjϕj(x)

and

varp

(
p̂n,N (x)

)
= Ep

( N∑
j=1

(ĉj − cj)ϕj(x)
)2
.

Hence

MISE(N) = Ep

∫ ( N∑
j=1

(ĉj − cj)ϕj
)2

+

∫ ( N∑
j=1

cjϕj −
∞∑
j=1

cjϕj

)2
=

N∑
j=1

Ep(ĉj − cj)2 +

∞∑
j=N+1

c2
j =

1

n

N∑
j=1

(
Epϕ

2
j (X1)− c2

j

)
+

∞∑
j=N+1

c2
j
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3. Following the suggestion

Ep
(
Ĵ(N)

)
=

1

n− 1

N∑
j=1

(
2

n

n∑
i=1

Epϕ
2
j (Xi)− (n+ 1)Epĉ

2
j

)
=

1

n− 1

N∑
j=1

(
2Epϕ

2
j (X1)− (n+ 1)

( 1

n

(
Epϕ

2
j (X1)− c2

j

)
+ c2

j

))
=

1

n

N∑
j=1

(
Epϕ

2
j (X1)− (n+ 1)c2

j

)
and hence

Ep
(
Ĵ(N)

)
−MISE(N) =

1

n

N∑
j=1

(
Epϕ

2
j (X1)− (n+ 1)c2

j

)
− 1

n

N∑
j=1

(
Epϕ

2
j (X1)− c2

j

)
−

∞∑
j=N+1

c2
j =

−
∞∑
j=1

c2
j = −

∫
p2,

where we used Parseval’s identity.
Since the same N maximizes both MISE(N) and Ep

(
Ĵ(N)

)
, it makes sense to select

N̂ := argminN≥1J(N)

and to plug it into p̂n,N .
4. Recall that for even j

ϕj(x) =
√

2 cos(πjx),

and hence

ϕ2
j (x) = 2

1 + cos(2πjx)

2
= 1 +

1√
2
ϕ2j(x).

Similarly, for odd j

ϕj(x) =
√

2 sin(π(j − 1)x),

and

ϕ2
j (x) = 2

1− cos(2π(j − 1)x)

2
= 1− 1√

2
ϕ2(j−1)(x).

Hence

Epϕ
2
j (X1) = 1 +

1√
2

{
c2j j is even

−c2(j−1) j is odd

Consequently, e.g. for even N

MISE(N) =
1

n

N∑
j=1

(
Epϕ

2
j (X1)− c2

j

)
+ ρN =

N

n
+

1√
2
c2N −

1

n

N∑
j=1

c2
j + ρN ≤

N + 1

n
+ ρN ,

The same bound holds for odd N ’s.
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If p ∈W per(β, L), then the sequence of Fourier coefficients (cj) belong to the Sobolev ellipsoid

Θ(β,Q) with Q = L2/π2β and hence

ρN =
∞∑

j=N+1

c2
j ≤

1

a2
N+1

∞∑
j=N+1

c2
ja

2
j ≤ QN−2β.

Now the choice Nn := bαn
1

2β+1 c with a constant α > 0 yields the claimed upper bound.

Exerecise 1.10. Consider the nonparametric regression model under Assumption (A) and
suppose that f belongs to the Sobolev class of periodic functions W per(β, L) with β ≥ 2. The
aim of this exercise is to study the weighted projection estimator

f̂n,λ(x) =

n∑
j=1

λj θ̂jϕj(x),

where λj ’s are real constants (weights), θ̂j = 1
n

∑n
i=1 Yiϕj(Xi) are the Fourier coefficients esti-

mates.

(1) Prove that the risk MISE of f̂n,λ is minimized with respect to λj ’s by 1

λ∗j :=
θj(θj + αj)

ε2 + (θj + αj)2
, j = 1, ..., n

where ε2 = σ2
ξ/n (λ∗j ’s are the weights corresponding to the weighted projection oracle).

(2) Check that the corresponding value of the risk is

MISE(λ∗) =
n∑
j=1

ε2θ2
j

ε2 + (θj + αj)2
+ ρn,

where ρn =
∑∞

j=n+1 θ
2
j .

(3) Prove that
n∑
j=1

ε2θ2
j

ε2 + (θj + αj)2
=
(

1 + o(1)
) n∑
j=1

ε2θ2
j

ε2 + θ2
j

.

(4) Prove that

ρn =
(
1 + o(1)

) ∞∑
j=n+1

ε2θ2
j

ε2 + θ2
j

.

(5) Deduce from the above results that

MISE(λ∗) = A∗n
(
1 + o(1)

)
, n→∞,

1recall that

αj =
1

n

n∑
i=1

f(i/n)ϕj(i/n)−
∫
fϕj .
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where

A∗n =
∞∑
j=1

ε2θ2
j

ε2 + θ2
j

.

(6) Check that2

A∗n < min
N≥1

An,N .

Solution

1. Recall that for 1 ≤ j ≤ n− 1 (an in fact for j = n as well, check!)

Eθ̂j = θj + αj , E
(
θj − θ̂j

)2
= σ2

ξ/n+ α2
j = ε2 + α2

j .

Hence

MISE =E

∫ ( n∑
j=1

λj θ̂jϕj(x)−
∞∑
j=1

θjϕj(x)
)2
dx =

E

∫ ( n∑
j=1

(
λj θ̂j − θj

)
ϕj(x)−

∞∑
j=n+1

θjϕj(x)
)2
dx =

n∑
j=1

E
(
λj θ̂j − θj

)2
+

∞∑
j=n+1

θ2
j .

Since

E
(
λj θ̂j − θj

)2
= E

(
λj(θ̂j − θj) + (λj − 1)θj

)2
=

λ2
jE(θ̂j − θj)2 + 2λjE(θ̂j − θj)(λj − 1)θj + (λj − 1)2θ2

j =

λ2
j

(
ε2 + α2

j

)
+ 2λjαj(λj − 1)θj + (λj − 1)2θ2

j =

λ2
jε

2 +
(
λjαj + (λj − 1)θj

)2
,

we obtain

MISE(λ) =

n∑
j=1

(
λ2
jε

2 +
(
λjαj + (λj − 1)θj

)2
)

+ ρn.

The summands in the first term are parabolas, minimized by

λ∗j =
θj(αj + θj)

ε2 + (αj + θj)2
.

2. Direct calculation shows that the corresponding MISE is given by

MISE(λ∗) =
n∑
j=1

ε2θ2
j

ε2 + (αj + θj)2
+ ρn

2An,N =
σ2
ξN

n
+ ρN is the leading term (for β > 1 in the upper bound for the MISE of the simple projection

estimator we studied in class.)
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3. We have

ε2θ2
j

ε2 + (αj + θj)2
=

ε2θ2
j

ε2 + θ2
j

ε2 + θ2
j

ε2 + (αj + θj)2
=

ε2θ2
j

ε2 + θ2
j

(
1 +

θ2
j − (αj + θj)

2

ε2 + (αj + θj)2

)
=

ε2θ2
j

ε2 + θ2
j

(
1− αj(αj + 2θj)

ε2 + (αj + θj)2

)
.

Further, ∣∣∣∣ αj(αj + 2θj)

ε2 + (αj + θj)2

∣∣∣∣ =

∣∣∣∣∣ 2αj(αj + θj)

ε2 + (αj + θj)2
−

α2
j

ε2 + (αj + θj)2

∣∣∣∣∣ ≤ |αj/ε|+ |αj/ε|2
where we used the elementary inequality |x|

ε2+x2
≤ 1

2
1
ε , x ∈ R. Recall that for θ ∈ Θ(β,Q) with

β > 1/2

max
1≤j≤n−1

|αj | ≤ Cβ,Qn−β+1/2,

and that ε = σ2
ξ/n. Hence for β ≥ 2,

|αj/ε|+ |αj/ε|2 ≤ C1n
−β+1,

for all n, large enough. Consequently,∣∣∣∣∣∣
n∑
j=1

ε2θ2
j

ε2 + (αj + θj)2
−

n∑
j=1

ε2θ2
j

ε2 + θ2
j

∣∣∣∣∣∣ ≤ C1n
−β+1

n∑
j=1

ε2θ2
j

ε2 + θ2
j

,

which verifies the claim for β > 1.
4. Note that

θ2
j =

ε2θ2
j

ε2 + θ2
j

+ θ2
j

θ2
j

ε2 + θ2
j

.

Since
∑∞

j=1 θ
2
ja

2
j ≤ Q <∞, the sequence rj := θ2

ja
2
j converges to zero as j →∞. Hence

∞∑
j=n+1

θ2
j

θ2
j

ε2 + θ2
j

=
1

ε2

∞∑
j=n+1

rj
a2
j

ε2θ2
j

ε2 + θ2
j

≤

1

ε2

supj≥n+1 rj

a2
n+1

∞∑
j=n+1

ε2θ2
j

ε2 + θ2
j

≤ C 1

n−1

supj≥n+1 rj

(n+ 1)2β

∞∑
j=n+1

ε2θ2
j

ε2 + θ2
j

.

Hence for β ≥ 1,∣∣∣∣∣∣ρn −
∞∑

j=n+1

ε2θ2
j

ε2 + θ2
j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

j=n+1

θ2
j −

∞∑
j=n+1

ε2θ2
j

ε2 + θ2
j

∣∣∣∣∣∣ =

∞∑
j=n+1

θ2
j

θ2
j

ε2 + θ2
j

≤ o(1)

∞∑
j=n+1

ε2θ2
j

ε2 + θ2
j

,

as claimed.
5. Obviously follows from (3) and (4).
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6. Using the identity y2 = y2x2

y2+x2
+ y4

y2+x2
, we get

min
N≥1

An,N = min
N≥1

(σ2
ξN

n
+ ρN

)
= min

N≥1

 N∑
j=1

ε2 +
∞∑

j=N+1

θ2
j

 =

min
N≥1

 N∑
j=1

( ε2θ2
j

ε2 + θ2
j

+
ε4

ε2 + θ2
j

)
+

∞∑
j=N+1

( ε2θ2
j

ε2 + θ2
j

+
θ4
j

ε2 + θ2
j

) =

∞∑
j=1

ε2θ2
j

ε2 + θ2
j

+ min
N≥1

 N∑
j=1

ε4

ε2 + θ2
j

+

∞∑
j=N+1

θ4
j

ε2 + θ2
j

 > A∗n.

Exerecise 1.11. Consider the nonparametric regression model under the Assumption (A).

The smoothing spline estimator f̂spn (x) is defined as a solution of the following minimization
problem

f̂spn = argminf∈W

(
1

n

n∑
i=1

(
Yi − f(Xi)

)2
+ κ

∫ 1

0

(
f ′′(x)

)2
dx

)
,

where κ is the smoothing parameter and W is one of the sets of functions defined below.

(1) First suppose that W is the set of all the functions : [0, 1] 7→ R such that f ′ is absolutely

continuous. Prove that the estimator f̂spn reproduces polynomials of degree ≤ 1 if n ≥ 2

(2) Suppose next that W is the set of all the functions f : [0, 1] 7→ R such that (i) f ′

is absolutely continuous and (ii) the periodicity condition is satisfied: f(0) = f(1),
f ′(0) = f ′(1). Prove that the minimization problem is equivalent to

min
(bj)

∞∑
j=1

(
− 2θ̂jbj + b2j (κπ

4a2
j + 1)

(
1 +O(n−1)

))
,

where bj are the Fourier coefficients of f , the term O(n−1) is uniform in (bj) and aj are
defined as for the Sobolev ellipsoid.

(3) Assume now that the term O(n−1) in the latter minimization problem is negligible.
Formally replacing it by zero, find the solution and conclude that the periodic spline
estimator is approximately equal to a weighted projection estimator

f̂spn (x) ≈
∞∑
j=1

λ∗j θ̂jϕj(x),

with the weights λ∗j written explicitly.
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(4) Use (3) to show that for sufficiently small κ the spline estimator f̂spn is approximated
by the kernel estimator

fn(x) =
1

nh

n∑
i=1

YiK
(Xi − x

h

)
,

where h = κ1/4 and K is the Silverman kernel.

Solution

1. Let Q be the space of linear polynomials, then

min
f∈W

(
1

n

n∑
i=1

(
Yi − f(Xi)

)2
+ κ

∫ 1

0

(
f ′′(x)

)2
dx

)
≤

min
f∈Q

(
1

n

n∑
i=1

(
Yi − f(Xi)

)2
+ κ

∫ 1

0

(
f ′′(x)

)2
dx

)
=

min
a,b∈R

1

n

n∑
i=1

(
Yi − b− aXi

)2
.

If Yi = b′ + a′Xi and n ≥ 2, the latter expression vanishes and the minimizing constants are
exactly a′ and b′, i.e. f̂spn (x) = b′ + a′x as claimed.

2. In this case, f(x) =
∑∞

j=1 bjϕj(x), where (ϕj) is the trigonometric Fourier basis. Note
that for even j

d2

dx2
ϕj(x) =

d2

dx2
cos
(

2π
j

2
x
)

= −π2j2ϕj(x),

and for odd j
d2

dx2
ϕj(x) =

d2

dx2
sin
(

2π
j − 1

2
x
)

= −π2(j − 1)2ϕj(x),

i.e. for any j ≥ 0
d2

dx2
ϕj(x) = −π2ajϕj(x),

where aj ’s are as in the definition of the Sobolev ellipsoid, corresponding to β = 2.
Hence, if we assume that f ′′ is square integrable3, by the Parseval identity∫ 1

0
(f ′′(x))2dx =

∞∑
j=1

(
π2ajbj

)2
.

Further,

1

n

n∑
i=1

(
Yi − f(Xi)

)2
=

1

n

n∑
i=1

Y 2
i −

2

n

n∑
i=1

Yif(Xi) +
1

n

n∑
i=1

f2(Xi).

For the design Xi = i/n,

1

n

n∑
i=1

Yif(Xi) =
1

n

n∑
i=1

Yi

∞∑
j=1

bjϕj(i/n) =

∞∑
j=1

bj θ̂j .

3if f ′′ is not square integrable, then the original minimization problem is ill defined
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Also

1

n

n∑
i=1

f2(Xi)−
∫ 1

0
f2 =

∞∑
j=1

∞∑
k=1

bjbk
1

n

n∑
i=1

ϕj(i/n)ϕk(i/n)−
∞∑
j=1

b2j =

∞∑
j=n

∞∑
k=n

bjbk
1

n

n∑
i=1

ϕj(i/n)ϕk(i/n)−
∞∑
j=n

b2j ,

and applying the Cauchy Schwarz inequality, we get

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)−
∫ 1

0
f2

∣∣∣∣∣ ≤ 2
1

n

n∑
i=1

( ∞∑
j=n

|bj |
)2

+

∞∑
j=n

b2j ≤

2

∞∑
j=1

b2ja
2
j

∞∑
j=n

1

a2
j

+
1

a2
n

∞∑
j=1

b2ja
2
j =

∞∑
j=1

b2ja
2
j

2

∞∑
j=n

1

a2
j

+
1

a2
n

 ≤ Cn−3
∞∑
j=1

b2ja
2
j ,

where C is an absolute constant.
Assembling all parts together, we get

1

n

n∑
i=1

(
Yi − f(Xi)

)2
+ κ

∫ 1

0

(
f ′′(x)

)2
dx =

1

n

n∑
i=1

Y 2
i − 2

∞∑
j=1

bj θ̂j +
∞∑
j=1

b2j +O(n−3)
∞∑
j=1

b2ja
2
j + κπ4

∞∑
j=1

b2ja
2
j ,

which verifies the claim.
3. Note that the expression −2θ̂jbj + b2j (κπ

4a2
j + 1) is minimized by

b∗j =
θ̂j

κπ4a2
j + 1

and hence the approximate equality holds with

λ∗j =
1

κπ4a2
j + 1

.
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4. Suppose that h := 1
2κ

1/4 is small enough to justify the approximation:

fn(x) =
1

nh

n∑
i=1

YiK

(
Xi − x
h

)
=

1

nh

n∑
i=1

Yi

∫
R

cos
(

2πtXi−xh

)
1 + (2πt)4

dt ≈

1

nh

n∑
i=1

Yi

∞∑
j=−∞,j 6=0

cos
(

2πhjXi−xh

)
1 + (2πhj)4

h =
1

n

n∑
i=1

Yi

∞∑
j=−∞,j 6=0

cos
(

2πj(Xi − x)
)

1 + (2πhj)4
=

1

n

n∑
i=1

Yi

∞∑
j=−∞,j 6=0

cos(2πjXi) cos(2πjx) + sin(2πjXi) sin(2πjx)

1 + (2πhj)4
=

1

n

n∑
i=1

Yi

∞∑
j=1

2 cos(2πjXi) cos(2πjx) + 2 sin(2πjXi) sin(2πjx)

1 + (2πhj)4
=

1

n

n∑
i=1

Yi

∞∑
j=1

ϕ2j(Xi)ϕ2j(x) + ϕ2j+1(Xi)ϕ2j+1(x)

1 + (2πhj)4
=

∞∑
j=1

θ̂2jϕ2j(x) + θ̂2j+1ϕ2j+1(x)

1 + (2πhj)4
=

∞∑
j=1

θ̂jϕj(x)

1 + π4κa2
j

= f̂spn (x).

2. Lower bounds on the minimax risk

Exerecise 2.1. Give an example of measures P0 and P1 such that pe,1 is arbitrarily close
to 1.

Hint: consider two discrete measures on {0, 1}.

Solution

Let X ∼ Ber(p) under P0 and X ∼ Ber(q) under P1. Since X ∈ {0, 1}, the only possible
(non-randomized) tests are ψ′(X) = X and ψ′′(X) = 1−X. For the test ψ′(X) = X, we have

P0(ψ′(X) = 1) = P0(X = 1) = p, P1(ψ′(X) = 0) = 1− q

and

P0(ψ′′(X) = 1) = P0(X = 0) = 1− p, P1(ψ′′(X) = 0) = P1(X = 1) = q.

Hence

pe,1 = inf
ψ

(
P0(ψ = 1) ∨ P1(ψ = 0)

)
= min

(
p ∨ (1− q), (1− p) ∨ q

)
,

which approaches 1 as e.g. both p and q approach 1.

Exerecise 2.2. Let P and Q be two probability measures with densities p and q w.r.t. the
Lebesgue measure on [0, 1] such that

0 < c1 ≤ p(x), q(x) < c2 <∞, ∀x ∈ [0, 1].
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Show that the Kullback divergence K(P,Q) is equivalent to the squared L2 distance between
the two densities, i.e.

k1

∫
(p− q)2 ≤ K(P,Q) ≤ k2

∫
(p− q)2

where k1, k2 are constants (independent of p and q). The same true for the χ2 divergence.

Solution

Since both densities are bounded,

0 < c1/c2 ≤ q(x)/p(x) ≤ c2/c1 <∞.
Since 1 ∈ [c1/c2, c2/c1], by the Taylor theorem

log x = x− 1− 1

2

1

ξ2
(x− 1)2, x ∈ [c1/c2, c2/c1]

where ξ is a point, possibly dependent on x, such that |ξ − 1| ≤ |x − 1|. Hence for all x ∈
[c1/c2, c2/c1]

x− 1− 1

2
(c2/c1)2(x− 1)2 ≤ log x ≤ x− 1− 1

2
(c1/c2)2(x− 1)2.

Since p(x) ≥ c1 and q(x) ≥ c1, P ∼ Q and

K(P,Q) = −
∫
p log

q

p
≤ −

∫
p
(q
p
− 1− 1

2
(c2/c1)2(q/p− 1)2

)
=

1

2
(c2/c1)2

∫
p(q/p− 1)2 ≤ 1

2
(c2/c1)2 1

c1

∫
(q − p)2.

Similarly, the lower bound is obtained.

Exerecise 2.3. Prove that if the probability measures P and Q are mutually absolutely
continuous (i.e. equivalent), then

K(P,Q) ≤ χ2(Q,P)/2.

Solution

The claim is apparently false, as the following counterexample shows. Let P and Q be Ber(p)
and Ber(q) distributions. Then

K(P,Q) = p log
p

q
+ (1− p) log

1− p
1− q

,

and
1

2
χ2(Q,P) =

1

2
p
(q
p
− 1
)2

+
1

2
(1− p)

(1− q
1− p

− 1
)2
.

For p = 0.5 and q = 0.1, the numerical calculation yields

K(P,Q) = 0.5108...

and
1

2
χ2(Q,P) = 0.3200...



22

Exerecise 2.4. Consider the nonparametric regression model

Yi = f(i/n) + ξi, i = 1, ..., n

where f is a function on [0, 1] with values in R and ξi are arbitrary random variables. Using the
technique of two hypotheses show that

lim
n→∞

inf
Tn

sup
f∈C[0,1]

Ef‖Tn − f‖∞ = +∞,

where C[0, 1] is the space of al continuous functions on [0, 1]. In words, no rate of convergence
can be attained uniformly on such a large functional class as C[0, 1].

Solution

Consider the hypotheses f0n(x) ≡ 0 and

f1n(x) = n
(

1−
∣∣2nx− 1

∣∣)1{x∈[0,1/n]}, x ∈ [0, 1].

Clearly, fin ∈ C[0, 1], i = 0, 1 and

d(f0n, f1n) = ‖f1n‖∞ = n := 2s,

with s := Aψn, ψn = n and A = 1/2. Further, since P0 = P1, K(P0,P1) = 0 and hence
pe,1 ≥ 1/2. Consequently,

inf
Tn

sup
f∈C[0,1]

Efn
−1‖Tn − f‖∞ ≥ c

with a constant c > 0, which verifies the claim.

Exerecise 2.5. Suppose that Assumptions (B) and (LP2) hold and assume that the random
variables ξi are Gaussian. Prove (2.38) using Theorem 2.1.

Solution

Take the same hypotheses as in the text, i.e. f0n(x) ≡ 0 and f1n(x) = LhβnK
(
x−x0
hn

)
where

K is a nonnegative function in C∞(R) ∩ Σ(β, 1/2) satisfying K(u) > 0 if and only if |u| < 1/2.
Clearly, P0 ∼ P1 and

dP0

dP1
=

n∏
i=1

pξ(Yi)

pξ(Yi − f1n(Xi))
= exp

(
−

n∑
i=1

Yif1n(Xi) +
1

2

n∑
i=1

f2
1n(Xi)

)
=

exp

(
−

n∑
i=1

ξif1n(Xi)−
1

2

n∑
i=1

f2
1n(Xi)

)
=: exp

(
σnZ −

1

2
σ2
n

)
,

where Z ∼ N(0, 1) under P1 and σ2
n =

∑n
i=1 f

2
1n(Xi). As in the text (page 94), under the

assumption (LP2), σ2 := supn σ
2
n <∞ and hence

P1

(dP0

dP1
≥ 1
)

= P1

(
Z ≥ 1

2
σn

)
≥ P1

(
Z ≥ 1

2
σ
)

= Φ(−σ/2),

and consequently,

pe,1 ≥ sup
τ>0

{
τ

1 + τ
P1

(dP0

dP1
≥ τ

)}
≥ 1

2
P1

(dP0

dP1
≥ 1
)
≥ 1

2
Φ(−σ/2) > 0,
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and the claim follows from the general reduction scheme.

Exerecise 2.6. Improve the bound of Theorem 2.6 by computing the maximum on the right
hand side of (2.48). Do we obtain that pe,M is arbitrarily close to 1 for M →∞ and α→ 0, as
in the Kullback case (cf. (2.53)) ?

Solution

The function

Φ(τ) =
Mτ

1 +Mτ

(
1− τ(α∗ + 1)

)
is maximized at

τ∗ :=
1

M

(√
1 +M/(α∗ + 1)− 1

)
with

Φ(τ∗) =

(
1−

√
α∗ + 1

α∗ + 1 +M

)(
1− α∗ + 1

M

(√
1 +

M

α∗ + 1
− 1

))
.

For the choice α∗ := αM , we get

Φ(τ∗) =

(
1−

√
αM + 1

αM + 1 +M

)(
1− αM + 1

M

(√
1 +

M

αM + 1
− 1

))
M→∞−−−−→

(
1−

√
α

α+ 1

)(
1− α

(√
1 +

1

α
− 1

))
=(

1−
√

α

α+ 1

)(
1−
√
α
(√
α+ 1−

√
α
) ) α→0−−−→ 1

Exerecise 2.7. Consider the regression model with random design:

Yi = f(Xi) + ξi, i = 1, ..., n

where Xi are i.i.d. random variables with density µ(·) on [0, 1] such that µ(x) ≤ µ0 < ∞ for
all x ∈ [0, 1], the random variables ξi are i.i.d. with density pξ on R, and the random vector
(X1, ..., Xn) is independent of (ξ1, ..., ξn). Let f ∈ Σ(β, L), β > 0, L> 0 and let x0 ∈ [0, 1] be a
fixed point.

(1) Suppose first that pξ satisfies∫ (√
pξ(y)−

√
pξ(y + t)

)2
dy ≤ p∗t2, t ∈ R,

with a positive constant p∗. Prove the bound

lim
n→∞

inf
f̂n

sup
f∈Σ(β,L)

Efn
2β

2β+1

(
f̂n(x0)− f(x0)

)2
≥ c,

where c > 0 depends only on β, L, µ0, p∗.
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(2) Suppose now that the variables ξi are i.i.d. and uniformly distributed on [−1, 1]. Prove
the bound

lim
n→∞

inf
f̂n

sup
f∈Σ(β,L)

Efn
2β
β+1

(
f̂n(x0)− f(x0)

)2
≥ c′,

where c′ > 0 depends only on β, L, µ0. Note that the rate here is n
− β
β+1 , which is faster

than the usual rate n
− β

2β+1 . Furthermore, it can be proved that ψn = n
− β
β+1 is the

optimal rate of convergence in the model with uniformly distributed errors.

Solution

(1) We shall use the following property of the Hellinger distance. Define the convolution
(the subscript ξ in pξ is omitted for brevity)

(p ∗ µ)(x) =

∫ 1

0
p
(
x− f(y)

)
µ(y)dy, x ∈ R.

By the Jensen inequality√
(p ∗ µ)(x) =

√∫ 1

0
p
(
x− f(y)

)
µ(y)dy ≥

∫ 1

0

√
p
(
x− f(y)

)
µ(y)dy,

and hence

H2(p, p ∗ µ) =

∫ (√
p(x)−

√
(p ∗ µ)(x)

)2
dx =

2− 2

∫ √
p(x)

√
(p ∗ µ)(x)dx ≤ 2− 2

∫ √
p(x)

∫ 1

0

√
p
(
x− f(y)

)
µ(y)dydx =∫ 1

0

(
2− 2

∫ √
p(x)

√
p(x− f(y))dx

)
µ(y)dy =∫ 1

0

∫ (√
p(x)−

√
p(x− f(y))

)2
dxµ(y)dy ≤ p∗

∫ 1

0
f2(y)µ(y)dy.

To prove the required bound, we shall use the two hypotheses as in the text (see eq. (2.32)-(2.33))

f0n(x) ≡ 0, and f1n(x) = LhβnK

(
x− x0

hn

)
, x ∈ [0, 1].

It is left to show that pe,1 ≥ c > 0 with a constant c independent of n. To this end, we shall use
the bound

H2(P0,P1) ≤ α < 2 =⇒ pe,1 ≥
1

2

(
1−

√
α(1− α/4)

)
.

By the independence, P0 corresponds to the density
n∏
i=1

p(ui), u ∈ Rn

and P1 to the density
n∏
i=1

(p ∗ µ)(ui), u ∈ Rn.
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Since

H2(P0,P1) = 2

(
1−

(
1− H2(p, p ∗ µ)

2

)n)
,

it is left to show that infn
(
1− 1

2H
2(p, p ∗ µ)

)n
> 0 or equivalently

sup
n
nH2(p, p ∗ µ) <∞.

For f1n as above, we have (recall that hn = c0n
− 1

2β+1 )

nH2(p, p ∗ µ) ≤ np∗
∫ 1

0
f2

1n(y)µ(y)dy = L2p∗nh
2β
n

∫ 1

0
K2

(
y − x0

hn

)
µ(y)dy ≤

L2p∗‖K‖2∞nh2β
n

∫ 1

0
1{|y−x0|≤hn/2}µ(y)dy ≤ L2p∗‖K‖2∞µ0nh

2β+1
n =

L2p∗‖K‖2∞µ0c
2β+1
0 ,

(2.1)

as required.
(2) For the uniform density p(x) = 1

21{|x|≤1}, we have∫ (√
p(y)−

√
p(y + t)

)2
dy =

1

2

∫ (
1{|y|≤1} − 1{|y+t|≤1}

)2
dy = min(2, |t|) ≤ |t|,

and as in (1)

H2(p, p ∗ µ) ≤
∫ 1

0
|f(y)|µ(y)dy.

Choosing hn = c0n
− 1
β+1 and proceeding as in (1), we get

nH2(p, p ∗ µ) ≤ np∗
∫ 1

0
f1n(y)µ(y)dy = Lnhβn

∫ 1

0
K

(
y − x0

hn

)
µ(y)dy ≤

L‖K‖∞µ0nh
β+1
n ≤ L‖K‖∞µ0c

β+1
0 ,

which yields the claimed result.

Exerecise 2.8. Let X1, ..., Xn be i.i.d. random variables on R having density p ∈ P(β, L),
β > 0, L > 0. Show that

lim
n→∞

inf
f̂n

sup
p∈P(β,L)

Epn
2β

2β+1

(
p̂n(x0)− p(x0)

)2
≥ c,

for any x0 ∈ R, where c > 0 depends only on β and L.

Solution

Consider the hypotheses

p0(x) = ϕσ(x), p1n(x) = ϕσ(x) + gn(x),

where ϕσ is the N(0, σ2) density with some σ > 0 to be chosen later,

gn(x) := LhβnR
(x− x0

hn

)
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and R is a bounded C∞(R)∩ΣR(β, 1/2) function, supported on an interval ∆ ⊂ R,
∫
R(x)dx = 0

and R(0) > 0. For example, one can take R(x) = K(x)−K(x− 1), where K is defined in (2.34)
of [1].

Note that since R is bounded and
∫
R(x)dx = 0, p1n(x) is a probability density for all n

large enough. Following the reduction scheme presented in text, we shall check the conditions

(i) p1n ∈ Σ(β, L)

(ii) |p0(x0)− p1n(x0)| ≥ 2s = 2Aψn, where ψn = n
− β

2β+1 and A > 0

(iii) K(P1,P0) ≤ α <∞

The condition (i) obviously holds for σ large enough, since ϕ and its derivatives are bounded
(similarly to eq. (2.35) in [1]). Further,

|p0(x0)− p1n(x0)| = |p1n(x0)| = Lh2β
n |R(0)| = 2Aψn,

i.e. (ii) holds with A = L|R(0)|/2 > 0.
Finally, since Xi’s are i.i.d. both under P0 and P1, using the elementary inequality log(a+

x) ≤ log a+ x/a, we get

K(P1,P0) = nK(p1n, p0) = n

∫ (
ϕσ(x) + gn(x)

)
log

ϕσ(x) + gn(x)

ϕσ(x)
dx =

≤ n
∫ (

ϕσ(x) + gn(x)
) gn(x)

ϕσ(x)
dx = n

∫ 1

0

g2
n(x)

ϕσ(x)
dx ≤

1

infx∈∆ ψσ(x)
nL2h2β+1

n ‖R‖22 =: α,

which completes the proof.

Exerecise 2.9. Suppose that Assumptions (B) and (LP2) hold and let x0 ∈ [0, 1]. Prove
the bound (Stone, 1980)

lim
a→0

lim
n→∞

inf
Tn

sup
f∈Σ(β,L)

Pf

(
n

β
2β+1

∣∣Tn(x0)− f(x0)
∣∣ ≥ a) = 1.

Hint: introduce the hypotheses

f0n(x) ≡ 0, fjn(x) = θjLh
β
nK

(
x− x0

hn

)
,

with θj = j/M , j = 1, ...,M .

Solution

Recall that

inf
Tn

sup
f∈Σ(β,L)

Pf

(∣∣Tn(x0)− f(x0)
∣∣ ≥ an− β

2β+1

)
≥ pe,M ≥

√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
, (2.2)
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whenever
d(fjn, fkn) = |fjn(x0)− fkn(x0)| ≥ 2Aψn, j 6= k (2.3)

with A = a/2 and ψn = n
− β

2β+1 and

1

M

M∑
j=1

K(Pj ,P0) ≤ α logM, (2.4)

for some α > 0.

For the hypotheses appearing in the hint with hn = c0n
− 1

2β+1 ,

|fjn(x0)− fkn(x0)| = |j − k|
M

LhβnK(0) ≥ 1

M
LK(0)cβ0ψn,

and hence (2.3) holds, if we choose

c0 :=

(
aM

LK(0)

)1/β

.

Further,

K(Pj ,P0) =
n∑
i=1

∫
pξ(u) log

pξ(u)

pξ(u− fjn(Xi))
du ≤ p∗

n∑
i=1

f2
jn(Xi) ≤

p∗(j/M)2L2h2β
n ‖K‖2∞

n∑
i=1

1{|Xi−x0|≤hn/2} ≤

p∗(j/M)2L2h2β
n ‖K‖2∞na0 max(hn, 1/n) ≤ p∗‖K‖2∞a0L

2(j/M)2c2β+1
0 =

p∗‖K‖2∞a0L
2(j/M)2

(
aM

LK(0)

)2+1/β

=: Cj2M1/βa2+1/β

and hence

1

M

M∑
j=1

K(Pj ,P0) ≤ CM1/β−1a2+1/β
M∑
j=1

j2 ≤ C ′(aM)2+1/β.

Now choose α := 1
log 1

a

and M := 1/a, then for any a ∈ (0, 1),

lim
n→∞

inf
Tn

sup
f∈Σ(β,L)

Pf

(∣∣Tn(x0)− f(x0)
∣∣ ≥ an− β

2β+1

)
≥

1

1 +
√
a

1− 2
1

log 1
a

−
√√√√ 2(

log 1
a

)2

 a→0−−−→ 1,

as claimed.

Exerecise 2.10. Let X1, ..., Xn be i.i.d. random variables on R with density p ∈ P(β, L)
where β > 0 and L > 0. Prove the bound

lim
n→∞

inf
Tn

sup
p∈P(β,L)

Epn
2β

2β+1 ‖Tn − p‖22 ≥ c
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where c > 0 depends only on β and L.

Solution

Using the notations of Section 2.6.1 [1], define

gk(x) = LhβnK
′
(
x− xk
hn

)
, k = 1, ...,m, x ∈ R

where K ′ is the derivative of the function, defined in (2.34) of [1]. Let

pjn(x) =
1

σ
ϕ(x/σ) +

m∑
k=1

ω
(j)
k gk(x), j = 0, ...,M, x ∈ R

where ϕ is the standard Gaussian density, σ > 0 is a constant to be chosen shortly and ω(j)’s
are m-tuples in the Varshamov-Gilbert subset of Ω = {0, 1}m (see Lemma 2.9, [1]). Since∫
gk(x)dx = 0 and supx∈R |gk(x)| ≤ L‖K ′‖∞hβn, all pjn’s are probability densities for sufficiently

large n. Following the reduction scheme presented in the text, the claimed bound follows from
the conditions (see Theorem 2.7)

(i) pjn ∈ P(β, L), j = 0, ...,M

(ii) ‖pjn − pin‖2 ≥ 2s = 2Aψn, where ψn = n
− β

2β+1 and A > 0

(iii) 1
M

∑M
i=1K(Pj ,P0) ≤ α logM for some α ∈ (0, 1/8).

The condition (i) is obvious for sufficiently large σ, since ϕ and all its derivatives are bounded
(see eq. (2.35) in [1]). Further,

‖pjn − pin‖2 =

∫ ( m∑
k=1

(
ω

(j)
k − ω

(i)
k

)
gk(x)

)2

dx =

‖g1‖22
m∑
k=1

(
ω

(j)
k − ω

(i)
k

)2
= L2h2β+1

n ‖K ′‖22ρ(ω(i), ω(j)),

where ρ(·, ·) is the Hamming distance. By the Varshamov-Gilbert lemma ρ(ω(i), ω(j)) ≥ m/8
and hence (ii) holds if m := 1/hn, as in the text.
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Using the elementary inequality log(a+ x) ≤ log(a) + x
a (and setting ϕσ(x) := 1

σϕ(x/σ) for
brevity):

K(pjn, pj0) =

∫
pjn(x) log

pjn(x)

p0n(x)
dx =∫ (

ϕσ(x) +
m∑
k=1

ω
(j)
k gk(x)

)(
log

(
ϕσ(x) +

m∑
k=1

ω
(j)
k gk(x)

)
− logϕσ(x)

)
dx ≤

∫ (
ϕσ(x) +

m∑
k=1

ω
(j)
k gk(x)

)∑m
k=1 ω

(j)
k gk(x)

ϕσ(x)
dx =

∫ 1

0

(∑m
k=1 ω

(j)
k gk(x)

)2

ϕσ(x)
dx ≤

ϕ−1
σ (1)‖g1‖22

m∑
k=1

ω
(j)
k ≤ ϕ

−1
σ (1)L2‖K ′‖22h2β+1

n m =: Ch2β
n ,

where we used m = 1/hn. Note that n = c2β+1
0 h−2β−1

n and hence

K(Pj ,P0) ≤ Cnh2β
n = C ′h−1

n = C ′m ≤ α logM,

where we used the V-G inequality M ≥ 2m/8. The design constant c0 can be chosen so that
α ∈ (0, 1/8) and hence (iii) holds. This completes the proof.

Exerecise 2.11. Consider the nonparametric regression model

Yi = f(i/n) + ξi, i = 1, ..., n,

where the random variables ξi are i.i.d. with distribution N(0, 1) and where f ∈ W per(β, L),
L > 0 and β ∈ {1, 2, ...}. Prove the bound

lim
n→∞

inf
Tn

sup
f∈W per(β,L)

(
n

log n

) 2β−1
2β

Ef‖Tn − f‖2∞ ≥ c,

where c > 0 depends only on β and L.

Solution

Consider the hypotheses

f0n(x) ≡ 0, fjn(x) = Lhβ−1/2
n K

(
x− xj
M

)
, j = 1, ...,M

where hn = c0

(
n

logn

)− 1
2β

, M = d1/hne and xj = j−1/2
M and K is the function defined in eq.

(2.33) [1]. To prove the claimed bound, we shall check

(i) fjn ∈W per(β, L), j = 1, ...,M

(ii) ‖fjn − fin‖∞ ≥ 2s = 2Aψn with ψn =
(

n
logn

)−β−1/2
2β

(iii) 1
M

∑M
j=1K(Pj ,P0) ≤ α logM with α ∈ (0, 1/8)
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Note that by construction, fjn’s and all their derivatives vanish at x = 0 and x = 1 and∫ 1

0

(
f

(β)
jn (x)

)2
dx = L2h

2(β− 1
2

)
n h−2β

n

∫ 1

0

(
K(`)

(
x− xj
hn

))2

dx = L2‖K(`)‖22,

and (i) holds, if we adjust K appropriately (i.e. choose a small enough in eq. (2.34), [1]).
Next we have

‖fjn − fin‖∞ = Lhβ−1/2
n sup

x∈[0,1]

∣∣∣∣K (x− xiM

)
−K

(
x− xj
M

)∣∣∣∣ = Lhβ−1/2
n K(0) = 2Aψn,

with A = 1
2L ‖K(0)‖∞ c

β−1/2
0 , and thus (ii) is satisfied.

Finally, since ξi’s are i.i.d N(0, 1),

K(Pj ,P0) =
1

2

n∑
i=1

f2
jn(Xi) =

1

2
L2h2β−1

n

n∑
i=1

K2

(
Xi − xj
M

)
≤

1

2
L2h2β−1

n ‖K‖2∞
n∑
i=1

1{|Xi−xj |≤M/2} =
1

2
L2h2β−1

n ‖K‖2∞Card
{
Xi ∈ supp(fjn)

}
and hence

1

M

M∑
j=1

K(Pj ,P0) =
1

2
L2h2β−1

n ‖K‖2∞
1

M

M∑
j=1

Card
{
Xi ∈ supp(fjn)

}
=

1

2
L2h2β−1

n ‖K‖2∞n/M =
1

2
L2‖K‖2∞h2β

n n =
1

2
L2‖K‖2∞c

2β
0 log n.

For sufficiently large n,

logM ≥ log h−1
n = log c0 +

1

2β
(log n− log log n) ≥ 1

4β
log n

and (iii) follows, if c0 is chosen small enough.

3. Asymptotic efficiency and adaptation

Exerecise 3.1. Consider an exponential ellipsoid

Θ =

θ ∈ R∞ :
∞∑
j=1

e2αjθ2
j ≤ Q


where α > 0 and Q > 0.

(1) Give an asymptotic expression, as ε→ 0, for the minimax linear risk on Θ.

(2) Prove that the simple projection estimator defined by

θ̂k = yk1{k≤N∗}, k = 1, 2, ...

with an appropriately chosen integer N∗ = N∗(ε), is an asymptotically minimax lin-
ear estimator on the ellipsoid Θ. Therefore it shares this property with the Pinsker
estimator for the same ellipsoid.
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Solution

1. We shall first find the asymptotic of κ applying Lemma 3.1 [1] to aj = eαj :

Q =
ε2

κ

∞∑
j=1

aj(1− κaj)+ =
ε2

κ

∞∑
j=1

eαj(1− κeαj)+ =
ε2

κ

M∑
j=1

eαj(1− κeαj),

where M = b 1
α log 1

κc. Using the geometric series summation formula

M∑
j=1

aj = a
aM − 1

a− 1
=
aM+1

a− 1
(1 + o(1)), a > 1, M →∞

we get

ε2

κ

M∑
j=1

eαj(1− κeαj) =
ε2

κ

eα(M+1)

eα − 1

(
1 + o(1)

)
− ε2 e

2α(M+1)

e2α − 1

(
1 + o(1)

)
=

ε2

κ2

eα

eα − 1

(
1 + o(1)

)
− ε2

κ2

e2α

e2α − 1

(
1 + o(1)

)
=
ε2

κ2

eα

e2α − 1

(
1 + o(1)

)
and consequently

κ =
ε

Q1/2

eα/2

(e2α − 1)1/2

(
1 + o(1)

)
=: κ∗

(
1 + o(1)

)
Next we shall apply Lemma 3.2 [1] to calculate the optimal risk:

D∗ =ε2
∞∑
j=1

(
1− κaj

)
+

= ε2
M∑
j=1

(
1− κeαj

)
=

ε2

(
M − κe

α(M+1)

eα − 1

(
1 + o(1)

))
= ε2

(
1

α
log

1

κ
− eα

eα − 1

(
1 + o(1)

))
=

1

α
ε2 log

1

ε

(
1 + o(1)

)
, ε→ 0

2. The risk of the suggested estimator (i.e. λj = 1{j≤N∗}) is given by

R(λ, θ) =
∞∑
j=1

(1− λj)2θ2
j + ε2λ2

j = ε2N∗ +
∞∑

j=N∗+1

θ2
j =

ε2N∗ +

∞∑
j=N∗+1

e−2αje2αjθ2
j = ε2N∗ + e−2αN∗

∞∑
j=N∗+1

e−2α(j−N∗)e2αjθ2
j ≤

ε2N∗ + e−2αN∗
∞∑
j=1

e2αjθ2
j ≤ ε2N∗ + e−2αN∗Q.

If we choose N∗ε = 1
α log 1

ε , we obtain the upper bound

R(λ, θ) ≤ 1

α
ε2 log

1

ε
+ ε2Q =

1

α
ε2 log

1

ε

(
1 + o(1)

)
,
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which coincides with the lower bound obtained in (1) and hence the simple estimate is asymp-
totically minimax among the linear estimators.

Exerecise 3.2. Suppose that we observe

yj = θj + ξj , j = 1, ..., d

where the random variables ξj are i.i.d. with distribution N(0, 1). Consider the estimation of

parameter θ = (θ1, ..., θd). Take Θ(Q) =
{
θ ∈ Rd : ‖θ‖2 ≤ Qd

}
with some Q > 0, where ‖ · ‖

denotes the Euclidian norm on Rd. Define the minimax risk

R∗d
(
Θ(Q)

)
= inf

θ̂
sup

θ∈Θ(Q)
Eθ

1

d
‖θ̂ − θ‖2,

where Eθ is the expectation with respect to the joint distribution of (y1, ..., yd). Prove that

lim
d→∞

R∗d
(
Θ(Q)

)
=

Q

Q+ 1
.

Hint: to obtain the lower bound on the minimax risk, take 0 < δ < 1 and apply the scheme of
Section 3.3.2 with the prior distribution N(0, δQ) on each of the coordinates of θ.

Solution

We shall derive the upper bound in two ways: by means of the James-Stein estimator and
by explicit calculation of the risk of the linear minimax estimator.

The upper bound I.

Recall that the James-Stein estimator θ̂JS =
(

1− d−2
‖y‖2

)
y has the risk

1

d
Eθ‖θ̂JS − θ‖2 = 1− 1

d
Eθ

(d− 2)2

‖y‖2
= 1− (d− 2)2

d2
Eθ

1
1
d‖y‖2

.

Denote by P the probability induced by the vector ξ, then

R∗d
(
Θ(Q)

)
≤ sup

θ∈Θ(Q)

1

d
Eθ‖θ̂JS − θ‖2 = sup

θ∈Θ(Q)

(
1− (d− 2)2

d2
Eθ

1
1
d‖y‖2

)
=

1− (d− 2)2

d2
inf

θ∈Θ(Q)
E

1
1
d‖θ + ξ‖2

.

Calculations similar to those in Lemma 3.7 [1] and the dominated convergence theorem imply
continuity of the function h(θ) := E 1

1
d
‖θ+ξ‖2 on Rd for d large enough. Since Θ(Q) is compact,

the infimum in the latter expression is attained at a point θ∗d ∈ Θ(Q). Hence

lim
d→∞

R∗d
(
Θ(Q)

)
≤ 1− lim

d→∞
E

1
1
d‖θ
∗
d + ξ‖2

†
≤

1− E
1

limd→∞
1
d

(
‖θ∗d‖2 + 2〈θ∗d, ξ〉+ ‖ξ‖2

) ‡
≤ 1− E

1

Q+ 1 + limd→∞
2
d〈θ
∗
d, ξ〉
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where the inequality † holds by the Fatou lemma and the bound ‡ holds by the law of large
numbers and since θ∗d ∈ Θ(Q). Finally, note that for each d large enough, η := 〈θ∗d, ξ〉/‖θ∗d‖ ∼
N(0, 1) and hence

∞∑
d=1

E

∣∣∣∣1d〈θ∗d, ξ〉
∣∣∣∣4 ≤ ∞∑

d=1

Q2

d2
E|η|4 <∞.

The Borel-Cantelli lemma now implies limd→∞
2
d〈θ
∗
d, ξ〉 = 0 P-a.s. and the upper bound follows:

lim
d→∞

R∗d
(
Θ(Q)

)
≤ 1− 1

Q+ 1
=

Q

Q+ 1
.

The upper bound II.

Consider the linear estimator θ̂(λ) with the weights λj , j = 1, ..., d and the corresponding
risk

R(λ, θ) =
1

d
Eθ

d∑
j=1

(λjyj − θj)2 =
1

d

d∑
j=1

(λj − 1)2θ2
j +

1

d

d∑
j=1

λ2
j .

To find the maximal risk over Θ(Q), note that for θ ∈ Θ(Q),

1

d

d∑
j=1

(λj − 1)2θ2
j ≤ max

j≤d
(λj − 1)2 1

d

d∑
j=1

θ2
j ≤ max

j≤d
(λj − 1)2Q,

and this bound is attained on θ ∈ Θ(Q) with

θj =

{√
dQ j = j∗

0 j 6= j∗

where j∗ = argmaxj≤d(λj − 1)2. Hence

sup
θ∈Θ(Q)

R(λ, θ) = max
j≤d

(λj − 1)2Q+
1

d

d∑
j=1

λ2
j .

The entries of the minimizer of the latter expression over λ ∈ Rd are confined to the interval
[0, 1], since otherwise the risk can be reduced. Further, for any λ ∈ [0, 1]d the risk can be reduced
by decreasing all the entries to be equal to the minimal one. Hence the minimum is attained by
λ ∈ [0, 1]d with constant entries i.e.:

inf
λ∈Rd

sup
θ∈Θ(Q)

R(λ, θ) = inf
t∈[0,1]

(
(t− 1)2Q+ t2

)
=

Q

Q+ 1
.

To recap, the linear minimax (Pinsker) estimator has constant weights

`j =
Q

Q+ 1
, j = 1, ..., d

and the corresponding risk is

inf
λ∈Rd

sup
θ∈Θ(Q)

R(λ, θ) = R(`, θ) =
Q

Q+ 1
.
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The lower bound.

To derive the lower bound, define the prior density

µ(θ) =
d∏
i=1

µδQ(θi), θ ∈ Rd,

where µσ(x) is the density of N(0, σ2) distribution. Then

R∗d
(
Θ(Q)

)
= inf

θ̂∈Rd
sup

θ∈Θ(Q)
Eθ

1

d
‖θ − θ̂‖2 †=

inf
θ̂∈Θ(Q)

sup
θ∈Θ(Q)

Eθ
1

d
‖θ − θ̂‖2 ≥ inf

θ̂∈Θ(Q)

∫
Θ(Q)

Eθ
1

d
‖θ − θ̂‖2µ(θ)dθ =

inf
θ̂∈Θ(Q)

(∫
Rd

Eθ
1

d
‖θ − θ̂‖2µ(θ)dθ −

∫
Θc(Q)

Eθ
1

d
‖θ − θ̂‖2µ(θ)dθ

)
≥

inf
θ̂∈Rd

∫
Rd

Eθ
1

d
‖θ − θ̂‖2µ(θ)dθ − sup

θ̂∈Θ(Q)

∫
Θc(Q)

Eθ
1

d
‖θ − θ̂‖2µ(θ)dθ := I −R,

where † holds since Θ(Q) is closed and compact and hence projecting θ̂ onto Θ(Q) only re-
duces4the risk. The term I contributes the main asymptotic:

I = inf
θ̂∈Rd

∫
Rd

Eθ
1

d
‖θ − θ̂‖2µ(θ)dθ ≥ 1

d

d∑
i=1

inf
θ̂

∫
Rd

Eθ(θi − θ̂i)2µ(θ)dθ =

1

d

d∑
i=1

inf
θ̂i

∫
Rd

Eθ(θi − θ̂i)2µ(θ)dθ
†
≥ 1

d

d∑
i=1

1

δQ+ 1
=

δQ

δQ+ 1
,

where in † we used the explicit formula for the Bayes risk in the problem of estimating θi ∼
N(0, δQ) given yj = θj + ξj , j = 1, ..., d with independent θj ’s and ξj ’s and ξj ∼ N(0, 1).

Next we shall bound the residual term:

R = sup
θ̂∈Θ(Q)

∫
Θc(Q)

Eθ
1

d
‖θ − θ̂‖2µ(θ)dθ ≤∫

Θc(Q)

2

d
‖θ‖2µ(θ)dθ +

∫
Θc(Q)

sup
θ̂∈Θ(Q)

2

d
Eθ‖θ̂‖2µ(θ)dθ ≤

2

d
Eµ‖θ‖21{θ∈Θc} + 2QPµ(Θc) ≤ 2

d

√
Eµ‖θ‖4

√
Pµ(θ ∈ Θc) + 2QPµ(Θc) ≤

6δQ
√

Pµ(θ ∈ Θc) + 2QPµ(Θc),

4see the exact explanation following eq. (3.36) page 149 [1]
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where in the last inequality we used the bound

Eµ‖θ‖4 = Eµ

(
d∑
i=1

θ2
i

)2

=
∑
i 6=j

Eµθ2
iEµθ2

j +
d∑
i=1

Eµθ4
i =

∑
i 6=j

(δQ)2 +
d∑
i=1

Eµ3(δQ)2 ≤ 3d2(δQ)2.

For any 0 < δ < 1,

Pµ(Θc) = Pµ

(
1

d

d∑
i=1

θ2
i > Q

)
= Pµ

(
1

d

d∑
i=1

(θ2
i − δQ) > (1− δ)Q

)
≤

Pµ

(∣∣∣∣∣1d
d∑
i=1

(θ2
i − δQ)

∣∣∣∣∣ > (1− δ)Q

)
≤ 1

(1− δ)2Q2

1

d2
Eµ

(
d∑
i=1

(θ2
i − δQ)

)2

=

1

(1− δ)2Q2

1

d2
Eµ

d∑
i=1

(θ2
i − δQ)2 =

1

d

2(δQ)2

(1− δ)2Q2

d→∞−−−→ 0,

and hence

lim
d→∞

R∗d
(
Θ(Q)

)
≥ δQ

δQ+ 1
.

The claimed asymptotic follows by taking δ → 1.

Exerecise 3.3. Consider the setting of Exercise 3.2

(1) Prove that the Stein estimator

θ̂S =

(
1− d

‖y‖2

)
y,

as well as the positive part Stein estimator

θ̂S+ =

(
1− d

‖y‖2

)
+

y,

are adaptive in the exact minimax sense over the family of classes {Θ(Q), Q > 0}, that
is, for all Q > 0

lim
d→∞

sup
θ∈Θ(Q)

Eθ

(
1

d
‖θ̂ − θ‖2

)
≤ Q

Q+ 1
,

with θ̂ = θ̂S or θ̂ = θ̂S+. (Here, we deal with adaptation at an unknown radius Q of
the ball Θ(Q)).

Hint: apply Lemma 3.10

(2) Prove that the linear minimax estimator on Θ(Q) (the Pinsker estimator) is inadmis-
sible on the class Θ(Q′) such that 0 < Q′ < Q for all d > d1, where d1 depends only on
Q and Q′.
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Solution

1. By Lemma 3.10, for all d ≥ 4 and θ ∈ Θ(Q),

1

d
Eθ‖θ̂S − θ‖2 ≤

1
d‖θ‖

2

1
d‖θ‖2 + 1

+
4

d
≤ Q

Q+ 1
+

4

d
,

which proves the claim (the same bound holds for θ̂S+).
2. In Exercise 3.2(2) we saw that the linear minimax (Pinsker) estimator has constant

weights

`j =
Q

1 +Q
, j = 1, ..., d.

The corresponding risk function is

R(`, θ) =
1

d
Eθ‖θ̂(`)− θ‖2 =

1

d

d∑
j=1

(
(`j − 1)2θ2

j + `2j

)
=

1

(Q+ 1)2

1

d

d∑
j=1

θ2
j +

(
Q

1 +Q

)2

=

1

(Q+ 1)2
Q+

(
Q

1 +Q

)2

+
1

(Q+ 1)2

(
1

d

d∑
j=1

θ2
j −Q

)
=:

Q

Q+ 1
+ r,

where

r =
1

(Q+ 1)2

(
1

d

d∑
j=1

θ2
j −Q

)
≤ 1

(Q+ 1)2

(
Q′ −Q

)
< 0, ∀θ ∈ Θ(Q′).

Hence for any θ ∈ Θ(Q′) and all sufficiently large d’s

R(`, θ) ≥ R(θ̂S , θ)−
4

d
+ r > R(θ̂S , θ).

Exerecise 3.4. Consider the Model 1 of Section 3.4. Let τ̃ > 0.

(1) Show that the hard thresholding estimator θ̂HT with the components

θ̂j,HT = 1{|yj |>τ̃}yj , j = 1, ..., d,

is the solution of the minimization problem

min
θ∈Rd


d∑
j=1

(yj − θj)2 + τ̃2
d∑
j=1

1{θj 6=0}

 .

(2) Show that the soft thresholding estimator θ̂ST with the components

θ̂j,ST =

(
1− τ̃

|yj |

)
+

yj , j = 1, ..., d
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is the solution of the minimization problem

min
θ∈Rd


d∑
j=1

(yj − θj)2 + 2τ̃
d∑
j=1

|θj |

 .

Solution

1. Since

(yj − θj)2 + τ̃21{θj 6=0} =
(

(yj − θj)2 + τ̃2
)
1{θj 6=0} + y2

j1{θj=0} ≥

τ̃21{θj 6=0} + y2
j1{θj=0} ≥ τ̃2 ∧ y2

j ,

it follows that for any θ ∈ Rd

d∑
j=1

(yj − θj)2 + τ̃2
d∑
j=1

1{θj 6=0} =

d∑
j=1

(
(yj − θj)2 + τ̃21{θj 6=0}

)
≥

d∑
j=1

τ̃2 ∧ y2
j

This lower bound is attained at the suggested estimator, since

(yj − θ̂j,HT )2 + τ̃21{θ̂j,HT 6=0} = 1{|yj |>τ̃}τ̃
2 + 1{|yj |≤τ̃}y

2
j = τ̃2 ∧ y2

j .

2. As before, the minimization can be carried out componentwise. The scalar function
t 7→ ψ(t) := (yj − t)2 + 2τ̃ |t| is smooth, except for t = 0. Hence it’s local minima over R \ {0}
must satisfy

d

dt
ψ(t) = −2(yj − t) + 2τ̃sign(t) = 0.

The latter has two solutions: t+ := yj − τ̃ , if yj > τ̃ , and t− := yj + τ̃ , if yj < −τ̃ . For yj > τ̃

ψ(t+) = τ̃2 + 2τ̃(yj − τ̃) = y2
j − (yj − τ̃)2 < y2

j = ψ(0)

and hence t+ is the global minimum in the case yj > τ̃ . Similarly, t− is the minimum if yj < −τ̃ .
When |yj | ≤ τ̃ , the function ψ(t) doesn’t have any extrema on R \ {0} and hence the global
minimum is at the origin. To recap, the minimum is given at

θ∗j = (yj − sign(yj)τ̃)1{|yj |>τ̃} =

(
1− τ̃

|yj |

)
yj1{|yj |>τ̃} =

(
1− τ̃

|yj |

)
+

yj ,

as claimed.

Exerecise 3.5. Consider Model 1 of Section 3.4. Using Stein’s lemma, show that the
statistic

J1(τ̃) =
d∑
j=1

(
2ε2 + τ̃2 − y2

j

)
1{|yj |≥τ̃}

is an unbiased estimator of the risk of the soft thresholding estimator θ̂ST , up to the additive
term ‖θ‖2 that does not depend on τ̃ :

EθJ1(τ̃) = Eθ‖θ̂ST − θ‖2 − ‖θ‖2.

Based on this, suggest a data-driven choice of the threshold τ̃ .
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Solution

On one hand, we have

Eθ‖θ̂ST − θ‖2 = Eθ

d∑
j=1

((
1− τ̃

|yj |

)
+

yj − θj

)2

=

d∑
j=1

θ2
jPθ(|yj | < τ̃) + Eθ

d∑
j=1

(
yj − τ̃sign(yj)− θj

)2
1{|yj |≥τ̃} =

d∑
j=1

θ2
j + Eθ

d∑
j=1

(
y2
j − 2(yj − θj)τ̃sign(yj) + τ̃2 − 2θjyj

)
1{|yj |≥τ̃} =

d∑
j=1

θ2
j + Eθ

d∑
j=1

(
τ̃2 − y2

j

)
1{|yj |≥τ̃} − 2

d∑
j=1

Eθ(θj − yj)f(yj),

where

f(u) =
(
u− τ̃sign(u)

)
1{|u|≥τ̃}, u ∈ R.

Note that f(u) =
∫ u

0 1{|s|≥τ̃}ds and hence f(u) is absolutely continuous and by the Stein lemma

Eθ(θj − yj)f(yj) = −ε2Eθ1{|yj |≥τ̃},

which verifies the claim.
Ideally we would choose τ̃ so that the risk or, equivalently, EθJ1(τ̃) is minimized. This is

impractical, since such choice depends on the unknown θ and hence it is not unreasonable to
choose τ̃ to minimize J1(τ̃). A close look reveals that J1 doesn’t have a minimum, but its version
with the strict inequality in the indicator

J1(τ̃) :=
d∑
j=1

(
2ε2 + τ̃2 − y2

j

)
1{|yj |>τ̃}

does and the optimal value τ̃∗ belongs to the data set {y1, ..., yd}, since otherwise the value of
J1 can be decreased by setting it to the greatest yj less than τ̃∗. Moreover, τ̃∗ does not exceed

the greatest yj smaller than
√

2ε, which is checked by contradiction. These properties reduce
finding τ̃∗ to a simple computationally efficient search.

Exerecise 3.6. Consider Model 1 of Section 3.4. Let τ > 0.

(1) Show that the global hard thresholding estimator

θ̂GHT = 1{‖y‖>τ}y

is a solution of the minimization problem

min
θ∈Rd


d∑
j=1

(yj − θj)2 + τ21{‖θ‖6=0}

 .
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(2) Show that the global soft thresholding estimator

θ̂GST =

(
1− τ

‖y‖

)
+

y

is a solution of the minimization problem

min
θ∈Rd


d∑
j=1

(yj − θj)2 + 2τ‖θ‖

 .

Solution

1. We have
d∑
j=1

(yj − θj)2 + τ21{‖θ‖6=0} =

d∑
j=1

y2
j1{‖θ‖=0} +

(
τ2 +

d∑
j=1

(yj − θj)2
)
1{‖θ‖6=0} ≥ ‖y‖2 ∧ τ2.

The inequality is saturated by the choice θ := 1{‖y‖≥τ}y, and the claim follows.
2. The function

g(θ) :=

d∑
j=1

(yj − θj)2 + 2τ‖θ‖

is differentiable on Rd \ {0} and hence all of its extrema on this set satisfy ∇g(θ) = 0, i.e.

∇g(θ) = −2(y − θ) + 2τ
θ

‖θ‖
= 0,

which yields

θ

(
1 +

τ

‖θ‖

)
= y.

This means that the extremum θ∗ has the same direction as y, i.e. it has the form θ̂∗ = yt,
where t > 0 solves the scalar equation

t

(
1 +

τ

t‖y‖

)
= 1.

This equation doesn’t have a solution when ‖y‖ < τ and has the unique solution t = 1 − τ
‖y‖

otherwise. Hence when ‖y‖ < τ the only possible minima is outside Rd \ {0}, i.e. at the origin.
When ‖y‖ ≥ τ the only extremum of g(θ) over Rd \ {0} is

θ∗ =

(
1− τ

‖y‖

)
y.

This point is clearly a local minimum, since g(θ)→∞ as θ → 0. To decide when it is a global
minimum, we shall compare the values of g(0) = ‖y‖2 and

g(θ∗) = ‖y‖2 − 2〈θ∗, y〉+ ‖θ∗‖2 + 2τ‖θ∗‖ =

g(0)− 2

(
1− τ

‖y‖

)
‖y‖2 +

(
1− τ

‖y‖

)2

‖y‖2 + 2τ

(
1− τ

‖y‖

)
‖y‖ =

g(0)− (‖y‖ − τ)2.
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Hence for ‖y‖ ≥ τ , the θ∗ is the global minimum, which verifies the suggested solution.

Exerecise 3.7. Consider the Model 1 of Section 3.4 Define a global hard thresholding
estimator of the vector θ = (θ1, ..., θd) as follows

θ̂ = 1{‖y‖>τ}y,

where τ = 2ε
√
d.

(1) Prove that for ‖θ‖2 ≤ ε2d/4 we have

Pθ(θ̂ = y) ≤ exp(−c0d),

where c0 > 0 is an absolute constant.
Hint: Use the following inequality

P

 d∑
j=1

(ξ2
j − 1) ≥ td

 ≤ exp

(
− t

2d

8

)
, t ∈ (0, 1].

(2) Based on (1) prove that

Eθ‖θ̂ − θ‖2 ≤ ‖θ‖2 + c1ε
2d exp(−c0d/2),

for ‖θ‖2 ≤ ε2d/4 with an absolute constat c1 > 0.

(3) Show that, for all θ ∈ Rd,

Eθ‖θ̂ − θ‖2 ≤ 9ε2d.

(4) Combine (2) and (3) to prove the oracle inequality

Eθ‖θ̂ − θ‖2 ≤ c2
dε2‖θ‖2

dε2 + ‖θ‖2
+ c1ε

2d exp(−c0d/2), θ ∈ Rd,

where c2 > 0 is an absolute constant.
Hint: min(a, b) ≤ 2ab

a+b for all a ≥ 0, b > 0.

(5) We switch now to the Gaussian sequence model (3.10):

yj = θj + εξj , j ≥ 1.

Introduce the blocks Bj of size card(Bj) = j and define the estimators

θ̃k = 1{‖y‖(j)>τj}yk for k ∈ Bj , j = 1, 2, ..., J,

where τj = 2ε
√
j, J ≥ 1/ε2, and θ̃k = 0 for k >

∑J
j=1 card(Bj). Set θ̃ = (θ̃1, θ̃2, ...).

Prove the oracle inequality

Eθ‖θ̃ − θ‖2 ≤ c3 min
λ∈Λmon

R(λ, θ) + c4ε
2, θ ∈ `2(N),

where c3 > 0 and c4 > 0 are absolute constants.
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(6) Show that the estimator θ̃ define in (5) is adaptive in the minimax sense on the family
of classes {Θ(β,Q), β > 0, Q > 0}, i.e. for all sufficiently small ε > 0,

sup
θ∈Θ(β,Q)

Eθ‖θ̃ − θ‖2 ≤ C(β,Q)ε
4β

2β+1 , ∀β > 0, Q > 0,

where C(β,Q) is a constant depending only on β and Q.

Solution

1. For any θ ∈ Rd,

Pθ(θ̂ = y) = Pθ(‖y‖ > τ) = Pθ(‖θ + εξ‖ > τ) ≤ Pθ(‖θ‖+ ε‖ξ‖ > τ) = Pθ

(
‖ξ‖ > τ − ‖θ‖

ε

)
=

Pθ

(
‖ξ‖ >

2ε
√
d− 1

2ε
√
d

ε

)
= Pθ

(
‖ξ‖2 > 9

4
d

)
= Pθ

 d∑
j=1

(ξ2
j − 1) >

5

4
d

 ≤ exp

(
− 25

128
d

)
,

i.e. the claim holds with c0 = 25/128.
2. By the Cauchy-Schwarz inequality and the bound from (1)

Eθ‖θ̂ − θ‖2 = ‖θ‖2Pθ(‖y‖ ≤ τ) + ε2Eθ‖ξ‖21{‖y‖>τ} ≤ ‖θ‖2 + ε2
√
Eθ‖ξ‖4

√
P(‖y‖ > τ)

and the claim follows with c1 :=
√

3, since by the Jensen inequality

√
Eθ‖ξ‖4 =

√√√√Eθ

( d∑
j=1

ξ2
j

)2
≤

√√√√dEθ

d∑
j=1

ξ4
j =
√

3d2 ≤
√

3d.

3. For θ ∈ Rd,

Eθ‖θ̂ − θ‖2 = ‖θ‖2Pθ(‖y‖ < τ) + Eθ‖y − θ‖21{‖y‖≥τ} ≤ ‖θ‖2Pθ(‖y‖ < τ) + ε2d.

For ‖θ‖ > τ , by the symmetry of the Gaussian distribution 5

Pθ(‖y‖ < τ) = Pθ(‖εξ + θ‖2 < τ2) = Pθ(‖εξ + v‖2 < τ2) =

Pθ

(εξ1 + ‖θ‖)2 + ε2
d∑
j=2

ξ2
j < τ2

 ≤ Pθ

(∣∣∣ξ1 + ‖θ‖/ε
∣∣∣ < τ/ε

)
=

∫ τ/ε−‖θ‖/ε

−τ/ε−‖θ‖/ε
ϕ(x)dx ≤

∫ τ/ε−‖θ‖/ε

−∞
ϕ(x)dx = Φ

(
τ/ε− ‖θ‖/ε

)
.

Hence

‖θ‖2Pθ(‖y‖ < τ) = ‖θ‖2Pθ(‖y‖ < τ)1{‖θ‖≤τ} + ‖θ‖2Pθ(‖y‖ < τ)1{‖θ‖>τ} ≤
τ2 + sup

‖θ‖≥τ
‖θ‖2Φ

(
τ/ε− ‖θ‖/ε

)
= τ2 + ε2 sup

x≥τ/ε
x2Φ

(
τ/ε− x

)
.

5v is the vector with all but one zero entries which equals ‖θ‖ and ϕ and Φ are the N(0, 1) density and the
c.d.f. respectively
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A calculation shows that for d ≥ 2, the supremum is attained at x := τ/ε and hence

‖θ‖2Pθ(‖y‖ < τ) ≤ τ2 +
1

2
τ2.

For d = 1, the supremum is less than 1
3τ

2 and hence

Eθ‖θ̂ − θ‖2 ≤
3

2
τ2 + ε2d ≤ 7ε2d, θ ∈ Rd, d ≥ 1,

as claimed.
Remark. Only a slightly worse bound is obtained in a simpler way:

Eθ‖θ̂ − θ‖2 ≤ 2Eθ‖θ̂ − y‖2 + 2Eθ‖y − θ‖2 = 2Eθ‖y‖21{‖y‖≤τ} + 2ε2Eθ‖ξ‖2 =

2τ2 + 2ε2Eθ‖ξ‖2 = 10ε2d

4. Following the hint, for ‖θ‖2 ≤ ε2d/4

Eθ‖θ̂ − θ‖2 ≤ ‖θ‖2 + c1ε
2d exp(−c0d/2) ≤ min

(
‖θ‖2, ε2d

)
+ c1ε

2d exp(−c0d/2) ≤
2‖θ‖2ε2d

‖θ‖2 + ε2d
+ c1ε

2d exp(−c0d/2).

On the other hand, for any θ ∈ Rd,

9
‖θ‖2ε2d

‖θ‖2 + ε2d
+ c1ε

2d exp(−c0d/2) ≥ 9ε2d ≥ Eθ‖θ̂ − θ‖2

and hence the claimed bound in fact holds with c2 := 9 for any θ ∈ Rd.
5. Let θ(j) and θ̃(j) denote the restrictions of the sequences θ and θ̃ to the block Bj and

Nmax :=
∑J

j=1 card(Bj) = 1
2J(J + 1). Recall that

min
tj∈R
‖tjy(j) − θ(j)‖2 =

card(Bj)ε
2‖θ(j)‖2

card(Bj)ε2 + ‖θ(j)‖2

and hence by the oracle inequality from (4),

Eθ‖θ̃ − θ‖2 =
J∑
j=1

Eθ‖θ̃(j) − θ(j)‖2 +
∑

k>Nmax

θ2
k ≤

c2

J∑
j=1

min
tj∈R
‖tjy(j) − θ(j)‖2 +

J∑
j=1

c1ε
2card(Bj)e

− c0
2

card(Bj) +
∑

k>Nmax

θ2
k =

c2 inf
λ∈Λ∗

R(λ, θ) + c1ε
2

J∑
j=1

je−
c0
2
j
†
≤

c2

(
1 + η

)
inf

λ∈Λmon
R(λ, θ) + c2ε

2T1 + c1ε
2
∞∑
j=1

je−
c0
2
j = c3 inf

λ∈Λmon
R(λ, θ) + c4ε

2

where c3 := 2c2 and

c4 := c2 + c1

∞∑
j=1

je−
c0
2
j <∞.
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and the bound † holds6 by Lemma 3.11 on page 175 [1], with η := 1 and T1 := 1.
6.Pinsker’s weights belong to Λmon. Hence for sufficiently small ε > 0

min
λ∈Λmon

R(λ, θ) ≤ R(`, θ) = C∗ε
4β

2β+1 (1 + o(1))

and the claim follows from the bound, obtained in (5).

6Note that Lemma 3.11 is valid for any Nmax (Nmax = [1/ε2] is not assumed). In our case, Nmax ∝ J2 = 1/ε4.
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