
RANDOM PROCESSES
(final exam, June 24 1997, 9.00-12.30)
Prof. R.Liptser and Pavel Chigansky

Remark. Any materials and lecture notes are permissible.

Problem 1.

Unobservable signal is defined as

Xn = Xn−1εn,

where X0 = 1 and (εn)n≥1 is a sequence of independent random variables such that
Pr(εn = 1) = pn and Pr(εn = 0) = 1− pn, 0 < pn < 1, n ≥ 1.

An information on the signal is obtained via observation process (Yn)n≥0:

Yn = Xn + ξn,

where (ξn)n≥0 is i.i.d. sequence of random variables independent of (εn)n≥1. The
distribution function of ξ1 has a density fξ(x).

Denote by Y n
0 = {Y0, · · · , Yn} and

πn|n = Pr(Xn = 1|Y n
0 ) and πn|n−1 = Pr(Xn = 1|Y n−1

0 ).

1. Non linear filtering.

(a) Find π0|0;

(b) For n ≥ 1, express πn|n via πn|n−1.

(c) Derive a recursion for πn|n, n ≥ 1.

(d) (bonus +10) Let τ the first index n such that Xn = 0, that is τ = min{n :
Xn = 0}. Verify that

E(τ |Y n
0 ) =

∞∑
k=1

Pr(Xk = 1|Y n
0 ).

2. Kalman filter. Assume Eξ1 = 0 and Eξ2
1 < ∞.

(a) Find a model suitable for Kalman filter.

(b) Derive a Kalman filter
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3. Degenerate case. Assume there exists an index m such that pm = 0. Show
that for n ≥ m filtering estimates for Xn, both non linear and linear, coincide.

Problem 2.

Let θ and X1, · · · , Xn, · · · be random variables, Eθ2 < ∞. Put θ̂n = E(θ|Xn
1 ),

where Xn
1 = {X1, · · · , Xn}. E(θ|Xn

1 ) is the optimal in the mean square sense estimate
of θ given observations Xn

1 and

∆n = E(θ − θ̂n)2

is the mean square error.

1. Show that ∆n ≥ ∆n+1, n ≥ 1.

2. Show that limn→∞Eθ̂2
n exists and is bounded from above by Eθ2.

Problem 3.

Let random processes (Xt, Yt)t≥0 be defined by linear equations

Ẋ(t) = aX(t) + bẆ (t)

Ẏ (t) = AX(t) + BV̇ (t)

subject to the initial conditions X(0) = 0, Y (0) = 0, where a, A, b, B are constants,
and where W (t) and V (t) are independent Wiener processes, i.e. Ẇ (t) and V̇ (t) are
Gaussian white noises. Let tk, k = 0, 1, ..., be sampling times such that t0 = 0 and
tk+1 − tk ≡ ∆. For small ∆, we have

X(tk+1) ≈ X(tk) + aX(tk)∆ + b[W (tk+1)−W (tk)]

Y (tk+1) ≈ Y (tk) + AX(tk)∆ + B[V (tk+1)− V (tk)]. (1)

1. Replacing “≈” in (1) on “=” derive the Kalman filter for the signal Xtk , k ≥ 0
given observations Ytk , k ≥ 0.

2. With ∆ → 0 obtain the Kalman filter for the original continuous time model.
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