RANDOM PROCESSES

(final exam, June 24 1997, 9.00-12.30) Prof. R.Liptser and Pavel Chigansky

Remark. Any materials and lecture notes are permissible.

Problem 1.

Unobservable signal is defined as

$$X_n = X_{n-1}\varepsilon_n,$$

where $X_0 = 1$ and $(\varepsilon_n)_{n \ge 1}$ is a sequence of independent random variables such that $\Pr(\varepsilon_n = 1) = p_n$ and $\Pr(\varepsilon_n = 0) = 1 - p_n$, $0 < p_n < 1, n \ge 1$.

An information on the signal is obtained via observation process $(Y_n)_{n\geq 0}$:

$$Y_n = X_n + \xi_n$$

where $(\xi_n)_{n\geq 0}$ is i.i.d. sequence of random variables independent of $(\varepsilon_n)_{n\geq 1}$. The distribution function of ξ_1 has a density $f_{\xi}(x)$.

Denote by $Y_0^n = \{Y_0, \dots, Y_n\}$ and

$$\pi_{n|n} = \Pr(X_n = 1|Y_0^n)$$
 and $\pi_{n|n-1} = \Pr(X_n = 1|Y_0^{n-1}).$

1. Non linear filtering.

- (a) Find $\pi_{0|0}$;
- (b) For $n \geq 1$, express $\pi_{n|n}$ via $\pi_{n|n-1}$.
- (c) Derive a recursion for $\pi_{n|n}$, $n \geq 1$.
- (d) (bonus +10) Let τ the first index n such that $X_n = 0$, that is $\tau = \min\{n : X_n = 0\}$. Verify that

$$E(\tau|Y_0^n) = \sum_{k=1}^{\infty} \Pr(X_k = 1|Y_0^n).$$

- 2. Kalman filter. Assume $E\xi_1 = 0$ and $E\xi_1^2 < \infty$.
 - (a) Find a model suitable for Kalman filter.
 - (b) Derive a Kalman filter

3. **Degenerate case.** Assume there exists an index m such that $p_m = 0$. Show that for $n \ge m$ filtering estimates for X_n , both non linear and linear, coincide.

Problem 2.

Let θ and X_1, \dots, X_n, \dots be random variables, $E\theta^2 < \infty$. Put $\widehat{\theta}_n = E(\theta|X_1^n)$, where $X_1^n = \{X_1, \dots, X_n\}$. $E(\theta|X_1^n)$ is the optimal in the mean square sense estimate of θ given observations X_1^n and

$$\Delta_n = E(\theta - \widehat{\theta}_n)^2$$

is the mean square error.

- 1. Show that $\Delta_n \geq \Delta_{n+1}, n \geq 1$.
- 2. Show that $\lim_{n\to\infty} E\widehat{\theta}_n^2$ exists and is bounded from above by $E\theta^2$.

Problem 3.

Let random processes $(X_t, Y_t)_{t\geq 0}$ be defined by linear equations

$$\dot{X}(t) = aX(t) + b\dot{W}(t)
\dot{Y}(t) = AX(t) + B\dot{V}(t)$$

subject to the initial conditions X(0) = 0, Y(0) = 0, where a, A, b, B are constants, and where W(t) and V(t) are independent Wiener processes, i.e. $\dot{W}(t)$ and $\dot{V}(t)$ are Gaussian white noises. Let t_k , k = 0, 1, ..., be sampling times such that $t_0 = 0$ and $t_{k+1} - t_k \equiv \Delta$. For small Δ , we have

$$X(t_{k+1}) \approx X(t_k) + aX(t_k)\Delta + b[W(t_{k+1}) - W(t_k)]$$

$$Y(t_{k+1}) \approx Y(t_k) + AX(t_k)\Delta + B[V(t_{k+1}) - V(t_k)].$$
 (1)

- 1. Replacing " \approx " in (1) on "=" derive the Kalman filter for the signal $X_{t_k}, k \geq 0$ given observations $Y_{t_k}, k \geq 0$.
- 2. With $\Delta \to 0$ obtain the Kalman filter for the original continuous time model.