RANDOM PROCESSES. THE FINAL TEST

Prof. R. Liptser and Pavel Chigansky 9:00-13:00, 2nd of July, 1999

- * any supplementary material is allowed
- * the total score of the exam is 110 points.
- * duration of the exam is exactly 4 hours no additional time will be permitted
- * good luck!

Problem 1. (30%) Convergence Of Random Sequences

Consider a pair of random sequences $(\eta_n)_{n\geq 0}$ and $(\xi_n)_{n\geq 0}$ converging in probability to limits η and ξ respectively, i.e. for any $\varepsilon > 0$:

$$\lim_{n \to \infty} \mathbf{P}\{|\xi_n - \xi| \ge \varepsilon\} = 0, \quad \lim_{n \to \infty} \mathbf{P}\{|\eta_n - \eta| \ge \varepsilon\} = 0$$

(a) (12%) Show that the random variables ξ and η are equivalent, i.e. $\mathbf{P}\{\xi \neq \eta\} = 0$, if and only if

$$\lim_{n\to\infty} \mathbf{P}\{|\xi_n - \eta_n| \ge \varepsilon\} = 0$$

(prove both directions!)

- (b) (6%) Verify that $a\xi_n + b\eta_n \xrightarrow{\mathbf{P}} a\xi + b\eta$ (c) (6%) Let f(x) be a continuous function. Show that

$$f(\xi_n) \xrightarrow{\mathbf{P}} f(\xi)$$

Hint: use ' ε - δ ' formulation of continuity

(d) (6%) Is (c) correct for discontinuous functions f(x)? Prove your answer or give a counterexample.

Problem 2. (40%) Gaussian Processes

Consider a pair of random processes $(X_n, Y_n)_{n\geq 0}$, generated by a non linear recursion:

$$X_{n+1} = aX_n + \frac{X_n \varepsilon_{n+1} + Y_n \xi_{n+1}}{\sqrt{X_n^2 + Y_n^2}}$$
$$Y_{n+1} = AX_n + \frac{X_n \xi_{n+1} - Y_n \varepsilon_{n+1}}{\sqrt{X_n^2 + Y_n^2}}$$

where $(\varepsilon_n)_{n\geq 1}$ and $(\xi_n)_{n\geq 1}$ are independent i.i.d Gaussian sequences with zero mean and unit variance and a and A are constants. The initial condition $[X_0,Y_0]$ is a Gaussian vector, with zero mean and nonsingular covariance matrix Q.

- (a) (7%) Prove that $(X_n, Y_n)_{n>0}$ is a Gaussian process.
- (b) (7%) Give an explicit formula for the probability density of the vector $[X_n, Y_n]$
- (c) (7%) Give an explicit formula for the probability density of the vector

$$[X_0, X_1, ..., X_n; Y_0, ..., Y_n]$$

Hint: you may find useful the Markov property of the processes X_n and Y_n . No need to reduce the found formula to canonical form.

- (d) (7%) Derive recursive equations for $\widehat{X}_n = \mathbf{E}(X_n|Y_0^n)$, where $Y_0^n = \{Y_k, k = 0, 1, ..., n\}$
- (e) (7%) Define the *predicting* estimate $\widehat{X}_{n+k|n} = \mathbf{E}(X_{n+k}|Y_0^n)$, where k is some positive integer. Find $\widehat{X}_{n+k|n}$ and show that at each time point n it explicitly depends only on the *filtering* estimate \widehat{X}_n and not on the whole information Y_0^n .

Hint: use the smoothing property ¹ of the conditional expectation

- (f) (Bonus 5%) Consider the following settings:
 - (i) X_0 and Y_0 are independent. X_0 is a Gaussian random variable whereas Y_0 has a non Gaussian probability density.
 - (ii) X_0 and Y_0 are independent. Y_0 is a Gaussian random variable whereas X_0 has non Gaussian probability density.
 - (iii) X_0 and Y_0 depend. X_0 is a Gaussian random variable whereas Y_0 has non Gaussian probability density.
 - (iv) X_0 and Y_0 depend. Y_0 is a Gaussian random variable whereas X_0 has non Gaussian probability density.

Does the estimates, found in (d) and (e) remain optimal in each case? Optimal in the class of all linear estimates?

¹i.e. $\mathbf{E}(\alpha|\beta_1,...,\beta_n) = \mathbf{E}(\mathbf{E}(\alpha|\beta_1,...,\beta_n,\beta_{n+1},...)|\beta_1,...,\beta_n)$, see lecture note 8, page 4, property 8

Problem 3. (40%) Comparison between linear and non linear filters

A random parameter θ has a binary distribution:

$$P\{\theta = 1\} = \pi_0, P\{\theta = 0\} = 1 - \pi_0$$

It is observed in a non Gaussian noise, so that:

$$Y_n = \theta + \xi_n, \quad n \ge 1$$

where $(\xi_n)_{n\geq 0}$ is a sequece of i.i.d. random variables with probability density f(x). It is required to estimate θ from the observations $Y_1^n = \{Y_k, 1 \leq k \leq n\}$ n.

- (a) (7%)Denote by $\widehat{\theta}_n$ the optimal linear estimate of θ from Y_0^n . Derive recursions for the estimate $\widehat{\theta}_n$ and the filtering error $P_n = \mathbf{E}(\theta - \widehat{\theta}_n)^2$ (assume $\mathbf{E}\xi_n^2 = \sigma^2 < \infty$ and $\mathbf{E}\xi_n = 0$)
 (b) (7%) Does $\widehat{\theta}$ converge? If yes, to what limit and in what sense?
- (c) (7%) Let $\pi_n \stackrel{\triangle}{=} \mathbf{E}(\theta|Y_0^n) = \mathbf{P}\{\theta = 1|Y_0^n\}$. Derive the recursion for
- (d) (7%) Show that the filtering error generated by the nonlinear filter in (c) on the basis of a single observation Y_1 is given by:

$$V_1 \stackrel{\triangle}{=} \mathbf{E}(\pi_1 - \theta)^2 = \pi_0(1 - \pi_0) \int_{-\infty}^{\infty} \frac{f(x)f(x - 1)}{f(x - 1)\pi_0 + f(x)(1 - \pi_0)} dx$$

- (e) (7%) Assume uniformly distributed noise: $f(x) = \begin{cases} 1/2, & x \in [-1, 1] \\ 0, & x \notin [-1, 1] \end{cases}$ Calculate explicitly V_1 and compare it to the error obtained in (a). For which values of π_0 the equality $V_1(\pi_0) = P_1(\pi_0)$ holds?
- (f) (Bonus 5%) Derive a recursion for $V_n = \mathbf{E}(\pi_n \theta)^2$ for the case of the uniform noise as in (e). Do the sequences V_n and P_n converge? If yes, specify the limit and compare the rates of convergences?

Hint: simplify the estimate π_n for this specific setting.