RANDOM PROCESSES. THE FINAL TEST Special Assignement

Prof. R. Liptser and Pavel Chigansky July, 1999

- * any supplementary material is allowed
- * good luck!

Problem 1.

Consider the process $(X_n)_{n>0}$ generated by a recursion:

$$X_n = \frac{X_{n-1}\xi_n}{\sqrt{X_{n-1}^2 + \xi_n^2}}$$

subject to X_0 - a standard Gaussian random variable. $(\xi_n)_{n\geq 1}$ is a standard Gaussian i.i.d. sequence.

- (a) Prove that X_n Gaussian random variable for any $n \geq 0$.
- (b) Is $(X_n)_{n\geq 0}$ Gaussian process? Prove your answer.
- (c) Find recursions for $m_n = \mathbf{E}X_n$ and $V_n = \mathbf{E}(X_n m_n)^2$.
- (d) Does X_n converge? If yes to what limit and in what sense? ²

Lemma 1.1. Let α and β be a pair of independent Gaussian random variables with zero means and variances σ_{α}^2 and σ_{β}^2 . Let:

$$\gamma = \frac{\alpha\beta}{\sqrt{\alpha^2 + \beta^2}}$$

then γ is Gaussian.

This lemma can be proved in several ways and you are encouraged to prove it as you wish. Though you may follow the advice:

- (a) Show that in this case the distribution of γ is determined by distribution of $1/\gamma^2$.
- (b) Find the characteristic function of 1/α² and 1/β²
 (c) Use the fact that 1/γ² = 1/α² + 1/β² and the independence of α and β to find the distribution of 1/γ² and hence also of γ.

¹To answer (a) from **Problem 1** you will need to prove the following:

 $^{^2}$ no need to show convergence with probability 1

Problem 2.

Consider a pair of random processes $(X_n, Y_n)_{n\geq 0}$, generated by:

$$X_n = aX_{n-1} + b\varepsilon_n, \quad n = 1, 2, \dots$$

 $Y_n = AX_{n-1} + B\xi_n$

where a, b, A and B are constants and $(\varepsilon_n)_{n\geq 1}$ and $(\xi_n)_{n\geq 1}$ are independent i.i.d. standard Gaussian random sequences. The initial condition X_0 is a Gaussian r.v. with zero mean and $P = \mathbf{E}X_0^2$.

- (a) Find the recursion for the optimal estimate of the initial condition from the observations, i.e. $\pi_n = \mathbf{E}(X_0|Y_0^n)$
- (b) Show ³ that the limit $V = \lim_{n\to\infty} \mathbf{E}(X_0 \pi_n)^2$ exists and find its value.

Problem 3.

Let signal/observation model $(X_n, Y_n)_{n>0}$:

$$\begin{array}{rcl} X_n & = & a_0(Y_0^{n-1}) + a_1(Y_0^{n-1})X_{n-1} + b\varepsilon_n, & n = 1, 2, \dots \\ Y_n & = & A_0(Y_0^{n-1}) + A_1(Y_0^{n-1})X_{n-1} + B\xi_n \end{array}$$

where b and B are constants and $A_i(Y_0^{n-1})$ and $a_i(Y_0^{n-1})$, i=0,1 are explicit bounded functionals of the vector $[Y_0,Y_1,...,Y_{n-1}]$. $(\varepsilon_n)_{n\geq 1}$ and $(\xi_n)_{n\geq 1}$ are independent i.i.d. standard Gaussian random sequences. The initial condition (X_0,Y_0) is also a Gaussian vector.

- (a) Is the pair of processes $(X_n, Y_n)_{n\geq 0}$ necessarily Gaussian? Prove or verify your answer by example.
- (b) Find the recursion for $\widehat{X}_n = \mathbf{E}(X_n|Y_0^n)$ and $P_n = \mathbf{E}[(X_n \widehat{X}_n)^2|Y_0^n]$. Is the obtained filter linear? time invariant? asymptotically time invariant (i.e. time invariant as $n \to \infty$)?
- (c) Verify that in case of $a_i(Y_0^{n-1}) \equiv a_i$ and $A_i(Y_0^{n-1}) \equiv A_i$, i = 0, 1 (a_i and A_i constants) your solution coincides with the Kalman filter.

$$P = Pa^2 + b^2 - \frac{A^2a^2P^2}{A^2P + B^2}$$

 $^{^{3}}$ you may assume in this question that P is the positive solution of