RANDOM PROCESSES. THE FINAL TEST.

Prof. R. Liptser and Pavel Chigansky

14:00-17:00, 26 of June, 2000

- * any supplementary material is allowed
- * duration of the exam is 3 hours
- * note that the questions with <u>lower</u> relative weights are more complex
- * the total score of the exam is 105 points
- * please, use a separate notebook for the first question
- * good luck!

Problem 1. Conditional expectation and orthogonal projection

For the random variables X, Y and Z verify the correctness of the following statements¹. If the statement is correct prove your answer, otherwise give an *explicit* counterexample.

- (a) [6] $\boldsymbol{E}\left\{\boldsymbol{E}(X|Y)\middle|X\right\} \stackrel{?}{=} X$
- (b) [5] Independence of X and Y implies E(X|Y) = EX. Is the converse true, i.e.

$$E(X|Y) = EX \stackrel{?}{\Longrightarrow} X$$
 and Y independent.

- (c) [4] $E(X|Y) \stackrel{?}{=} E\{X | E(X|Y)\}$
- (d) [5] $\{X, Y, Z\}$ is Gaussian, such that EX = 0 and Z and Y are independent.

$$E(X|Y,Z) \stackrel{?}{=} E(X|Y) + E(X|Z).$$

- (e) [5] Does (d) remain correct, if $\{X, Y, Z\}$ is non-Gaussian?
- (f) [5] Assume X, Y are non Gaussian random variables with finite second moments. Assume $\mathbf{E}(X|Y) = c_0 + c_1 Y$, where c_0 and c_1 are constants. Let $\widehat{\mathbf{E}}(X|Y)$ denote the orthogonal projection

$$\boldsymbol{E}(X|Y) \stackrel{?}{=} \widehat{\boldsymbol{E}}(X|Y)$$

- (g) [4] Give an example of a pair of non Gaussian random variables X and Y, so that $E(X|Y) = c_0 + c_1Y$, where c_0 and c_1 are some constants.
- (h) [5] X > Y implies $\mathbf{E}(X|Z) > \mathbf{E}(Y|Z)$. Show that this property is generally wrong for the orthogonal projections, i.e.

$$X > Y \Rightarrow \widehat{E}(X|Z) > \widehat{E}(Y|Z).$$

Describe one or several cases when it is nevertheless correct.

 $^{^{1}\!\!}$ all the comparisons between random variables (e.g. X=Y and X>Y) are with probability 1

Problem 2. Linear Filtering

Let $(X_n)_{n\geq 0}$ be a scalar signal, generated by the difference equation:

$$X_n = a(\theta)X_{n-1} + b(\theta)\varepsilon_n, \quad n \ge 1$$

subject to X_0 , a standard Gaussian random variable.

 $(\varepsilon_n)_{n\geq 1}$ is a standard i.i.d. Gaussian sequence. θ is a random parameter, taking values from $S=\{1,...,d\}$ with probabilities $\{p_1,...,p_d\}$ respectively. Assume also that θ , X_0 and $(\varepsilon_n)_{n\geq 1}$ are independent. The coefficients a(x) and b(x) are some given functions.

The signal X_n is observed in additive white noise, so that the measurements are given by:

$$Y_n = X_{n-1} + \sigma \xi_n, \quad n \ge 1$$

where σ is a known constant and $(\xi_n)_{n\geq 1}$ is a standard Gaussian i.i.d. sequence, independent of $(X_n)_{n\geq 1}$.

- (a) [6] Is $(X_n, Y_n)_{n\geq 1}$ a conditionally Gaussian process, given θ . Prove your answer.
- (b) [5]Derive recursions for

$$m_n(\theta) = \mathbf{E}(X_n|\theta)$$
 and $V_n(\theta) = \mathbf{E}((X_n - m_n(\theta))^2|\theta)$.

- (c) [7] Is $(X_n, Y_n)_{n \ge 1}$ a Gaussian process ? Prove your answer.
- (d) [7] Use the Kalman filter to generate $\widehat{X}_n(\theta) = \mathbf{E}(X_n | \theta, Y_1^n)$ and $P_n(\theta) = \mathbf{E}(X_n \widehat{X}_n(\theta))^2 | \theta$).
- (e) [7] Let $\widehat{X}_n = \boldsymbol{E}(X_n|Y_1^n)$ and $\pi_n(i) = \boldsymbol{P}\{\theta = i|Y_1^n\}$. Express $\widehat{X}_n = \boldsymbol{E}(X_n|Y_1^n)$ via $\widehat{X}_n(i) = \boldsymbol{E}(X_n|\theta = i,Y_1^n)$ and $\pi_n(i)$.
- (f) [5] Find recursion for the filtering estimate $\pi_n(i) = \mathbf{P}\{\theta = i | Y_1^n\}$.

Problem 3. Linear/Nonlinear Filtering

Let $(\theta_n)_{n\geq 1}$ be a finite state Markov chain with states $S=\{a_1,...,a_d\}$, transition probabilities

$$\lambda_{ij} := \mathbf{P}\{\theta_n = a_j | \theta_{n-1} = a_i\}, \quad n \ge 1, \quad i, j \in S$$

and initial distribution

$$p_i = \mathbf{P}\{\theta_0 = a_i\}, \quad i \in S$$

The observed process is given by:

$$Y_n = H(\theta_n) + \xi_n, \quad n \ge 1$$

where H is known nonlinear function and ξ_n is *colored* noise, generated by:

$$\xi_n = \gamma \xi_{n-1} + \varepsilon_n$$

subject to $\xi_0 \equiv 0$. The constant γ is known and $(\varepsilon_n)_{n\geq 1}$ is an i.i.d. sequence of random variables, independent of $(\theta_n)_{n\geq 0}$. ε_1 is assumed to have a distribution density f(x).

- (a) [8] Under $\gamma = 0$, derive the optimal filter for θ_n , i.e. find the recursion $\pi_n(i) = \mathbf{P}\{\theta_n = a_i | Y_1^n\}$.
- (b) [8] Under $\gamma = 0$ and $\mathbf{E}\varepsilon_n^2 < \infty$ and $\mathbf{E}\varepsilon_n = 0$ use the Kalman filter for calculation of $\hat{\theta}_n = \hat{\mathbf{E}}(\theta_n|Y_1^n)$.
- for calculation of $\widehat{\theta}_n = \widehat{\boldsymbol{E}}(\theta_n|Y_1^n)$. (c) [7] Under $\gamma \neq 0$ and $\boldsymbol{E}\varepsilon_n^2 < \infty$ and $\boldsymbol{E}\varepsilon_n = 0$ use the Kalman filter for calculation of $\widehat{\theta}_n = \widehat{\boldsymbol{E}}(\theta_n|Y_1^n)$.
- (d) [6] Under $\gamma \neq 0$, derive the optimal filter for θ_n , i.e. find the recursion $\pi_n(i) = \mathbf{P}\{\theta_n = a_i | Y_1^n \}$.