RANDOM PROCESSES. THE FINAL TEST.

P. Chigansky

9:00-12:00, 24th of October, 2003

Student	ID.	
Student	ID:	

- * any supplementary material is allowed
- * duration of the exam is 3 hours
- * write <u>briefly</u> the main idea of your answers in the exam itself. If needed, give the reference to your copybook, where you may place other technical details
- * note that the problems are more or less in the chronological order of the chapters in the course and \underline{not} in any monotonic order of complexity
- * the total score of the exam is 100
- * good luck!

Problem 1.

Consider the simple game, where a player either doubles or loses his stake with probability 1 > p > 0 and (1 - p) respectively. The player starts the game with the stake of 1 dollar and pursues the following strategy: he doubles his stake each time he loses and stops playing after he wins. Let X_n denote the total amount of money, the player wins or loses at the end of n-th game. Then X_n satisfies the recursion

$$X_n = X_{n-1} + \frac{1}{2}V_n\xi_n, \quad n \ge 1$$

subject to $X_0 = 0$, where $\xi = (\xi_n)_{n \geq 0}$ is an i.i.d. sequence with values $\{1, -1\}$ and $P(\xi_1 = 1) = p$. The *strategy* process V_n is given by $(n \geq 2)$

$$V_n = \begin{cases} 2V_{n-1} & \text{if } \xi_{n-1} = -1\\ 0 & \text{if } \xi_{n-1} = 1 \end{cases}$$

subject to $V_1 \equiv 2$.

- (a) Does $X = (X_n)_{n \ge 1}$ converge? If yes, in what sense and for which p?
- 1. with probability one
- 2. in probability
- 3. in \mathbb{L}^1
- 4. in distribution
- 5. does not converge in any sense

Explain your answer:

(b) Describe the limit $X_{\infty} = \lim_{n \to \infty} X_n$

(c) Let τ be the first time at which X_n attains its limit, i.e.

$$\tau = \min\{n : X_n = X_\infty\}.$$

Find its distribution

$$P(\tau = m) =$$

- (d) Check the correct answers:
 - (a) The player wins eventually
 - (b) The amount of money the player loses till he wins grows exponentially
 - (c) The player can win any amount of money with positive probability
 - (d) The player may continue the game infinitely long

Problem 2. Consider the filtering problem, where the signal $X = (X_n)_{n\geq 0}$ is a finite state Markov chain with the alphabet $\mathbb{S} = \{a_1, ..., a_d\}$, transition probabilities matrix Λ and the initial distribution p. The observations are given by

$$Y_n = X_{n-1} + \xi_n, \quad n \ge 1$$

where $\xi = (\xi_n)_{n\geq 1}$ is an i.i.d. sequence with ξ_1 having probability density f(x) and $E\xi_1 = 0$, $E\xi_1^2 = 1$.

(a) The vector π_n with entries $P(X_n = a_i | Y_1^n)$, satisfies the recursion¹

1.
$$\pi_n = \frac{\Lambda^* D(Y_n) \pi_{n-1}}{\langle 1, D(Y_n) \pi_{n-1} \rangle}$$

2.
$$\pi_n = \frac{\Lambda^* D(Y_n) \pi_{n-1}}{\langle 1, D(Y_n) \Lambda^* \pi_{n-1} \rangle}$$

3.
$$\pi_n = \frac{D(Y_n)\pi_{n-1}}{\langle 1, D(Y_n)\Lambda^*\pi_{n-1} \rangle}$$

4.
$$\pi_n = \frac{\Lambda^* D(Y_n) \pi_{n-1}}{\langle 1, \Lambda^* \pi_{n-1} \rangle}$$

 $n \ge 1$, where D(y) is a diagonal matrix with entries $f(y-a_j), j=1,...,d,$ $y \in \mathbb{R}$ and $\pi_0 = p$.

(b) Find the recursion for $\widehat{\pi}_n = \widehat{E}(I_n|Y_1^n)$, where I_n is the vector of indicators $I(X_n = a_i)$, i = 1, ..., d:

(c) Let a denote the vector with entries a_j , j = 1, ..., d and suppose that is a right eigenvector of Λ , so that $\Lambda a = \gamma a$ for some real γ . Assume that the chain X_n is ergodic and stationary, i.e. $P(X_n = a_i) = \mu_i$, i = 1, ..., d where vector μ solves $\Lambda^* \mu = \mu$.

Which of the recursions does X_n satisfy $(n \ge 1)$?

1.
$$X_n = \gamma X_{n-1} + \sqrt{(1-\gamma^2)\langle a^2 \rangle} \widetilde{\varepsilon}_n$$

2.
$$X_n = (1 - \gamma)X_{n-1} + \gamma\sqrt{\langle a^2\rangle}\widetilde{\varepsilon}_n$$

3.
$$X_n = \gamma X_{n-1} + \langle a^2 \rangle \sqrt{(1-\gamma^2)} \widetilde{\varepsilon}_n$$

4.
$$X_n = (1 - \gamma)X_{n-1} + \sqrt{(1 - \gamma^2)\langle a^2 \rangle} \widetilde{\varepsilon}_n$$

where $\langle a^2 \rangle = \sum_{i=1}^d a_i^2 \mu_i$ and $\widetilde{\varepsilon} = (\widetilde{\varepsilon}_n)_{n \geq 1}$ is a sequence of uncorrelated random variables with zero mean and unit variance.

(d) Under the assumptions of (c), derive <u>scalar</u> recursions for $\widehat{X}_n = \widehat{E}(X_n|Y_1^n)$ and $P_n = E(X_n - \widehat{X}_n)^2$:

Problem ² 3. (Brownian bridge)

Let $W = (W_t)_{0 \le t \le 1}$ be the Wiener process.

(a) Find the following conditional expectations $(t \leq 1)$

$$E(W_t|W_1) =$$

$$E((W_t - E(W_t|W_1))^2|W_1) =$$

$$E((W_t - E(W_t|W_1))(W_s - E(W_s|W_1))|W_1) =$$

(b) Find the conditional density

$$\frac{\partial}{\partial x}P(W_t \le x|W_1) =$$

(c) Consider the process $W_t^x = W_t - t(W_1 - x)$, where x is a real parameter. Find its mean, variance and covariance functions:

$$EW_t^x =$$

$$E(W_t^x - E(W_t^x))^2 =$$

$$E(W_t^x - E(W_t^x))(W_s^x - E(W_s^x)) =$$

$$\int_0^t \frac{1}{(1-s)^2} ds = \frac{t}{1-t}$$

and

$$\int_0^t \frac{s}{(1-s)^2} ds = \frac{t}{1-t} + \ln(1-t) - 1.$$

²You may encounter the integrals (0 < t < 1)

(d) For any continuous function x_t , $t \in [0,1]$, let $\psi_n(x)$ denote a bounded real functional of the vector $(x_{t_1},...,x_{t_n})$ for any fixed partition $0 < t_1 < ... < t_n < 1$ of [0,1]. Then

$$E(\psi_n(W)|W_1 = x) = E\psi_n(W^x), \quad \forall x \in \mathbb{R}$$

Is this claim correct³?

Yes \square

No □

Explain your answer:

(e) Consider the Ito process

$$V_t^x = xt - (1-t) \int_0^t \frac{dW_s}{1-s}, \quad 0 \le t < 1,$$

where $x \in \mathbb{R}$. Which SDE does V^x solve

1.
$$dV_t^x = \frac{x}{1-t}dt - \frac{x - V_t^x}{1-t}dW_t$$

$$2. \quad dV_t^x = \frac{V_t^x}{1-t}dt - \frac{x}{1-t}dW_t$$

3.
$$dV_t^x = \frac{x - V_t^x}{1 - t}dt - dW_t$$

$$4. \quad dV_t^x = dt - \frac{x - V_t^x}{1 - t} dW_t$$

subject to $V_0^x = 0$.

(f) Does V_t converge in \mathbb{L}^2 as $t \to 1$? If yes, describe the limit.

(g) Find the following expectations

$$\begin{split} EV_t^x &= \\ E\left(V_t^x - E(V_t^x)\right)^2 &= \\ E\left(V_t^x - E(V_t^x)\right)\left(V_s^x - E(V_s^x)\right) &= \end{split}$$

(h) Is V^x a Gaussian process?

Yes \square

No □

Explain your answer:

(i)) For a	any fi	unctional	$\psi_n(x)$),	defined	in ((d)),
-----	---------	--------	-----------	-------------	----	---------	------	-----	----

$$E(\psi_n(W)|W_1 = x) = E\psi_n(V^x), \quad \forall x \in \mathbb{R}.$$

Is this claim correct?

Yes \square

No □

Explain your answer:

(j) Are the processes V_t^x and W_t^x in distinguishable, i.e. is $P(V_t^x = W_t^x) = 1$ for any $x \in \mathbb{R}$ and for any $t \in [0, 1]$?

Yes \square

No □

Explain your answer: