RANDOM PROCESSES. THE FINAL TEST.

Dr. P. Chigansky 9:00-12:00, 20th, September, 2004

Student	$ID \cdot$	
Student	1D:	

- * any supplementary material is allowed
- * duration of the exam is 3 hours
- * write <u>briefly</u> the main idea of your answers in the exam itself. If required, give the reference to your copybook, where you may place other technical details
- * note that the problems are <u>not</u> in any monotonic order of complexity
- * the total score of the exam is 120 points.
- * good luck!

1

Problem 1.

Let X be a standard Gaussian random variable (a "message") to be transmitted over noisy channel, so that the following observation sequence is available to the receiver:

$$Y_n = a_n + b_n X + \xi_n, \quad n \ge 1$$

where $\xi = (\xi_n)_{n\geq 1}$ is a standard Gaussian i.i.d. random sequence, independent of X and $(a_n, b_n)_{n\geq 1}$ are real numbers, chosen by the transmitter and known also to the receiver.

(a) Find recursive formulae for the optimal receiver $\widehat{X}_n = E(X|Y_1^n)$ and the corresponding mean square error $P_n = E(X - \widehat{X}_n)^2$.

(reference page ____)

(b) Let $\gamma_n = E(a_n + b_n X)^2$ be the receiver output power. The optimal transmitter, which minimizes P_n and satisfies the power constraint $\gamma_n \leq \gamma$ for any $n \geq 1$ is

(1)
$$a_n = 0, b_n = 1 \text{ and } P_n = \gamma$$

(2)
$$a_n = 0, b_n = \sqrt{\gamma} \text{ and } P_n = 1/(1 + \gamma n)$$

(3)
$$a_n = 0$$
, $b_n = \sqrt{\gamma}$ and $P_n = \gamma/(\gamma + n)$

(4)
$$a_n = -\gamma$$
, $b_n = \sqrt{\gamma}$ and $P_n = 1/(1+n)$

(c) If ξ_1	were a non	${\it Gaussian}$	${\rm random}$	variable	with	zero	mean	and	unit
variance,	the optimal	transmitt	er/receiv	er pair n	night	attaiı	n		

- (1) smaller error than in the Gaussian case
- (2) larger error than in the Gaussian case

(reference page ____)

(d) Assume that the transmitter gets noiseless feedback from the receiver, so that only the coefficient a_n (and not b_n) is allowed to depend on $\{Y_1, ..., Y_{n-1}\}$, the information passed to the receiver before n:

$$Y_n = a_n(Y_1^{n-1}) + b_n X + \xi_n.$$

Derive the equations for $\widehat{X}_n = E(X|Y_1^n)$ and $P_n = E(X-\widehat{X}_n)^2$, the optimal receiver in this case.

- (e) Is $Y = (Y_n)_{n \ge 1}$ a Gaussian process in (d)?
 - (1) Yes.
 - (2) No

Explain:

(f) The optimal transmitter, which minimizes P_n subject to the power constraint $\gamma_n = E(a_n(Y_1^{n-1}) + b_n X)^2 \leq \gamma$ is

(1)
$$a_n = 0, b_n = \sqrt{\gamma} \text{ and } P_n = 1/(1 + \gamma n)$$

(2)
$$a_n = 0$$
, $b_n = \sqrt{\gamma}$ and $P_n = \gamma/(\gamma + n)$

(3)
$$a_n = -b_n \hat{X}_{n-1}$$
, $b_n = \sqrt{\gamma(1+\gamma)^{n-1}}$ and $P_n = 1/(1+\gamma)^n$

(4)
$$a_n = -b_n \hat{X}_{n-1}, b_n = \sqrt{\gamma^{n-1}(1+\gamma)} \text{ and } P_n = 1/(1+\gamma)^n$$

Hint: Convince yourself that

$$E(a_n(Y_1^{n-1}) + b_n X)^2 = E(a_n(Y_1^{n-1}) + b_n \widehat{X}_{n-1})^2 + b_n^2 P_{n-1}$$
we it with the equation for P_n (without explicitly solving it)

and use it with the equation for P_n (without explicitly solving it).

(g) Can the filtering error be improved, if b_n is also allowed to depend on $\{Y_1,...,Y_{n-1}\}$

(1) Yes, by choosing

 $a_n = \underline{\hspace{1cm}}$ and $b_n = \underline{\hspace{1cm}}$ which gives

 $P_n = \underline{\hspace{1cm}}$

(2) No.

Explain:

Hint: If ζ_n are positive random variables then (why?)

$$E\prod_{\ell=1}^{n} \frac{1}{\zeta_{\ell}} \ge \exp\left\{-\sum_{\ell=1}^{n} \log E\zeta_{\ell}\right\}$$

 $({\rm reference\ page\ }\underline{\hspace{1cm}})$

Problem 2.

Let $X=(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables. For a fixed $n\geq 1$ let Y^n be the vector with entries

$$Y^{n}(i) = X_{i} / \sqrt{X_{1}^{2} + ... + X_{n}^{2}}, \quad i = 1, ..., n$$

- (a) Assume $EX_1^2=1$ and $E|X_1|^p<\infty$ for any $p\geq 1$. Does the random sequence $\sqrt{n}Y^n(1)$ converge as $n\to\infty$?
 - (1) Yes,
 - \square *P*-a.s.
 - \square in probability
 - \square in \mathbb{L}^2
 - \square in law

the limit is _____

(2) No.

Hint: use the law of large numbers

(b) A random vector Z in \mathbb{R}^n is said to have uniform distribution on the unit sphere in \mathbb{R}^n , if its Euclidian norm is unity and it's distribution is invariant under rotations, i.e for any orthogonal matrix U, such that $U^{-1} = U^*$, Z and UZ have the same distribution.

 Y^n has uniform distribution on the unit sphere in \mathbb{R}^n for any n>1 if

- (1) X_1 is Gaussian with zero mean
- (2) X_1 is Bernulli, i.e. $P(X_1 = \pm 1) = 1/2$
- (3) X_1 takes values in $\{\pm 1, \pm 2, ...\}$ and $P(X_1 = \ell) = P(X_1 = -\ell)$

- (c) It is known that the uniform distribution on the unit sphere in \mathbb{R}^n , n > 1 is unique, i.e. there is only one distribution which is invariant under rotations. Let \mathbb{Z}^n be a random vector with this distribution. Then
 - (1) $\sqrt{n}Z^n(1)$ converges weakly to a uniform random variable on [-1,1]
 - (2) $\sqrt{n}Z^n(1)$ converges P-a.s. to a uniform random variable on [-1,1]
 - (3) $\sqrt{n}Z^n(1)$ converges weakly to a standard Gaussian random variable
- (4) $\sqrt{n}Z^n(1)$ converges P-a.s. to a standard Gaussian random variable Explain:

Problem 3.

Let $X = (X_n)_{n \ge 0}$ be a binary Markov chain , switching between 0 and 1 with transition probabilities

$$\lambda_0 = P(X_n = 0 | X_{n-1} = 0), \quad \lambda_1 = P(X_n = 1 | X_{n-1} = 1)$$

and equiprobable initial distribution. The observation process is given by

$$Y_n = X_n + \varepsilon_n, \quad n \ge 1$$

where $\varepsilon = (\varepsilon_n)_{n\geq 1}$ is an i.i.d. sequence, independent of X and ε_1 has probability density f(x).

Introduce the process $Z = (Z_n)_{n \ge 0}$

$$Z_n = \prod_{k=0}^n X_k.$$

- (a) Does Z_n converge?
 - (1) Yes,

 \square *P*-a.s.

 \square in probability

 \square in \mathbb{L}^2

 \square in law

the limit is _____

(2) No.

Explain:

(b) Does the sequence \widehat{Z}_n	$= P(Z_n = 1 Y_1^n) \text{ converge } ?$
(1) Yes,	
☐ in probability	

$$\Box$$
 in \mathbb{L}^2
 \Box in law
the limit is _____

(2) No.

Explain:

- (c) Is Z a Markov process ?
 - (1) Yes, the transition probabilities are

$$P(Z_n = 0|Z_{n-1} = 0) =$$

 $P(Z_n = 1|Z_{n-1} = 1) =$ _____

(2) No.

Explain:

(d) The conditional probability $\pi_n = P(X_n = 1 | Y_1^n)$ satisfies the recursion:

$$\pi_n =$$

 $({\rm reference\ page\ } \underline{\hspace{1cm}})$

(e) The conditional probability $\widehat{Z}_n = P(Z_n = 1|Y_1^n)$ satisfies

$$1) \quad \widehat{Z}_n = \widehat{Z}_{n-1} \pi_n$$

$$2) \quad \widehat{Z}_n = \frac{\widehat{Z}_{n-1}}{\pi_{n-1}} \pi_n$$

3)
$$\widehat{Z}_n = \frac{\lambda_1 \widehat{Z}_{n-1} + (1 - \lambda_0)(1 - \widehat{Z}_{n-1})}{\lambda_1 \pi_{n-1} + (1 - \lambda_0)(1 - \pi_{n-1})} \pi_n$$

4)
$$\widehat{Z}_n = \frac{\lambda_1(1-\widehat{Z}_{n-1}) + (1-\lambda_0)\widehat{Z}_{n-1}}{\lambda_1(1-\pi_{n-1}) + (1-\lambda_0)\pi_{n-1}} \pi_n$$

 $({\rm reference\ page\ }\underline{\hspace{1cm}})$

Problem 4.

Let $B = (B_t)_{t\geq 0}$ be a Wiener process. It turns out that any random variable X with $EX^2 < \infty$, generated by a trajectory of B on the interval [0,1], obeys the representation via Itô integral:

$$X = EX + \int_0^1 Z_s dB_s$$

for some random process $Z = (Z_t)_{0 \le t \le 1}$. Use the Itô formula to find Z_t for each of the following random variables:

(a)
$$B_1 = \underline{\hspace{1cm}} + \int_0^1 \underline{\hspace{1cm}} dB_t$$

(reference page ____)

(b)
$$B_1^2 = \underline{\hspace{1cm}} + \int_0^1 \underline{\hspace{1cm}} dB_t$$

¹or more precisely X is measurable w.r.t. $\mathcal{F}_1^B = \sigma\{B_s, 0 \le s \le 1\}$

(c)
$$\int_0^1 B_s ds = \underline{\qquad} + \int_0^1 \underline{\qquad} dB_t$$

Hint: Apply the Itô formula to tB_t

 $({\rm reference\ page\ } \underline{\hspace{1cm}})$

(d)
$$B_1^3 = \underline{\hspace{1cm}} + \int_0^1 \underline{\hspace{1cm}} dB_t$$

 $({\rm reference\ page\ } \underline{\hspace{1cm}})$

(e)
$$\exp(B_1) = \underline{\hspace{1cm}} + \int_0^1 \underline{\hspace{1cm}} dB_t$$

Hint: Apply the Itô formula to $\exp\{B_t - t/2\}$.

$$\sin(B_1) = \underline{\qquad} + \int_0^1 \underline{\qquad} dB_t$$

Hint: Apply the Itô formula to $\exp\{t/2\}\sin(B_t)$.

 $\left(\text{reference page} \,\,\underline{\hspace{1cm}} \right)$