SOLUTION TO THE FINAL TEST JULY 24, 1997

Problem 1

Non linear filter.

(a)
$$\pi_{0|0} = \mathbf{E}(X_0|Y_0) \equiv 1$$

(b) Put $G_n(Y_0^{n-1}, Y_n) = \pi_{n|n} = \Pr\{X_n = 1 | Y_0^n\} \equiv \mathbf{E}(X_n | Y_0^n)$. Then following Lecture Note # 9:

$$\mathbf{E}(g(Y_n)X_n|Y_0^{n-1}) = \mathbf{E}(g(Y_n)G_n(Y_0^{n-1}, Y_n)|Y_0^{n-1})$$

for any bounded function g(x). Further:

$$\begin{split} \mathbf{E}(g(Y_n)X_n|Y_0^{n-1}) &=& \mathbf{E}(g(X_n+\xi_n)X_n|Y_0^{n-1}) = \\ &=& \mathbf{E}\Big[\mathbf{E}\Big(X_ng(X_n+\xi_n)|Y_0^{n-1},X_n\Big)|Y_0^{n-1}\Big] = \\ &=& \mathbf{E}\left(X_n\int g(y)f_\xi(y-X_n)dy|Y_0^{n-1}\right) = \\ &=& \pi_{n|n-1}\int g(y)f_\xi(y-1)dy \end{split}$$

Similarly,

$$\begin{split} \mathbf{E}(g(Y_n)G_n(Y_0^{n-1},Y_n)) &= & \pi_{n|n-1} \int g(y)G_n(Y_0^{n-1},y)f_{\xi}(y-1)dy + \\ & (1-\pi_{n|n-1}) \int g(y)G_n(Y_0^{n-1},y)f_{\xi}(y)dy \end{split}$$

So that due to arbitrariness of g(y):

$$\pi_{n|n} = G(Y_0^{n-1}, Y_n) = \frac{\pi_{n|n-1} f_{\xi}(Y_n - 1)}{\pi_{n|n-1} f_{\xi}(Y_n - 1) + (1 - \pi_{n|n-1}) f_{\xi}(Y_n)}$$
(1.1)

(c) Note that $\pi_{n|n-1} = \mathbf{E}(X_n|Y_0^{n-1})$ and hence:

$$\pi_{n|n-1} = \mathbf{E}(X_n|Y_0^{n-1}) = \mathbf{E}(X_{n-1}\varepsilon_n|Y_0^{n-1}) = \pi_{n-1|n-1}\mathbf{E}\varepsilon_n = \pi_{n-1|n-1}p_n$$
(1.2)

So the optimal filter is completely specified by (1.1) and (1.2) subject to initial condition $\pi_{0|0} = 1$.

(d) (bonus+10)

$$\tau \equiv \sum_{k=1}^{\tau} 1 = \sum_{k=1}^{\infty} I(\tau \ge k)$$

where $I(\cdot)$ is an indicator function. Take conditional expectation of both sides:

$$\mathbf{E}(\tau|Y_0^n) = \sum_{k=1}^{\infty} \Pr(\tau \ge k|Y_0^n) = \sum_{k=1}^{\infty} \Pr(X_k = 1|Y_0^n)$$

Kalman filter (a)

$$X_n = X_{n-1}\varepsilon_n = p_n X_{n-1} + (\varepsilon_n - p_n) X_{n-1}$$

Define $\widetilde{\varepsilon}_n = (\varepsilon_n - p_n) X_{n-1}$ Then:

$$\begin{aligned} \mathbf{E}\widetilde{\varepsilon}_{n}X_{m} &= \mathbf{E}(\varepsilon_{n}-p_{n})\mathbf{E}X_{n-1}X_{m} = 0 & \text{for } m \leq n-1 \\ \mathbf{E}\widetilde{\varepsilon}_{n} &= \mathbf{E}(\varepsilon_{n}-p_{n})\mathbf{E}X_{n-1} \equiv 0 \\ \mathbf{E}\widetilde{\varepsilon}_{n}^{2} &= \mathbf{E}(\varepsilon_{n}-p_{n})^{2}\mathbf{E}X_{n-1}^{2} = p_{n}(1-p_{n})\prod_{k=1}^{n-1}p_{k} = (1-p_{n})\prod_{k=1}^{n}p_{k} \end{aligned}$$

where the last implication is due to the fact, that:

$$\mathbf{E}X_n^2 = \mathbf{E}X_{n-1}^2 \mathbf{E}\varepsilon_n^2 = p_n \mathbf{E}X_{n-1}^2 \implies \mathbf{E}X_n^2 = \prod_{k=1}^n p_k$$

So this model suits the Kalman filter setting:

$$X_n = p_n X_{n-1} + \widetilde{\varepsilon}_n$$

$$Y_n = X_n + \xi_n$$

where $(\tilde{\varepsilon}_n)_{n\geq 1}$ is a sequence of independent zero mean random variable with $\mathbf{E}\tilde{\varepsilon}_n^2 = P_n = (1 - p_n) \prod_{k=1}^n p_k$ and $(\xi_n)_{n\geq 1}$ is a zero mean i.i.d. sequence with $\mathbf{E}\xi_1^2 = \int x^2 f_{\xi}(x) dx \stackrel{\triangle}{=} \sigma_{\xi}^2$.

(b) The Kalman filter is given by:

$$\begin{split} \widehat{X}_n &= p_n \widehat{X}_{n-1} + \frac{p_n^2 V_{n-1} + P_n}{p_n^2 V_{n-1} + P_n + \sigma_{\xi}^2} (Y_n - p_n \widehat{X}_{n-1}) \\ V_n &= p_n^2 V_{n-1} + P_n - \frac{(p_n^2 V_{n-1} + P_n)^2}{p_n^2 V_{n-1} + P_n + \sigma_{\xi}^2} \end{split}$$

where $V_n = \mathbf{E}(X_n - \widehat{X}_n)^2$.

Degenerate case

Note that if $p_m = 0$ for some m, then $X_n \equiv 0$ for $n \geq m$ and thus $\pi_{n|n} = \mathbf{E}(X_n = 1|Y_0^n) \equiv 0$ for $n \geq m$. It is easy to see that Kalman filter also gives $\widehat{X}_n \equiv 0$ for $n \geq m$ in this case, since $(P_n)_{n \geq m} \equiv 0$.

Problem 2

1. Show that $\Delta_n = \mathbf{E}(\theta - \widehat{\theta})^2$ is an non increasing sequence:

$$\begin{split} \Delta_n &= \mathbf{E} \Big(\theta - \mathbf{E} (\theta | X_0^n) \Big)^2 \stackrel{\dagger}{=} \mathbf{E} \Big(\theta^2 - [\mathbf{E} (\theta | X_0^n)]^2 \Big) \stackrel{\dagger\dagger}{=} \\ &= \mathbf{E} \Big(\theta^2 - \left[\mathbf{E} \big(\mathbf{E} (\theta | X_0^{n+1}) | X_0^n \big) \right]^2 \Big) \geq \mathbf{E} \Big(\theta^2 - \mathbf{E} \Big(\left[\mathbf{E} (\theta | X_0^{n+1}) \right]^2 | X_0^n \Big) \Big) \stackrel{\dagger\dagger}{=} \\ &= \mathbf{E} \theta^2 - \mathbf{E} \left[\mathbf{E} (\theta | X_0^{n+1}) \right]^2 \stackrel{\dagger}{=} \Delta_{n+1} \end{split}$$

where Jensen inequality for conditional expectations had been used. Equalities \dagger is due to:

$$\begin{split} \mathbf{E} \Big(\theta - \mathbf{E}(\theta | X_0^n) \Big)^2 &= \mathbf{E} \theta^2 - 2 \mathbf{E} \theta \mathbf{E}(\theta | X_0^n) + \mathbf{E} \left[\mathbf{E}(\theta | X_0^n) \right]^2 = \\ &= \mathbf{E} \theta^2 - 2 \mathbf{E} \left[\mathbf{E}(\theta \mathbf{E}(\theta | X_0^n) | X_0^n) \right] + \mathbf{E} \left[\mathbf{E}(\theta | X_0^n) \right]^2 = \\ &= \mathbf{E} \left(\theta^2 - \left[\mathbf{E}(\theta | X_0^n) \right]^2 \right) \end{split}$$

Equality †† is obtained by smoothing property of conditional expectation.

2. To show that the limit $\lim_{n\to\infty} \mathbf{E}\widehat{\theta}_n^2$ exists it is sufficient to show that the sequence $(\mathbf{E}\widehat{\theta}_n^2)_{n\geq0}$ is non decreasing and bounded from above. Indeed, it is bounded:

$$\mathbf{E}\widehat{\theta}_n^2 = \mathbf{E}\left[\mathbf{E}(\theta|X_0^n)\right]^2 \leq \mathbf{E}\mathbf{E}(\theta^2|X_0^n) = \mathbf{E}\theta^2$$

and non decreasing:

$$\begin{split} \mathbf{E}\widehat{\theta}_{n}^{2} &= \mathbf{E}\left[\mathbf{E}(\theta|X_{0}^{n})\right]^{2} = \mathbf{E}\left[\mathbf{E}\left(\mathbf{E}(\theta|X_{0}^{n+1})|X_{0}^{n}\right)\right]^{2} \leq \\ &\leq \mathbf{E}\mathbf{E}\left(\left[\mathbf{E}(\theta|X_{0}^{n+1})\right]^{2}|X_{0}^{n}\right) = \mathbf{E}\left[\mathbf{E}(\theta|X_{0}^{n+1})\right]^{2} = \mathbf{E}\widehat{\theta}_{n+1}^{2} \end{split}$$

by virtue of Jensen inequality.

Problem 3.

1.) Put $w_k = W(t_{k+1}) - W(t_k)$ and $v_k = V(t_{k+1}) - V(t_k)$. Then by the properties of Wiener process, the sequences $(v_k)_{k\geq 0}$ and $(w_k)_{k\geq 0}$ are independent Gaussian i.i.d sequences with zero mean and $\mathbf{E}w_k^2 = \mathbf{E}v_k^2 = \Delta$. Kalman filter is given by:

$$\widehat{X}(t_{k+1}) = \widehat{X}(t_k) + a\Delta \widehat{X}(t_k) + \frac{(1+a\Delta)A\Delta V(t_k)}{A^2\Delta^2 V(t_k) + B^2\Delta} (Y(t_{k+1}) - Y(t_k) - A\widehat{X}(t_k)\Delta)
V(t_{k+1}) = (1+a\Delta)^2 V(t_k) + b^2\Delta - \frac{[(1+a\Delta)A\Delta V(t_k)]^2}{A^2\Delta^2 V(t_k) + B^2\Delta}$$

2.) Neglecting terms of order $\mathcal{O}(\Delta^2)$:

$$\hat{X}(t_{k+1}) = \hat{X}(t_k) + a\Delta \hat{X}(t_k) + \frac{AV(t_k)}{B^2} (Y(t_{k+1}) - Y(t_k) - A\hat{X}(t_k)\Delta)$$

$$V(t_{k+1}) = V(t_k) + 2a\Delta V(t_k) + b^2\Delta - \frac{A^2V^2(t_k)\Delta}{B^2}$$

which is nothing but an approximation to differential equations:

$$\begin{split} \dot{\widehat{X}}(t) &= a\widehat{X}(t) + \frac{AV(t)}{B^2}(\dot{Y}(t) - A\widehat{X}(t)) \\ \dot{V}(t) &= 2aV(t) + b^2 - \frac{A^2V^2(t)}{B^2} \end{split}$$

These equations are known as Kalman-Bucy filter.