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Problem 1. Convergence Of Random Sequences

(a) Direction ’if’: it must be shown that P{|ξn − ηn| > ε} P−→ 0 implies
P{ξ 6= η} = 0. For any ε > 0:

P{|ξ − η| > ε} ≤ P{|ξ − ξn|+ |ξn − ηn|+ |ηn − η| > ε} ≤
≤ P{|ξ − ξn| > ε/3}+ P{|ξn − ηn| > ε/3}+ P{|ηn − η| > ε/3} → 0

Since {ω : |ξ − η| > ε} does not depend on n we conclude that P{|ξ − η| >
ε} ≡ 0 for any ε > 0, i.e. P{ξ 6= η} = 0

Direction ’only if’: show that P{ξ 6= η} = 0 implies P{|ξn−ηn| > ε} P−→
0:

P{|ξn − ηn| > ε} ≤ P{|ξn − ξ|+ |ξ − η|+ |η − ηn| > ε} ≤
≤ P{|ξn − ξ| > ε/3}+ P{|ξ − η| > ε/3}+ P{|η − ηn| > ε/3} =
= P{|ξn − ξ| > ε/3}+ P{|η − ηn| > ε/3} → 0

(b) If a = 0 or/and b = 0 the statement is trivial. If a 6= 0 and b 6= 0:

P{|aξn + bηn − [aξ + bη]| > ε} ≤ P{|a||ξn − ξ|+ |b||ηn − η| > ε} ≤
< P{|a||ξn − ξ| > ε/2}+ P{|b||ηn − η| > ε/2} → 0, ∀ε > 0

(c) By definition f(x) is continuous if for any ε > 0 there exists δ > 0, such
that |x− y| < δ implies |f(x)− f(y)| < ε:

P{|ξn − ξ| < δ} ≤ P{|f(ξn)− f(ξ)| < ε}
which in turn implies:

P{|f(ξn)− f(ξ)| > ε} ≤ P{|ξn − ξ| > δ} → 0, ∀ε > 0

(d) For discontinuous function the statement is incorrect. E.g. let ξn be a
binary sequence:

P{ξn = ±1/n} = 1/2

Clearly ξn
P−→ 0. Let f(x) =

{
0 x ≤ 0
1 x > 0 . Then P{f(ξn) = 0} =

P{f(ξn) = 1} = 1/2 for all n and thus for any 0 < ε < 1 we have

P{|f(ξn)− f(0)| > ε} = P{|f(ξn)| > ε} = 1/2 6→ 0
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Problem 2. Gaussian Processes

(a) To prove that (Xn, Yn)n≥0 is a Gaussian process we have to show that the
function:

ϕ(µn
0 , λ

n
0 ) = E exp

{
i

n∑
i=0

µiXi + i

n∑
j=0

λjYj

}
is the exponent of a quadratic form of µn

0 = [µ0, ..., µn]> and λn
0 = [λ0, ..., λn]>.

The recursion of Xn and Yn can be rewritten as:

[
Xn

Yn

]
=

[
a 0
A 0

]
︸ ︷︷ ︸

4
=Γ

[
Xn−1

Yn−1

]
+

1√
X2

n−1 + Y 2
n−1

[
Xn−1 Yn−1

−Yn−1 Xn−1

]
︸ ︷︷ ︸

4
=U(Xn−1,Yn−1)

[
εn

ξn

]

Note that the random matrix U(Xn−1, Yn−1) is unitary, i.e. UU> = I.

ϕn(µn
0 , λ

n
0 ) = EE

[
exp

{
i

n∑
i=0

µiXi + i

n∑
j=0

λjYj

}∣∣∣Y n−1
0 , Xn−1

0

]
=

= E exp
{
i

n−1∑
i=0

µiXi + i
n−1∑
j=0

λjYj

}
E

[
exp

{
iµnXn + iλnYn

}∣∣∣Y n−1
0 , Xn−1

0

]
(1)

Further:

E
[
exp

{
iµnXn + iλnYn

}∣∣∣Y n−1
0 , Xn−1

0

]
=

= exp
{
iµnaXn−1 + iλnAXn−1

}
·

·E
[
exp

{
i[µn, λn]U(Xn−1, Yn−1)[εn, ξn]>

}∣∣∣Xn−1Yn−1

]
=

= exp
{
iµnaXn−1 + iλnAXn−1

}
exp

{
− 1/2(µ2

n + λ2
n)

}
(2)

where the latter equality is due to the fact that U(Xn−1, Yn−1) is unitary
and [εn, ξn] is a standard Gaussian vector, independent of [Xn−1, Yn−1].
Proceed by induction: if ϕn−1(µn−1

0 , λn−1
0 ) is an exponent of quadratic

function of its arguments then from (2) it follows that ϕn(µn
0 , λ

n
0 ) is also

exponent of quadratic form. Given that the initial condition [X0, Y0] is
Gaussian, we conclude that (Xn, Yn) is a Gaussian process.
Remark: alternative proof would be to define a pair of sequences:

ε̃n =
Xn−1εn + Yn−1ξn√

X2
n−1 + Y 2

n−1

, ξ̃n =
−Yn−1εn +Xn−1ξn√

X2
n−1 + Y 2

n−1

and to show that (ε̃n, ξ̃n)n≥1 is a Gaussian process. This implies that
(Xn, Yn)n≥0 is a Gaussian process too.

(b) Since [Xn, Yn]> is a Gaussian vector it is sufficient to find its mean and
covariance

mn = E
[
Xn

Yn

]
, Vn = E

[
Xn

Yn

] [
Xn Yn

]
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which is easily found from the recursion for [Xn, Yn]:

mn = Γmn−1, m0 = 0 ⇒ mn ≡ 0

Vn = ΓVn−1Γ> + I, Γ0 = Q

so that the required density (assuming it exists):

f(x, y) =
1

2π
√

det{Vn}
exp

{
− 1/2[x, y]V −1

n [x, y]>
}

(c) Define a new pair of processes (X̃n, Ỹn) by means of the recursion:

X̃n = aX̃n−1 + εn, n ≥ 1

Ỹn = AX̃n−1 + ξn

X̃0 ≡ X0, Ỹ0 ≡ Y0 (3)

The calculations as in (1) and (2) show that this pair has the same distri-
bution as (Xn, Yn). By Markov property of (X̃n, Ỹn)n≥0:

f(xn
0 , y

n
0 ) =

1
2π

√
det{Q}

exp
{
− 1/2[x0, y0]Q−1[x0, y0]>

}
× (4)

×
n∏

k=1

1√
2π

exp
{
− 1/2(xk − axk−1)2

}
×

×
n∏

k=1

1√
2π

exp
{
− 1/2(yk −Axk−1)2

}
Remark: It was also possible to write the density for the original model,
which after a number of simplifications could be reduced to (4)

(d) As it was mentioned above the system (3) has the same distribution as
the original system. So their conditonal expectations also coincide (almost
surely). The conventional Kalman filter generates the desired estimate
(n ≥ 1)

X̂n = aX̂n−1 +
AaPn−1

A2Pn−1 + 1︸ ︷︷ ︸
4
=Gn

(Yn −AX̂n−1), X̂0 = Qxy/QyyY0 (5)

Pn = a2Pn−1 + 1− [AaPn−1]2

A2Pn−1 + 1
, P0 = Qxx −Q2

xy/Qyy

Remark: alternatively one can use the orthogonal projection method.
Once the (Xn, Yn) is known to be Gaussian, the orthogonal projection co-
incides with the conditonal expectation. E.g.

X̂n|n−1 = Ê(Xn|Y n−1
0 ) = E(Xn|Y n−1

0 ) = aE(Xn−1|Y n−1
0 ) = aX̂n−1

and hence

P x
n|n−1 = E(Xn − X̂n−1)2 =

= E

a(Xn−1 − X̂n−1) +
Xn−1εn + Yn−1ξn√

X2
n−1 + Y 2

n−1

2

=

= a2Pn−1 + 1
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Similarly the expressions for Ŷn|n−1, P
xy
n|n−1 and P y

n|n−1 are obtained and
the we arrive at the final result (5).

(e) Using the property of conditional expectation:

X̂n+k|n = E(Xn+k|Y n
0 ) = E(E(Xn+k|Y n+k

0 )|Y n
0 ) = E(X̂n+k|Y n

0 ) =

= E
[
aX̂n+k−1 +Gn(Yn+k −AX̂n+k−1)

∣∣∣Y n
0

]
=

= aE(X̂n+k−1|Y n
0 ) = ... = akX̂n

which can also be written as a recursion:

X̂n+i|n = aX̂n+i−1|n, i = 1, ..., k

subject to X̂n|n = X̂n. In turn from the signal equation we have:

Xn+i = aXn+i−1 + εn+i, i = 1, ..., k

subject to Xn.
To calculate the prediction error 1 introduce Dn+i = Xn+i − X̂n+i|n,

then:

Dn+i = aDn+i−1 + εn+i, i = 1, ..., k

Squaring and taking the expectation we find:

Pn+i|n = a2Pn+i−1|n + 1, i = 1, ..., k

subject to Pn|n = Pn. The latter generates Pn+k|n after k iterations.
(f) If X0 and Y0 dependent and at least one of them is non Gaussian, the

estimate X̂0 = Qxy/QyyY0 is no longer optimal, so generally X̂n is not
optimal. However in this case the original model, given in the problem,
and the system (3) have the same distributions. Since for the system (3)
the filter is still optimal among all the linear estimates, we conclude that
optimality in the class of linear estimates is preserved.

The above considerations are true also for X0 and Y0 are independent
and X0 is non Gaussian.

If X0 and Y0 are independent and Y0 is non Gaussian, whereas X0 is
Gaussian the X̂n remains optimal. In this case X̂0 = Qxy/QyyY0 = 0 =
E(X0|Y0). Also the distribution of Y0 does not affect the distribution of
[X0, ..., Xn, Y1, ..., Yn] (i.e. it is remains Gaussian) and hence the conditional
expectation is still generated by the same filter.

The above holds also for predicting estimate.

Problem 1. Comparison of linear and non linear filters

(a) Introduce a signal equation (n ≥ 1):

θn = θn−1, θ0 = θ

1was not required in the test
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Clearly θn ≡ θ and hence θ̂n = E(θn|Y n
0 ) and Yn = θn + ξn The latter is

readily obtained by Kalman filter:

θ̂n = θ̂n−1 +
Pn−1

Pn−1 + σ2
(Yn − θ̂n−1)

Pn = Pn−1 −
P 2

n−1

Pn−1 + σ2

subject to P0 = π0(1− π0) and θ̂0 = π0.
(b) θ̂ converges to 0 in mean square sense (and hence also in the mean and in

probability). In fact, Pn can be found explicitly:

Pn =
Pn−1σ

2

Pn−1 + σ2

Let Qn = 1/Pn then:

Qn = Qn−1 + 1/σ2

or

Qn = 1/P0 + n/σ2

Hence

Pn =
P0σ

2

σ2 + nP0
→ 0

That is E(θ̂ − θ)2 → 0.
(c) It is also possible to treat θn as a degenerate Markov chain, i.e.:

λj,i = P{θn = i|θn−1 = j} = I(i = j)

Then using the formulas, derived in class we obtain the following non linear
filter:

πn =
f(Yn − 1)πn−1

f(Yn − 1)πn−1 + f(Yn)(1− πn−1)
, n = 1, ...

subject to π0.
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(d)

V1
4
= E(π1 − θ)2 = EE

[
(π1 − θ)2|θ

]
=

= π0E
[
(π1 − 1)2|θ = 1

]
+ (1− π0)E

[
(π1 − 0)2|θ = 0

]
=

= π0E

{(
f(Y1)(1− π0)

f(Y1 − 1)π0 + f(Y1)(1− π0)

)2 ∣∣∣ θ = 1

}
+

+(1− π0)E

{(
f(Y1 − 1)π0

f(Y1 − 1)π0 + f(Y1)(1− π0)

)2 ∣∣∣ θ = 0

}
=

= π0E
(

f(ξ1 + 1)(1− π0)
f(ξ)π0 + f(ξ1 + 1)(1− π0)

)2

+

+(1− π0)E
(

f(ξ1 − 1)π0

f(ξ − 1)π0 + f(ξ1)(1− π0)

)2

=

= π0

∫ ∞

−∞

(
f(x+ 1)(1− π0)

f(x)π0 + f(x+ 1)(1− π0)

)2

f(x)dx+

+(1− π0)
∫ ∞

−∞

(
f(x− 1)π0

f(x− 1)π0 + f(x)(1− π0)

)2

f(x)dx =

= π0

∫ ∞

−∞

(
f(z)(1− π0)

f(z − 1)π0 + f(z)(1− π0)

)2

f(z − 1)dx+

+(1− π0)
∫ ∞

−∞

(
f(x− 1)π0

f(x− 1)π0 + f(x)(1− π0)

)2

f(x)dx =

= π0(1− π0)
∫ ∞

−∞

f(x)f(x− 1)
f(x− 1)π0 + f(x)(1− π0)

dx

By the way (was not required in the test) it is possible to derive an
expression for Vn. Note the following fact:

π−1
n = 1 + f(Yn)/f(Yn − 1)(π−1

n−1 − 1)

Let ψn = π−1
n − 1 then

ψn = f(Yn)/f(Yn − 1)ψn−1, ψ0 = π−1
0 − 1

or

ψn = (π−1
0 − 1)

n∏
k=1

f(Yk)
f(Yk − 1)

, n = 1, ...

Returning to πn:

πn =
1

1 + ψn
=

π0

∏n
k=1 f(Yk − 1)

π0

∏n
k=1 f(Yk − 1) + (1− π0)

∏n
k=1 f(Yk)

From here similarly to the case n = 1 (solved above) we can derive the
formula:

E(πn−θ)2 = π0(1−π0)
∫ ∞

−∞
...

∫ ∞

−∞

∏n
k=1 f(xk)f(xk − 1)

π0

∏n
k=1 f(xk − 1) + (1− π0)

∏n
k=1 f(xk)

dx1...dxk

(e)

V1 = π0(1− π0)
∫ 1

0

1/2 · 1/2
1/2π0 + 1/2(1− π0)

dx =
π0(1− π0)

2



7

Figure 1. P1 ≥ V1

The linear filter gives the following error:

P1 = P0 − P 2
0 /(P0 + σ2) = P0σ

2/(P0 + σ2) =
1/3π0(1− π0)
π0(1− π0) + 1/3

Clearly P1 > V1 for π0 ∈ (0, 1) and P1 = V1 = 0 for π0 = 0 or π0 = 1
(f) For the case f(x) = 1/2I(x ∈ [0, 1]) the estimate is:

πn =

 0, Yn ∈ [−1, 0)
πn−1, Yn ∈ [0, 1)
1, Yn ∈ [1, 2]

Then (n ≥ 2)

Vn = E(πn − θ)2 = π0E[(πn − 1)2|θ = 1] + (1− π0)E[(πn)2|θ = 0] =

= π0

[
E(πn−1 − 1)2 ·P{ξn ∈ [0, 1]}

]
+ (1− π0)

[
Eπ2

n−1 ·P{ξn ∈ [0, 1]}
]

=

= 1/2E(πn−1 − θ)2 = 1/2Vn−1

subject to V1 = π0(1 − π0)/2. Clearly Vn = (1/2)nπ0(1 − π0) → 0. The
sequence Pn also converges to 0 (both estimates are consistent). But Vn

decreases faster (exponentially!), compared to Pn for which the convergence
is linear (see (b))


