SOLUTION OF THE FINAL TEST
Prof. R. Liptser and Pavel Chigansky
9:00-13:00, 2nd of July, 1999

Problem 1. Convergence Of Random Sequences

(a)

Direction ’if’: it must be shown that P{|¢, — n,| > ¢} 2, 0 implies
P{¢ #n} =0. For any ¢ > 0:
P{lE —nl > e} <P{§ =&l + 60 — mal + |nn — 1l > €} <
< P{l€ =&l >¢/3} + P{l& — | > ¢/3} + P{In. —n| >¢/3} =0
Since {w : |§ —n| > €} does not depend on n we conclude that P{|¢ —n| >
e} =0forany e >0, ie. P{{#n}=0
Direction ’only if’: show that P{{ # n} = 0 implies P{|&, —nn| > €} £,
0:
P{|£n_"7n| >€} SP{|§n—f|+|f—77|+|77—ﬂn\ >5} <
SP{l&n — &[> /3 + P{IE —nl > &/3} + P{ln —na| > £/3} =
=P{[& — &l >¢/3} +P{In—na| >¢/3} =0
If @ = 0 or/and b = 0 the statement is trivial. If a # 0 and b # 0:
P{la&, + by, — [a& + ]| > e} < P{lalln — & + [b][nn — 1| > €} <
<P{la||&n — &| > /2} + P{b||nn — | > €/2} — 0, Ve>0
By definition f(z) is continuous if for any € > 0 there exists 6 > 0, such
that |z — y| < & implies |f(z) — f(y)| < &:
P{[6n — &l <0} < P{If(&) — f(E)] <&}

which in turn implies:

P{|f(&n) = f(O)] > e} <P{l¢n =& > 6} — 0, Ve>0

For discontinuous function the statement is incorrect. E.g. let &, be a
binary sequence:
P{¢, = £1/n} = 1/2
P 0 <0
Clearly &, — 0. Let f(x) = 1 250 Then P{f(¢,) = 0} =
P{f(&.) =1} = 1/2 for all n and thus for any 0 < € < 1 we have

P{[f(&n) = F(0)| > e} = P{[f(&n)| > €} =1/2 0



Problem 2. Gaussian Processes

(a) To prove that (X,,Y,),>0 is a Gaussian process we have to show that the
function:

©(pg s AG) Eexp{ ZIMX —HZA Y}

is the exponent of a quadratic form of p = [uo, T RS D VIESH DY W L
The recursion of X,, and Y,, can be rewritten as:

R R R o i S P
Y, A0 Y, 1 \/m Y1 Xnoa én

=5

A
=U(Xn-1,Yn-1)

Note that the random matrix U(X,,_1,Y,_1) is unitary, i.e. UUT = I.

enluf \§) = BB exp {i ZulX +ZZ/\ et xet) =

~Eexp {i i X + i Z Y5 B exp i X + 0o } Y0 X5 (1)
i=0 =0
Further:
E [exp {itn X + Yo } ‘YO"*, X{}’l] =
— exp {z‘unaXn_l + i)\nAXn_l} :
B[ exp {iljin, MU (K1, Yo )lews €]} X 1¥aa] =
= exp {iunaXn,1 + i)\nAXn,l} exp { —1/2(p2 + )\2)} (2)

where the latter equality is due to the fact that U(X,,_1,Y,,—1) is unitary
and [ey,&,] is a standard Gaussian vector, independent of [X,_1,Y,_1].
Proceed by induction: if cpn_l(ug_l,)\g_l) is an exponent of quadratic
function of its arguments then from (2) it follows that ¢, (ug, Ay) is also
exponent of quadratic form. Given that the initial condition [Xjy, Y] is
Gaussian, we conclude that (X,,Y,,) is a Gaussian process.

Remark: alternative proof would be to define a pair of sequences:

: - Xn 15n+Yn lgn s _Yn715n+Xn71§n

\/X2 Y2 \/Xg—l +Y72

and to show that (gn,gn)nzl is a Gaussian process. This implies that
(Xn, Yo )n>o is a Gaussian process too.

(b) Since [X,,Y,]" is a Gaussian vector it is sufficient to find its mean and
covariance

mnE{X"}, VnE[‘;(,:][Xn Y, ]




which is easily found from the recursion for [X,,,Y,]:
m, = I'mp_1, mg=0=>m, =0
Vi = TVoul"+1, To=Q

so that the required density (assuming it exists):

f(,y) ——oxp { ~ 1/20,4) 0]

B 2my/det{V,,}

Define a new pair of processes ()?n, }N/n) by means of the recursion:

X, = a)ﬂ(in—l +en, n=>1
?n = A),anl + fn
)?0 = Xo, }70 = Y() (3)

The calculations as in (1) and (2) show that this pair has the same distri-
bution as (X,,,Y,). By Markov property of (X,,Y,)n>0:

Fal) = e exp |~ 1/2w0,50]Q o]} (@)

2m/det{Q}
X H 127T exp{ —1/2(xy — amk_l)Q} X

k=1

1 2
X kl;[l meXp{ —1/2(yr — Axp—1) }

Remark: It was also possible to write the density for the original model,
which after a number of simplifications could be reduced to (4)

As it was mentioned above the system (3) has the same distribution as
the original system. So their conditonal expectations also coincide (almost
surely). The conventional Kalman filter generates the desired estimate
(n>1)

ﬁ
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Remark: alternatively one can use the orthogonal projection method.
Once the (X,,,Y,,) is known to be Gaussian, the orthogonal projection co-
incides with the conditonal expectation. E.g.

X, = aX, 1+ (Yo —AX, 1), Xo=Qu/QuYo  (5)

P, = a*P,_1+1—

Xppno1 = E(X, Y3 ™) = E(X, YY) = aB(X, |V ™) = aX,

and hence
P{IZ

nln—1

+ anlgn + Ynflgn
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Similarly the expressions for ffn‘n_l, pry

1 and P _, are obtained and

the we arrive at the final result (5).
(e) Using the property of conditional expectation:

Xprin = BX0ixl¥g) = BEX kY5 )Y = E(X0 4[5 =
= ElaXpin1+Gn(Yoir — AXn+k71)‘Y0n:| =
= aE()?nJrk,l\YO") =..= ak)?n
which can also be written as a recursion:
)?Wriln = a)?nﬂ»,”n, i=1,...k
subject to )A(nm = )?n In turn from the signal equation we have:
Xnti =aXntio1+€nti, =1,k

subject to X,.
To calculate the prediction error ! introduce D,y = X,qi — Xntins
then:

Dyptyi=aDpii 1 +engs, t=1,..k
Squaring and taking the expectation we find:
Pn+i|n :a2Pn+i,1‘n+1, Z: 17...7l€

subject to P, = P,. The latter generates P, ,, after k iterations.

(f) If Xo and Y, dependent and at least one of them is non Gaussian, the
estimate )A(o = Quy/QyyYo is no longer optimal, so generally )?n is not
optimal. However in this case the original model, given in the problem,
and the system (3) have the same distributions. Since for the system (3)
the filter is still optimal among all the linear estimates, we conclude that
optimality in the class of linear estimates is preserved.

The above considerations are true also for Xy and Y, are independent
and Xy is non Gaussian.

If Xy and YO are independent and Yj is non Gau551an whereas X is
Gaussian the X remains optimal. In this case Xo = Quy/QyyYo =0 =

E(Xy|Yp). Also the distribution of ¥ does not affect the distribution of
[Xo0, ooy Xy Y1, ..., Y] (i.e. it is remains Gaussian) and hence the conditional
expectation is still generated by the same filter.

The above holds also for predicting estimate.

Problem 1. Comparison of linear and non linear filters

(a) Introduce a signal equation (n > 1):

enzenflu 9029

Lyas not required in the test



5

Clearly 6, = 6 and hence §n = E(0,|Yy") and Y,, = 0, + &, The latter is
readily obtained by Kalman filter:

~ ~ P, —~
0, = 0,_ — (Y, —0,,—
1+ P, +02( 1)
P, = P Py
n n—1 Pn_1+0'2

subject to Py = mo(1 — mp) and 50 = 7.
(b) 6 converges to 0 in mean square sense (and hence also in the mean and in
probability). In fact, P, can be found explicitly:

Pn_10'2

p, =117
" Pn71+02

Let @, = 1/P, then:

Qn = Qn—l + 1/02
or
Qn=1/Py+n/c?

Hence

P()O'2

P= 07
o2 +nPy -

0

That is E(6 — 6)% — 0.
(c) It is also possible to treat 6,, as a degenerate Markov chain, i.e.:

)\j,i = P{Qn = i|9n—1 = j} = I(i = j)

Then using the formulas, derived in class we obtain the following non linear
filter:

f(Yn — 1)7Tn—1
f(Yn - 1)7“1*1 + f(Yn)(l - anly

Ty, = n=1,..

subject to mg.



>

E(m — 0)*> = EE[(m — 0)*/0] =
= mE[(m —1)%0=1] + (1 —m)E[(m —0)*|§ =0] =

_ f(¥1)(1 — m) 1o
- 7T0E{<f(Y1—1)7T0+f(Y1)(1—770)> ’9‘1}+

F(Y1 = Do N O
+<1_W0)E{(f(y1—1)7To+f(Y1)(1—7T0)> ‘6_0}_
( f(& +1)(1 -~ m) )2+
f(&)mo+ f(& +1)(1 — 7o)

f(& = 1)mo z
- m)E (f(f Do 1 FE)( —m>> -

- o0 flz+1)(1—m) 2 "
- O/foo <f(90)7ro+f(ac+1)(1_7r0)> f(x)dz +

> f(x_l)ﬂ'o 2 B
= 7 - f(z)(1 —mo) 2 b
= O/ioo <f<z_1)770+f(2)(1—770)) J( 1)dx +

+(1—7r>/oo ( Sz = 1o )2f(:c)dac—
") \F@ = Dmo + f(@)(1 = mo)
(oo}
f@)fz—1)
= 1— dzx
ot =) /_oo fl@=T)mo + f()(1 = mo)
By the way (was not required in the test) it is possible to derive an

expression for V,,. Note the following fact:

m =14 (V) f (Yo = 1)(m 2 = 1)
Let 1, = m, 1 — 1 then
wn:f(yn)/f(yn_l)wnflv 'LZJO :Wal -1

= 7TOE

or
n

(el f(Yk) n—
T/’n—( 0 1)]];[1 f(Yk;—l)’ 13

Returning to m,:
_ 1 _ o HZ:1 f(Y, —1)
Lt+tpn molhey F(Ye — 1)+ (1 —mo) [Ty f(Y)

From here similarly to the case n = 1 (solved above) we can derive the
formula:

Tn

[ [T, S e~ 1) .y
Bt =ml1m) [ | e o T T

()

B ! 1/2-1/2 _ mo(1— )
Vl_wo(l_ﬁo)/o amo +1/2(1 = mg) ™ = e




FiGure 1. P, >V

The linear filter gives the following error:
1/3m(1 — 7o)
mo(l —mo) +1/3
Clearly P; > V; for mp € (0,1) and Py =V; =0 for mp =0 or mp = 1
(f) For the case f(x) =1/2I(z € [0,1]) the estimate is:

Py = Py — P?/(Py + 0?) = Pyo?/(Py + 0%) =

0, Y, €[-1,0)
T =% Tp-1, Yn€[0,1)
1, Y, € [1,2]

Then (n > 2)
= E(mn — 0)* = mEl(ma — 1|0 = 1] + (1 = 70) E[(r,)*}6 = 0] =
= 0| E(ma1 —1)2 - P{& € [0, 1}] + (1 — 7o) [En2_, - Pig, € [0,1]}] =
= 1/2E(m, 1~ 6)? =12V,

subject to V4 = mo(1 — mp)/2. Clearly V,, = (1/2)"mo(1 — m9) — 0. The
sequence P, also converges to 0 (both estimates are consistent). But V,
decreases faster (exponentially!), compared to P, for which the convergence
is linear (see (b))



