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Problem 1.

(a) First prove the auxiliary result.

Lemma 1.1. if α and β are independent Gaussian random variables
with zero mean and variances σ2

α and σ2
β, then γ = αβ/

√
α2 + β2 is

a Gaussian r.v. with zero mean and variance σ2
ασ2

β/(σα + σβ)2.

Proof. (there are other elegant proves!) Note that γ−2 = α−2 +β−2.
Let ψ(s) = E(eis/α2

):

ψα(s) =
1√

2πσ2
α

∫ ∞

−∞
exp

{
− is

x2
− x2

2σ2
α

}
dx =

=
1√
π

∫ ∞

−∞
exp

{
− is

z22σ2
α

− z2

}
dz = h

(√
s

2σ2
α

)

where

h(t) =
1√
π

∫ ∞

−∞
exp

{
− it2

z2
− z2

}
dz

It easily seen that h′(t) = −2
√

ih(t), so h(t) = C exp{−2
√

it}. Since
h(0) = 1 we finally conclude that h(t) = exp{−2

√
it} Consequently

ψα(s) = exp{−2
√

is/2σ2
α} and analogously ψβ(s) = exp{−2

√
is/2σ2

β}.
Then since α and β are independent, we have:

ψγ(s)
4
= E

(
eis/γ2

)
= ψβ(s)ψα(s) = exp{−

√
2is(1/σβ + 1/σα)} =(1.1)

= exp

{
−
√

2is

(
σβσα

σβ + σα

)−1
}

Note that γ has a symmetric density (Why ?), so the distribution
of γ is determined by the distribution of 1/γ2. The latter and (1.1)
allows to conclude that γ is Gaussian. ¤

Assume that Xn−1 is Gaussian, then clearly Xn is Gaussian, since
ξn and Xn−1 are independent. Since the initial condition is Gaussian,
we conclude that Xn is a Gaussian r.v. for each n.

(b) The process (Xn)n≥0 is not Gaussian. Assume that [X0, X1] is a
Gaussian vector. Then since EX1X0 = 0 they are independent and
hence we expect that E(X2

1 |X0) = EX2
1 is not a function of X0.
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Let’s prove that the latter does not hold:

E(X2
1 |X0) = E

(
X2

0ξ2
1

X2
0 + ξ2

1

∣∣∣X0

)
=

1√
2π

∫ ∞

−∞

X2
0z2

X2
0 + z2

e−z2/2dz
4
= H(X0)

Obviously H(X0) 6= const: H(0) = 0 and H(1) 6= 0.
(c) mn = EXn ≡ 0 and

Vn =
Vn−1σ

2
ξ

(
√

Vn−1 + σξ)2
, V0 = 1

(d) Show that limn→∞ Vn = 0 and then Xn → 0 as n → ∞ in mean
square sense and hence also in the mean and in probability. Let
Qn = 1/Vn then

Qn = (σξ +
√

Qn−1)2

Define an auxiliary sequence:

Q̃n = Q̃n−1 + σ2
ξ , Q̃0 = Q0

By induction we show that Qn ≥ Q̃n for n ≥ 0: assume that Qn−1 ≥
Q̃n−1 then

Qn = σ2
ξ + Qn−1 + 2σξ

√
Qn−1 ≥ σ2

ξ + Qn−1 ≥ σ2
ξ + Q̃n−1 = Q̃n

Clearly Q̃n →∞, which implies Qn →∞ as n →∞.

Problem 2.
(a) Define an additional process:

Zn = Zn−1, Z0 = X0

Clearly E(X0|Y n
0 ) = E(Zn|Y n

0 ). Now consider a filtering problem of
a vector random process θn = (Xn, Zn) from Y n

0 = {Y0, ..., Yn}:

θn =
(

a 0
0 1

)

︸ ︷︷ ︸
ã

θn−1 +
(

b
0

)

︸︷︷︸
b̃

εn

Yn =
(

A
0

)>

︸ ︷︷ ︸
Ã

θn−1 + Bξn

Since all the processes are jointly Gaussian the Kalman filter gen-
erates the optimal estimate θ̂n = E(θn|Y n

0 ):

θ̂n = ãθ̂n−1 +
ãPn−1Ã

Ã>Pn−1Ã + B2

(
Yn − Ã>θ̂n−1

)

Pn = ãPn−1ã
> + b̃>b̃− ãPn−1ÃÃ>Pn−1ã

Ã>Pn−1Ã + B2
(1.2)
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subject to θ̂0 = 0 and P0 =
(

1 1
1 1

)
. And the desired result is

πn = [0, 1] · θ̂n

(b) Note that Pn is a symmetric matrix:

Pn
4
=

(
γ1

x γxz
n

γxz
n γz

n

)

From the equation (1.2) it follows that:

γx
n = a2γx

n−1 + b2 −
(
Aaγx

n−1

)2

(
Aγx

n−1

)2 + B2
, γx

0 = P (1.3)

γxz
n = aγxz

n−1 −
aA2γx

n−1γ
xz
n−1(

Aγx
n−1

)2 + B2
, γxz

0 = P (1.4)

γz
n = γz

n−1 −

(
Aγxz

n−1

)2

(
Aγx

n−1

)2 + B2
, γz

0 = P (1.5)

Assuming that P is the positive solution of

P = a2P + b2 −A2a2P 2/(A2P + B2)

from (1.3) we conclude that γx
n ≡ P . Then the equation for γxz

n (1.4)
is merely a geometrical sequence (γxz

0 = P ):

γxz
n = γxz

n−1 a

(
1− A2P

A2P 2 + B2

)

︸ ︷︷ ︸
4
=β

= βnP (1.6)

and equation for γz
n (1.5) turns to be geometric series (γz

0 = P )

γz
n = γz

n−1 −
A2P 2β2(n−1)

A2P 2 + B2
= P − A2P 2

A2P 2 + B2

n−1∑

k=0

βk

so that

lim
n→∞ γz

n = P − A2P 2

A2P 2 + B2

(
1

1− β

)

where β is defined in (1.6)

Problem 3.

(a) The process (Xn, Yn)n≥1 is not necessarily Gaussian. E.g. a0 = 0,
A0 = 0, a1 = 0 and A1 = e−iYn−1 . Then:

Y1 = e−iY0X0 + Bξ1
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Assume that (Y1, X0) is Gaussian. Clearly EY1 = 0 and (assuming
that X0 and Y0 independent and EY 2

0 = 1)

Var(Y1|X0) = E
(
e−iY0X0 + Bξ1

)2 = X2
0Ee−i2Y0 + B2 =

= X2
0e−2s2

+ B2 = funct(X0)

The latter contradicts the assumption.
(b) Though the process (Xn, Yn) is not generally Gaussian, it is condi-

tionally Gaussian (the dependencies of ai, Ai on Y n−1
0 are omitted

for brevity)

ϕn(λ, µ) = E
(
e−iλXn−iµYn |Y n−1

0

)
= E

(
e−iλXn−iµYn |Y n−1

0

)
=

= E
(
exp{−iλ(a0 + a1Xn−1 + bεn)−

−iµ(A0 + A1Xn−1 + Bξn)}|Y n−1
0

)
=

= E
(
E

[
exp{−iλ(a0 + a1Xn−1)− 1/2b2λ2

−iµ(A0 + A1Xn−1)− 1/2B2µ2}|Xn−1, Y
n−1
0

]|Y n−1
0

)

The latter suggests that, given Y n−1
0 and Xn−1, the pair (Xn, Yn) is

Gaussian. We proceed by induction: assume that the conditional
density of Xn−1, given Y n−1

0 is Gaussian with E(Xn−1|Y n−1
0 )

4
=

mn−1(Y n−1
0 ) and E

([
Xn−1 −mn−1

]2∣∣Y n−1
0

)
= Pn−1(Y n−1

0 ). Then

ϕn(λ, µ) = E
(
E

[
exp{−iλ(a0 + a1Xn−1)− 1/2b2λ2

−iµ(A0 + A1Xn−1)− 1/2B2µ2}]|Y n−1
0

)
=

= exp
{− iλ(a0 + a1mn−1)− iµ(A0 + A1mn−1)

−1/2(a2
1Pn−1 + b2)λ2 − 1/2λµA1a1Pn−1

−1/2(A2
1Pn−1 + B2)µ2

}

which implies that the density of Xn given Y n
0 is Gaussian. Hence

the optimal filter is given by:

mn = a0 + a1mn−1 +
A1a1Pn−1

A2
1Pn−1 + B2

(Yn −A0 −A1mn−1) (1.7)

Pn = a2
1Pn−1 + b2 − A2

1a
2
1P

2
n−1

A2
1Pn−1 + B2

(1.8)

Note 1: the essential difference between Kalman filter and so called
conditionally Gaussian filter given by (1.7) is that the Riccati equa-
tion (1.8) in the latter depends on the observation process (Yn)n≥1

and hence can not be computed off line. In certain sense, it is an
adaptive filter, since its parameters vary with the recorded data.
This filter is extremely useful in control theory.
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Note 2: the equations (1.7) and (1.8) can be derived directly from
the conditional density recursion, derived in Problem 7.1.

(c) If all the functionals are constant the filter gets the form of conven-
tional Kalman filter - the Riccati equation becomes decoupled from
the observation process.


