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Problem 1.

(a) First prove the auxiliary result.

Lemma 1.1. if a and 8 are independent Gaussian random variables
with zero mean and variances o2 and O’%, then v = aB/+\/a? + (32 is
a Gaussian r.v. with zero mean and variance Ugag/(aa + 05)2.

Proof. (there are other elegant proves!) Note that v 2 = a=2+ 372
Let ¢(s) = E(e*/*%):

1 o0 is xQ}
ols) = exXpy——5 — =5 ¢ dxr =
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1 0o 12
h(t) = NG /_OO exp {—Z; - 22} dz
It easily seen that A'(t) = —2+v/ih(t), so h(t) = C exp{—2+/it}. Since

h(0) = 1 we finally conclude that h(t) = exp{—2+v/it} Consequently
Vo (s) = exp{—24/is/202} and analogously 1g(s) = exp{—2, /is/QUg}.

Then since . and § are independent, we have:

where

A

by(s) = E(ei5/72):¢5(s)¢a(s):exp{—\/%(l/a[g—i—l/aa)}:(l.l)

-1
— exp{—\/%s( 05%a > }
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Note that v has a symmetric density (Why ?), so the distribution
of v is determined by the distribution of 1/4%. The latter and (1.1)
allows to conclude that v is Gaussian. U

Assume that X,, 1 is Gaussian, then clearly X, is Gaussian, since
&, and X,,_; are independent. Since the initial condition is Gaussian,
we conclude that X, is a Gaussian r.v. for each n.

(b) The process (Xp)n>0 is not Gaussian. Assume that [Xp, Xj] is a
Gaussian vector. Then since EX; Xy = 0 they are independent and
hence we expect that E(X?|Xo) = EX? is not a function of Xj.
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Let’s prove that the latter does not hold:
X3 Lo g
X§+§%‘ ) T V2 ) X2 1 22

Obviously H(Xg) # const: H(0) =0 and H(1) # 0.
(¢) mp, =EX,, =0 and

E(X{|Xo) = E < e /2dz 2 H(Xo)

vy = Ym0 Vo=1
n — ( Vn71+05)2’ 0=
(d) Show that lim, ., V,, = 0 and then X,, — 0 as n — oo in mean
square sense and hence also in the mean and in probability. Let

Qn = 1/V,, then
Qn = (Ug + \/@)2
Define an auxiliary sequence:
Qn=Qun-1+02 Qo=Qo
By induction we show that Qp, > @n for n > 0: assume that Q1 >
@Qn—1 then

Qn = O’? +Qno1+ 20’5\/ Qn-1 2> 0'? +Qno1 > Ug + CTjn—l = @n

Clearly @n — 00, which implies @), — 00 as n — 0.

Problem 2.
(a) Define an additional process:

Zn = 4n—1, ZO = XO

Clearly E(Xy|Yy") = E(Z,]Yy"). Now consider a filtering problem of
a vector random process 6, = (X, Z,) from Y] = {Yp, ..., Y, }:

a 0 b
—— N~

a b
A T
Y, = <0> 0,_1 + BE,
——
i

Since all the processes are jointly Gaussian the Kalman filter gen-
erates the optimal estimate 6,, = E(6,|Y]"):

~ -~ AP, A I
0, = ab,_1+ = “ Al, (Yn—AT(gn_l)
ATP, 1A+ B?

aP,_1AATP,_1a

ATP, A+ B?

P, = aP,a +b'b— (1.2)
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subject to 50 =0 and Py = <1 )

>. And the desired result is

= 10,1] - 8,
(b) Note that P, is a symmetric matrix:

P g(m% Wﬁz>
W om

From the equation (1.2) it follows that:

Aaryy, 1)
Yo = v+ (z T W =P (1.3)
(Aﬁyn—l) +B
AZ x Tz
VeE = avpty — a4 ’Yn—;Vn_12 v%F =P (1.4)
(Avn—l) +B
2
(492)
Y = Vpe1— % =P (1.5)

(Ayi_,)* + B
Assuming that P is the positive solution of
P =a*P +b* — A%a*P?/(A*P + B?)

from (1.3) we conclude that v = P. Then the equation for v}** (1.4)
is merely a geometrical sequence (7% = P):

A%P
R s s (16)

2p

and equation for 47 (1.5) turns to be geometric series (7§ = P)

A2p232(n=1) q2p2 ol .
T = %'szl_m: A2p2+3226
so that
AZp? 1
. 2_p
A =P g (1 - 6)

where [ is defined in (1.6)

Problem 3.

(a) The process (Xy, Yn)n>1 is not necessarily Gaussian. E.g. ag = 0,
Ap=0,a; =0and 4; = e -1, Then:

Y; = e X, + Bg



Assume that (Y1, Xo) is Gaussian. Clearly EY; = 0 and (assuming
that Xy and Y} independent and EYO2 =1)

Var(Yi|Xo) = E(e™X,+ B&)? = X2Ee 20 4 B2 =
= nge_2s2 + B? = funct(Xy)

The latter contradicts the assumption.

(b) Though the process (X,,Y,) is not generally Gaussian, it is condi-
tionally Gaussian (the dependencies of a;, A; on Yonfl are omitted
for brevity)

SDTL()H,U’) — E(e—iAXn—i,uYnD/Onfl) — E(e—iAXn—i,uYnD/Onfl) —
= E(exp{—iX(ao + a1 Xn—1 + bep) —
—ip(Ag + A X1 + BE)NYPTY) =
= E(E[exp{—i)\(ao + a1 Xp 1) — 1/26°\?
—ip(Ag + Ay X 1) — 1/2B%2}H X1, Y] yY0”—1>

The latter suggests that, given YO"_1 and X,,_1, the pair (X,,Y,) is

Gaussian. We proceed by induction: assume that the conditional
; . -1 . . . A
density of X,_1, given Y’ !'is Gaussian with E(X,1]Yy" hy =

M1 (Y1) and E ([Xn_l - mn_l]Q\Y;)”—l) = P,_1(Y""!). Then
on(Apu) = E(E[exp{—z'/\(ao + a1 Xn 1) — 1/26%\?

—ip(Ag + A1 X 1) — 1/2B%1%)] |y0"*1) -
= exp{ —iXao + arm,_1) — ip(Ao + Army,_1)
—1/2(a3P_1 + V)N — 1/20pAra1 P,y

—~1/2(A3P,—1 + B*)p?}

which implies that the density of X, given Y is Gaussian. Hence
the optimal filter is given by:

Aia1 P, —
my, = ao+aiMmp_1+ ﬁ(yn — Ay — Almnfl) (17)
1-n—
A2q2 P2
P = 4P _ p2 - 17T m—l 1.8
n ajln 1+ A%Pn,1+B2 ( )

Note 1: the essential difference between Kalman filter and so called
conditionally Gaussian filter given by (1.7) is that the Riccati equa-
tion (1.8) in the latter depends on the observation process (Y,)n>1
and hence can not be computed off line. In certain sense, it is an
adaptive filter, since its parameters vary with the recorded data.
This filter is extremely useful in control theory.
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Note 2: the equations (1.7) and (1.8) can be derived directly from
the conditional density recursion, derived in Problem 7.1.

(c) If all the functionals are constant the filter gets the form of conven-
tional Kalman filter - the Riccati equation becomes decoupled from
the observation process.



