## RANDOM PROCESSES. THE FINAL TEST SOLUTION. June, 26th, 2000

## Problem 1.

- (a)  $\mathbf{E}[\mathbf{E}(X|Y)|X] \stackrel{?}{=} X$ . Wrong. E.g. if X and Y are independent, then  $\mathbf{E}(X|Y) = \mathbf{E}X$  and  $\mathbf{E}[\overline{\mathbf{E}(X|Y)}|X] = \mathbf{E}X \neq X$
- (b)  $\mathbf{E}(X|Y) \equiv \mathbf{E}X \stackrel{?}{\Longrightarrow} X$  and Y indepedent. Wrong. E.g. let  $\xi$  be a r.v. with zero mean and  $Y \in \{0,1\}$  with prob.  $\{1-p,p\}$ .  $\xi$  and Y are independent. Set  $X = \xi Y$  Consider the pair (X,Y). Clearly:

$$\mathbf{E}(X|Y) = \mathbf{E}(\xi Y|Y) = Y\mathbf{E}\xi = 0 \equiv \mathbf{E}X$$

Let us show that X and Y depend:

$$\mathbf{E}|X|Y = \mathbf{E}|\xi Y|Y = \mathbf{E}|\xi|Y^2 = \mathbf{E}|\xi|Y = p\mathbf{E}|\xi|$$

on the other hand:

$$\mathbf{E}|X| \cdot \mathbf{E}Y = \mathbf{E}|\xi Y| \cdot p = p^2 \mathbf{E}|\xi|$$

That is:

$$\mathbf{E}|X|Y \neq \mathbf{E}|X|\mathbf{E}Y$$

(c)  $\mathbf{E}(X|Y) \stackrel{?}{=} \mathbf{E}[X|\mathbf{E}(X|Y)]$ . Correct. By definition

$$\mathbf{E}[X|\mathbf{E}(X|Y)] = \phi(\mathbf{E}(X|Y))$$

such that:

$$\mathbf{E}[X - \phi(\mathbf{E}(X|Y))]g(\mathbf{E}(X|Y)) = 0 \tag{1}$$

for all bounded g. Take  $\phi(x) = x$  and note that  $g(\mathbf{E}(X|Y))$  is actually a function of Y, so that (1) holds. Due to uniqueness of cond. expectation with prob. 1, we conclude that the statement is correct.

(d)  $\{X, Y, Z\}$  is Gaussian, such that  $\mathbf{E}X = 0$  and Y and Z are independent, then

$$\mathbf{E}(X|Y,Z) = \mathbf{E}(X|Y) + \mathbf{E}(X|Z)$$

This is  $\underline{\text{correct}}$  and verified e.g. by explicit calculation (see also lecture notes)

$$\mathbf{E}(X|Y,Z) = \mathbf{Cov}(X,Y)/\mathbf{Cov}(Y,Y)(Y-\mathbf{E}Y) + + \mathbf{Cov}(X,Z)/\mathbf{Cov}(Z,Z)(Z-\mathbf{E}Z) = \mathbf{E}(X|Y) + \mathbf{E}(X|Z)$$
(2)

(e) If  $\{X,Y,Z\}$  is non Gaussian, then (2) is generally <u>false</u>. Assume  $\mathbf{E}X=0$  and let X=ZY, so that Z and Y are independent and with zero mean. Then  $\mathbf{E}(X|Y,Z)=ZY\neq\mathbf{E}(X|Y)+\mathbf{E}(X|Z)=0$ 

(f) (I) If  $\mathbf{E}(X|Y) = c_0 + c_1 Y$ , then  $\mathbf{E}(X|Y) = \widehat{\mathbf{E}}(X|Y)$  with prob. 1. Let us show that

$$\mathbf{E}(\mathbf{E}(X|Y) - \widehat{\mathbf{E}}(X|Y))^{2} = 0 \tag{3}$$

$$\mathbf{E}(\mathbf{E}(X|Y) - \widehat{\mathbf{E}}(X|Y))^{2} = \mathbf{E}(\mathbf{E}(X|Y) - X + X - \widehat{\mathbf{E}}(X|Y))^{2} =$$

$$= \mathbf{E}(\mathbf{E}(X|Y) - X)^{2} - 2\mathbf{E}(\mathbf{E}(X|Y) - X)(X - \widehat{\mathbf{E}}(X|Y)) +$$

$$+ \mathbf{E}(X - \widehat{\mathbf{E}}(X|Y))^{2}$$

But (why?)

$$\mathbf{E}(\mathbf{E}(X|Y) - X)(X - \widehat{\mathbf{E}}(X|Y)) = \mathbf{E}(\mathbf{E}(X|Y) - X)(X - \mathbf{E}(X|Y))$$

$$\mathbf{E}\big(\mathbf{E}(X|Y) - \widehat{\mathbf{E}}(X|Y)\big)^2 = \mathbf{E}\big(X - \widehat{\mathbf{E}}(X|Y)\big)^2 - \mathbf{E}\big(X - \mathbf{E}(X|Y)\big)^2$$
Clearly  $\mathbf{E}\big(X - \widehat{\mathbf{E}}(X|Y)\big)^2 \geq \mathbf{E}\big(X - \mathbf{E}(X|Y)\big)^2$ .
But since  $\mathbf{E}(X|Y)$  is linear in  $Y$ , we have  $\mathbf{E}\big(X - \widehat{\mathbf{E}}(X|Y)\big)^2 \leq \mathbf{E}\big(X - \mathbf{E}(X|Y)\big)^2$  (recall that orthogonal projection is the best linear estimate). This implies (3).

(II) Since  $\mathbf{E}X^2 < \infty$  and  $\mathbf{E}Y^2 < \infty$  for any linear function  $\ell(x)$ 

$$\mathbf{E}(X - \mathbf{E}(X|Y))\ell(Y) = 0$$

Since  $\mathbf{E}(X|Y) = c_0 + c_1 Y$  (i.e. linear (affine) in Y) and by uniqueness of the orthogonal projection we conclude  $\mathbf{E}(X|Y) = \hat{\mathbf{E}}(X|Y)$ .

(g) (I) E.g. let  $\xi$  be a r.v. with  $\mathbf{E}\xi=1$  and Y be a r.v. with  $\mathbf{E}Y=0$ ,  $\mathbf{E}Y^2<\infty$ .  $\xi$  and Y are independent. Define  $X=\xi Y$ . Then

$$\mathbf{E}(X|Y) = \mathbf{E}(\xi Y|Y) = Y\mathbf{E}\xi = Y$$

Note that  $\mathbf{E}X = 0$  and

$$\widehat{\mathbf{E}}(X|Y) = \frac{\mathbf{Cov}(X,Y)}{\mathbf{Cov}(Y,Y)}(Y - \mathbf{E}Y) = \frac{\mathbf{E}XY}{\mathbf{E}Y^2}Y = \frac{\mathbf{E}\xi Y^2}{\mathbf{E}Y^2}Y = Y \cdot \mathbf{E}\xi = Y$$

- (II) Simply pick any independent  $X = c_0 + c_1 Y$ . Or X and Y independent (in this case  $c_0 = \mathbf{E}X$  and  $c_1 = 0$ .)
- (h)  $X > Y \stackrel{?}{\Longrightarrow} \widehat{\mathbf{E}}(X|Z) > \widehat{\mathbf{E}}(Y|Z)$ . Wrong. A simple example is  $Y \equiv C < 0$  and  $X = |\xi|$ , where  $\xi$  is e.g. Gaussian. Clearly X > Y. Moreover  $\widehat{\mathbf{E}}(Y|Z) \equiv C$  and  $\widehat{\mathbf{E}}(X|Z) = \alpha + \beta Z$ , where  $\alpha$  and  $\beta$  are some constants ( $\alpha = \mathbf{E}|\xi|$ , etc.). Clearly Z can be chosen so that  $\mathbf{P}\{\alpha + \beta Z < C\} > 0$  (e.g. choose Z Gaussian), which means that  $\mathbf{P}\{\widehat{\mathbf{E}}(X|Z) < \widehat{\mathbf{E}}(Y|Z)\} > 0$ .

In several particular cases, the property holds, e.g. X and Y are orthogonal to Z:

$$\widehat{\mathbf{E}}(X|Z) = \mathbf{E}X, \quad \widehat{\mathbf{E}}(Y|Z) = \mathbf{E}Y$$

$$X > Y \implies \mathbf{E}X > \mathbf{E}Y$$

## Problem 2.

(a) Given  $\theta$ , the process  $(X_n, Y_n)_{n\geq 1}$  is Gaussian.

Introduce Gaussian processes  $(X_n^{(i)}, Y_n^{(i)})_{n\geq 0}$ , i=1,...,d, generated by:

$$X_n^{(i)} = a(i)X_{n-1} + b(i)\varepsilon_n, \quad X_0^{(i)} = X_0$$
  
 $Y_n^{(i)} = X_{n-1}^{(i)} + \sigma\xi_n, \quad n \ge 1$ 

and let  $\phi_n^i(\lambda_0^n, \mu_1^n)$  denote its characteristic function:

$$\phi_n^i(\lambda_0^n, \mu_1^n) = \mathbf{E} \exp \left\{ i \sum_{\ell=0}^n \lambda_\ell X_\ell^{(i)} + i \sum_{\ell=1}^n \mu_\ell Y_\ell^{(i)} \right\}$$

where  $\lambda_i$  and  $\mu_i$  are real numbers.

Let  $\phi_n(\lambda_0^n, \mu_1^n; \theta)$  denote the *conditional* characteristic function of  $(X_n, Y_n)$ , i.e.

$$\phi_n(\lambda_0^n, \mu_1^n; \theta) = \mathbf{E} \exp \left\{ i \sum_{\ell=0}^n \lambda_\ell X_\ell + i \sum_{\ell=1}^n \mu_\ell Y_\ell \Big| \theta \right\}$$

Clearly

$$\phi_n(\lambda_0^n, \mu_1^n; \theta) = \sum_{i=1}^d \phi_n^i(\lambda_0^n, \mu_1^n) I(\theta = i)$$

so that  $\phi_n(\lambda_0^n, \mu_1^n; \theta)$  has a form of a Gaussian characteristic function (depending of  $\theta$ , of course)

(b) Set  $m_n := \mathbf{E}(X_n | \theta)$ , then:

$$m_n = \mathbf{E}(X_n|\theta) = \mathbf{E}(a(\theta)X_{n-1}|\theta) + \mathbf{E}(b(\theta)\varepsilon_n|\theta) =$$
  
=  $a(\theta)\mathbf{E}(X_{n-1}|\theta) = a(\theta)m_{n-1}$ 

Similarly:

$$V_n = a^2(\theta)V_{n-1} + b^2(\theta)$$

(c)  $(X_n, Y_n)_{n\geq 1}$  is not a Gaussian process, e.g. the distribution of  $X_1$  is non Gaussian, in fact it is a *Gaussian mixture*:

$$f(x) = \frac{d\mathbf{P}\{X_1 \le x\}}{dx} = \sum_{i} p_i \varphi_i(x)$$

where  $\varphi_i(x)$  is the density of a Gaussian r.v. with zero mean and variance  $a^2(i) + b^2(i)$ .

(d) Note that  $(X_n, Y_n)_{n\geq 1}$  is Gaussian, conditioned on  $\{\theta = i\}$ . So the optimal estimate  $\widehat{X}_n(i) = \mathbf{E}(X_n|Y_1^n, \theta = i)$  is given by the Kalman

filter  $(n \ge 1)$ :

$$\widehat{X}_{n}(i) = a(i)\widehat{X}_{n-1}(i) + \frac{aP_{n-1}(i)}{P_{n-1}(i) + \sigma^{2}}(Y_{n} - \widehat{X}_{n-1}(i))$$

$$P_{n}(i) = a^{2}(i)P_{n-1}(i) + b^{2}(i) - \frac{a^{2}(i)P_{n-1}^{2}(i)}{P_{n-1}(i) + \sigma^{2}}$$

$$(4)$$

subject to  $\widehat{X}_0(i) = 0$  and  $P_0(i) = 1, i \in S$ . I.e.

$$\widehat{X}_n(\theta) = \sum_{i=1}^d \widehat{X}_n(i) I(\theta = i)$$

(e) Clearly:

$$\widehat{X}_n = \mathbf{E}(X_n | Y_1^n) = \sum_j \mathbf{P}\{\theta = j | Y_1^n\} \mathbf{E}(X_n | Y_1^n, \theta = j) = \sum_j \pi_n(j) \widehat{X}_n(j)$$

i.e. the optimal on-line filter in this case can be constructed by a combination of a bank of d Kalman filters and a Wonham filter (as we will see shortly)

(f) The conditional probability  $\pi_n(i)$  is found as a function  $G(x; Y_1^{n-1})$ , such that:

$$\mathbf{E}\left[I(\theta=i)h(Y_n)|Y_1^{n-1}\right] = \mathbf{E}\left[G(Y_n;Y_1^{n-1})h(Y_n)|Y_1^{n-1}\right]$$
 (5) for any bounded  $h$ .

The left hand side:

$$\mathbf{E}(I(\theta = i)[h(Y_n)|\theta = i, Y_1^{n-1}]|Y_1^{n-1}) =$$

$$= \mathbf{E}(I(\theta = i) \int h(x)\varphi_i(x)dx|Y_1^{n-1}) =$$

$$= \pi_{n-1}(i) \int h(x)\varphi_i(x)dx$$

where  $\varphi_i(x)$  is a Gaussian density with mean  $\widehat{X}_{n-1}(i)$  and variance  $P_{n-1}(i) + \sigma^2$ , i.e.

$$\varphi_i(x) = \frac{1}{\sqrt{2\pi(P_{n-1}(i) + \sigma^2)}} \exp\left\{-\frac{\left(x - \hat{X}_{n-1}(i)\right)^2}{2(P_{n-1}(i) + \sigma^2)}\right\}$$

This follows from the fact that given  $\theta = i$ , the conditional distribution of  $Y_n$  given  $Y_1^{n-1}$  is Gaussian. Calculating the right hand side of (5) and using the arbitrariness of h(x) we arrive at:

$$\pi_n(i) = \frac{\pi_{n-1}(i)\varphi_i(Y_n)}{\sum_j \pi_{n-1}(j)\varphi_j(Y_n)}$$
(6)

subject to  $\pi_0(i) = p(i)$ .

## Problem 3.

- (a) See lecture note 9 (optimal filtering of finite state Markov chain)
- (b) See lecture note 9 (optimal linear filtering of finite state Markov chain)
- (c) (I) Let  $I_n$  be a vector with elements  $I(\theta_n = a_i)$ ,  $a_i \in S$ . Then (these formulae have been derived in class)

$$I_n = \Lambda^{\top} I_{n-1} + \nu_n$$

where  $(\nu_n)_{n\geq 1}$  is a vector sequence such that:

$$\mathbf{E}\nu_n \equiv 0, \quad \mathbf{E}\nu_n\nu_m^{\top} = \delta(n-m)D_n$$

$$D_n = \mathbf{diag}(V_n) - \Lambda^{\top} \mathbf{diag}(V_{n-1}) \Lambda$$

and

$$V_n = \Lambda^{\top} V_{n-1}$$

subject to  $V_n = p$ .

Introduce an augmented state vector (in  $\mathbb{R}^{d+1}$ ):

$$X_n := \begin{pmatrix} I_n \\ -- \\ \xi_n \end{pmatrix}$$

Then

$$X_n = \underbrace{\begin{pmatrix} \Lambda^{\top} & 0 \\ 0 & \gamma \end{pmatrix}}_{:=\Gamma} X_{n-1} + \widetilde{\varepsilon}_n$$

$$Y_n = \widetilde{S}^{\top} X_n = \widetilde{S}^{\top} \Gamma X_{n-1} + \widetilde{S}^{\top} \widetilde{\varepsilon}_n$$

where

$$\widetilde{S} = \begin{pmatrix} H(a_1) \\ H(a_2) \\ \vdots \\ H(a_d) \\ 1 \end{pmatrix} \in \mathbb{R}^{d+1}$$

and  $(\widetilde{\varepsilon}_n)_{n\geq 1}$  is an  $\mathbb{R}^{d+1}$  valued sequence of zero mean r.v. such that:

$$\mathbf{E}\widetilde{\varepsilon}_n\widetilde{\varepsilon}_m = \delta(n-m) \begin{pmatrix} D_n & 0 \\ 0 & 1 \end{pmatrix} := Q_n$$

The linear optimal estimate is given by the Kalman filter:

$$\widehat{X}_{n} = \Gamma \widehat{X}_{n-1} + (\Gamma P_{n-1} \Gamma^{\top} \widetilde{S}^{\top} + Q_{n} \widetilde{S}) \cdot 
\cdot (\widetilde{S}^{\top} \Gamma P_{n-1} \Gamma^{\top} \widetilde{S} + \widetilde{S}^{\top} Q_{n} \widetilde{S})^{+} (Y_{n} - \widetilde{S} \Gamma \widehat{X}_{n-1})$$
(7)

$$P_{n} = \Gamma P_{n-1} \Gamma^{\top} + Q_{n} - (\Gamma P_{n-1} \Gamma^{\top} \widetilde{S}^{\top} + Q_{n} \widetilde{S}) \cdot (\widetilde{S}^{\top} \Gamma P_{n-1} \Gamma^{\top} \widetilde{S} + \widetilde{S}^{\top} Q_{n} \widetilde{S})^{+} (\Gamma P_{n-1} \Gamma^{\top} \widetilde{S}^{\top} + Q_{n} \widetilde{S})^{\top}$$
(8)

and 
$$\widehat{\theta}_n = \widehat{\mathbf{E}}(\theta_n | Y_1^n) = \sum_j a_j \widehat{X}_n(j)$$
.

(II) Let  $\mathcal{H}$  be a vector with elements  $H(a_i)$ ,  $\nu_n := I_n - \Lambda^{\top} I_{n-1}$  and J denote the identity matrix:

$$Y_n = \theta_n + \xi_n = \mathcal{H}^\top I_n + \gamma \xi_{n-1} + \varepsilon_n = \mathcal{H}^\top I_n + \gamma (Y_{n-1} - \mathcal{H}^\top I_{n-1}) + \varepsilon_n$$

$$= \mathcal{H}^\top (\Lambda^\top I_{n-1} + \nu_n) + \gamma (Y_{n-1} - \mathcal{H}^\top I_{n-1}) + \varepsilon_n =$$

$$= \mathcal{H}^\top (\Lambda^\top - \gamma J) I_{n-1} + \gamma Y_{n-1} + \mathcal{H}^\top \nu_n + \varepsilon_n$$

Together with  $I_n = \Lambda^{\top} I_{n-1} + \nu_n$ , a linear model, suitable for the Kalman filter is obtained.

(d) Following the standard technique, we look for a function  $G(x; Y_1^{n-1})$ such that:

$$\mathbf{E}\big[I(\theta_n = a_i)h(Y_n)|Y_1^{n-1}\big] = \mathbf{E}\big[G(Y_1; Y_1^{n-1})h(Y_n)|Y_1^{n-1}\big]$$
(9)
First calculate:

 $\mathbf{E}[I(\theta_n = a_i)h(Y_n)|\theta_{n-1}, Y_1^{n-1}] =$ 

$$= \mathbf{E} \left[ \sum_{\ell} I(\theta_{n-1} = a_{\ell}) I(\theta_n = a_i) h(H(a_i) + \gamma \xi_{n-1} + \varepsilon_n) | \theta_{n-1}, Y_1^{n-1} \right] =$$

$$= \sum_{\ell} I(\theta_{n-1} = a_{\ell}) \lambda_{\ell i} \int h(H(a_i) + \gamma (Y_{n-1} - a_{\ell}) + x) f(x) dx$$

Taking the conditional expectation with respect to  $Y_1^{n-1}$  of the latter equation we arrive at an expression for the left hand side of (9):

$$\sum_{\ell} \pi_{n-1}(\ell) \lambda_{\ell i} \int h(x) f(x - H(a_i) - \gamma (Y_{n-1} - H(a_{\ell}))) dx$$

By similar calculations one obtains an expression for the right hand side, which finally lead to the filter:

$$\pi_n(i) = \frac{\sum_{\ell} f(Y_n - H(a_i) - \gamma(Y_{n-1} - H(a_\ell))) \lambda_{\ell i} \pi_{n-1}(\ell)}{\sum_{i} \sum_{\ell} f(Y_n - H(a_i) - \gamma(Y_{n-1} - H(a_\ell))) \lambda_{\ell i} \pi_{n-1}(\ell)}, \quad n \ge 2 \quad (10)$$

Since  $\xi_0 = 0$ ,  $Y_1 = \theta_1 + \xi_1 = \theta_1 + \varepsilon_1$ :

$$\pi_1(i) = \frac{\sum_{\ell} f(Y_1 - H(a_i)) \lambda_{\ell i} p(\ell)}{\sum_{i} \sum_{\ell} f(Y_1 - H(a_i)) \lambda_{\ell i} p(\ell)}$$
(11)

Note that for  $\gamma = 0$ , this filter is reduced to the conventional Wonham filter.