
RANDOM PROCESSES. THE FINAL TEST SOLUTION.
June, 26th, 2000

Problem 1.

(a) E
[
E(X|Y )|X

] ?= X. Wrong. E.g. if X and Y are independent, then
E(X|Y ) = EX and E

[
E(X|Y )|X

]
= EX 6= X

(b) E(X|Y ) ≡ EX
?=⇒ X and Y indepedent. Wrong. E.g. let ξ

be a r.v. with zero mean and Y ∈ {0, 1} with prob. {1−p, p}. ξ and
Y are independent. Set X = ξY Consider the pair (X, Y ). Clearly:

E(X|Y ) = E(ξY |Y ) = Y Eξ = 0 ≡ EX

Let us show that X and Y depend:

E|X|Y = E|ξY |Y = E|ξ|Y 2 = E|ξ|Y = pE|ξ|

on the other hand:

E|X| ·EY = E|ξY | · p = p2E|ξ|

That is:
E|X|Y 6= E|X|EY

(c) E(X|Y ) ?= E
[
X|E(X|Y )

]
. Correct. By definition

E
[
X|E(X|Y )

]
= φ

(
E(X|Y )

)
such that:

E
[
X − φ

(
E(X|Y )

)]
g
(
E(X|Y )

)
= 0 (1)

for all bounded g. Take φ(x) = x and note that g
(
E(X|Y )

)
is

actually a function of Y , so that (1) holds. Due to uniqueness of
cond. expectation with prob. 1, we conclude that the statement is
correct.

(d) {X, Y, Z} is Gaussian, such that EX = 0 and Y and Z are indepen-
dent, then

E(X|Y, Z) = E(X|Y ) + E(X|Z)

This is correct and verified e.g. by explicit calculation (see also
lecture notes)

E(X|Y, Z) = Cov(X, Y )/Cov(Y, Y )(Y −EY ) +
+Cov(X, Z)/Cov(Z,Z)(Z −EZ) = E(X|Y ) + E(X|Z) (2)

(e) If {X, Y, Z} is non Gaussian, then (2) is generally false. Assume
EX = 0 and let X = ZY , so that Z and Y are independent and
with zero mean. Then E(X|Y, Z) = ZY 6= E(X|Y ) + E(X|Z) = 0

1
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(f) (I) If E(X|Y ) = c0 + c1Y , then E(X|Y ) = Ê(X|Y ) with prob. 1.
Let us show that

E
(
E(X|Y )− Ê(X|Y )

)2 = 0 (3)

E
(
E(X|Y )− Ê(X|Y )

)2 = E
(
E(X|Y )−X + X − Ê(X|Y )

)2 =

= E
(
E(X|Y )−X

)2 − 2E
(
E(X|Y )−X

)(
X − Ê(X|Y )

)
+

+E
(
X − Ê(X|Y )

)2

But (why?)

E
(
E(X|Y )−X

)(
X − Ê(X|Y )

)
= E

(
E(X|Y )−X

)(
X −E(X|Y )

)
so

E
(
E(X|Y )− Ê(X|Y )

)2 = E
(
X − Ê(X|Y )

)2 −E
(
X −E(X|Y )

)2

Clearly E
(
X − Ê(X|Y )

)2 ≥ E
(
X −E(X|Y )

)2.
But since E(X|Y ) is linear in Y , we have E

(
X − Ê(X|Y )

)2 ≤
E

(
X −E(X|Y )

)2 (recall that orthogonal projection is the best
linear estimate). This implies (3).

(II) Since EX2 < ∞ and EY 2 < ∞ for any linear function `(x)

E
(
X −E(X|Y )

)
`(Y ) = 0

Since E(X|Y ) = c0 + c1Y (i.e. linear (affine) in Y ) and by
uniqueness of the orthogonal projection we conclude E(X|Y ) =
Ê(X|Y ).

(g) (I) E.g. let ξ be a r.v. with Eξ = 1 and Y be a r.v. with EY = 0,
EY 2 < ∞. ξ and Y are independent. Define X = ξY . Then

E(X|Y ) = E(ξY |Y ) = Y Eξ = Y

Note that EX = 0 and

Ê(X|Y ) =
Cov(X, Y )
Cov(Y, Y )

(Y −EY ) =
EXY

EY 2
Y =

EξY 2

EY 2
Y = Y ·Eξ = Y

(II) Simply pick any independent X = c0 + c1Y . Or X and Y
independent (in this case c0 = EX and c1 = 0.)

(h) X > Y
?=⇒ Ê(X|Z) > Ê(Y |Z). Wrong. A simple example is

Y ≡ C < 0 and X = |ξ|, where ξ is e.g. Gaussian. Clearly X > Y .
Moreover Ê(Y |Z) ≡ C and Ê(X|Z) = α + βZ, where α and β are
some constants (α = E|ξ|, etc.). Clearly Z can be chosen so that
P{α + βZ < C} > 0 (e.g. choose Z Gaussian), which means that
P

{
Ê(X|Z) < Ê(Y |Z)

}
> 0.

In several particular cases, the property holds, e.g. X and Y are
orthogonal to Z:

Ê(X|Z) = EX, Ê(Y |Z) = EY
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But
X > Y =⇒ EX > EY
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Problem 2.

(a) Given θ, the process (Xn, Yn)n≥1 is Gaussian.
Introduce Gaussian processes (X(i)

n , Y
(i)
n )n≥0, i = 1, ..., d, gener-

ated by:

X(i)
n = a(i)Xn−1 + b(i)εn, X

(i)
0 = X0

Y (i)
n = X

(i)
n−1 + σξn, n ≥ 1

and let φi
n(λn

0 , µn
1 ) denote its characteristic function:

φi
n(λn

0 , µn
1 ) = E exp

{
i

n∑
`=0

λ`X
(i)
` + i

n∑
`=1

µ`Y
(i)
`

}

where λi and µi are real numbers.
Let φn(λn

0 , µn
1 ; θ) denote the conditional characteristic function of

(Xn, Yn), i.e.

φn(λn
0 , µn

1 ; θ) = E exp

{
i

n∑
`=0

λ`X` + i

n∑
`=1

µ`Y`

∣∣∣θ}

Clearly

φn(λn
0 , µn

1 ; θ) =
d∑

i=1

φi
n(λn

0 , µn
1 )I(θ = i)

so that φn(λn
0 , µn

1 ; θ) has a form of a Gaussian characteristic function
(depending of θ, of course)

(b) Set mn := E(Xn|θ), then:

mn = E(Xn|θ) = E
(
a(θ)Xn−1|θ

)
+ E

(
b(θ)εn|θ

)
=

= a(θ)E(Xn−1|θ) = a(θ)mn−1

Similarly:

Vn = a2(θ)Vn−1 + b2(θ)

(c) (Xn, Yn)n≥1 is not a Gaussian process, e.g. the distribution of X1 is
non Gaussian, in fact it is a Gaussian mixture:

f(x) =
dP{X1 ≤ x}

dx
=

∑
i

piϕi(x)

where ϕi(x) is the density of a Gaussian r.v. with zero mean and
variance a2(i) + b2(i).

(d) Note that (Xn, Yn)n≥1 is Gaussian, conditioned on {θ = i}. So the
optimal estimate X̂n(i) = E(Xn|Y n

1 , θ = i) is given by the Kalman
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filter (n ≥ 1):

X̂n(i) = a(i)X̂n−1(i) +
aPn−1(i)

Pn−1(i) + σ2
(Yn − X̂n−1(i)) (4)

Pn(i) = a2(i)Pn−1(i) + b2(i)−
a2(i)P 2

n−1(i)
Pn−1(i) + σ2

subject to X̂0(i) = 0 and P0(i) = 1, i ∈ S.
I.e.

X̂n(θ) =
d∑

i=1

X̂n(i)I(θ = i)

(e) Clearly:

X̂n = E(Xn|Y n
1 ) =

∑
j

P{θ = j|Y n
1 }E(Xn|Y n

1 , θ = j) =
∑

j

πn(j)X̂n(j)

i.e. the optimal on-line filter in this case can be constructed by a
combination of a bank of d Kalman filters and a Wonham filter (as
we will see shortly)

(f) The conditional probability πn(i) is found as a function G(x;Y n−1
1 ),

such that:

E
[
I(θ = i)h(Yn)|Y n−1

1

]
= E

[
G(Yn;Y n−1

1 )h(Yn)|Y n−1
1

]
(5)

for any bounded h.
The left hand side:

E
(
I(θ = i)

[
h(Yn)|θ = i, Y n−1

1

]
|Y n−1

1

)
=

= E
(
I(θ = i)

∫
h(x)ϕi(x)dx|Y n−1

1

)
=

= πn−1(i)
∫

h(x)ϕi(x)dx

where ϕi(x) is a Gaussian density with mean X̂n−1(i) and variance
Pn−1(i) + σ2, i.e.

ϕi(x) =
1√

2π(Pn−1(i) + σ2)
exp

{
−

(
x− X̂n−1(i)

)2

2(Pn−1(i) + σ2)

}
This follows from the fact that given θ = i, the conditional distribu-
tion of Yn given Y n−1

1 is Gaussian. Calculating the right hand side
of (5) and using the arbitrariness of h(x) we arrive at:

πn(i) =
πn−1(i)ϕi(Yn)∑
j πn−1(j)ϕj(Yn)

(6)

subject to π0(i) = p(i).
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Problem 3.

(a) See lecture note 9 (optimal filtering of finite state Markov chain)
(b) See lecture note 9 (optimal linear filtering of finite state Markov

chain)
(c) (I) Let In be a vector with elements I(θn = ai), ai ∈ S. Then

(these formulae have been derived in class)

In = Λ>In−1 + νn

where (νn)n≥1 is a vector sequence such that:

Eνn ≡ 0, Eνnν>m = δ(n−m)Dn

Dn = diag(Vn)− Λ>diag(Vn−1)Λ
and

Vn = Λ>Vn−1

subject to Vn = p.
Introduce an augmented state vector (in Rd+1):

Xn :=

 In

−−
ξn


Then

Xn =
(

Λ> 0
0 γ

)
︸ ︷︷ ︸

:=Γ

Xn−1 + ε̃n

Yn = S̃>Xn = S̃>ΓXn−1 + S̃>ε̃n

where

S̃ =


H(a1)
H(a2)

...
H(ad)

1

 ∈ Rd+1

and (ε̃n)n≥1 is an Rd+1 valued sequence of zero mean r.v. such
that:

Eε̃nε̃m = δ(n−m)
(

Dn 0
0 1

)
:= Qn

The linear optimal estimate is given by the Kalman filter:

X̂n = ΓX̂n−1 + (ΓPn−1Γ>S̃> + QnS̃) · (7)

·(S̃>ΓPn−1Γ>S̃ + S̃>QnS̃)+(Yn − S̃ΓX̂n−1)

Pn = ΓPn−1Γ> + Qn − (ΓPn−1Γ>S̃> + QnS̃) ·
·(S̃>ΓPn−1Γ>S̃ + S̃>QnS̃)+(ΓPn−1Γ>S̃> + QnS̃)> (8)
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and θ̂n = Ê(θn|Y n
1 ) =

∑
j ajX̂n(j).

(II) Let H be a vector with elements H(ai), νn := In−Λ>In−1 and
J denote the identity matrix:

Yn = θn + ξn = H>In + γξn−1 + εn = H>In + γ(Yn−1 −H>In−1) + εn

= H>(Λ>In−1 + νn) + γ(Yn−1 −H>In−1) + εn =

= H>(Λ> − γJ)In−1 + γYn−1 +H>νn + εn

Together with In = Λ>In−1 + νn, a linear model, suitable for
the Kalman filter is obtained.

(d) Following the standard technique, we look for a function G(x;Y n−1
1 )

such that:

E
[
I(θn = ai)h(Yn)|Y n−1

1

]
= E

[
G(Y1;Y n−1

1 )h(Yn)|Y n−1
1

]
(9)

First calculate:

E
[
I(θn = ai)h(Yn)|θn−1, Y

n−1
1

]
=

= E
[∑

`

I(θn−1 = a`)I(θn = ai)h(H(ai) + γξn−1 + εn)|θn−1, Y
n−1
1

]
=

=
∑

`

I(θn−1 = a`)λ`i

∫
h(H(ai) + γ(Yn−1 − a`) + x)f(x)dx

Taking the conditional expectation with respect to Y n−1
1 of the latter

equation we arrive at an expression for the left hand side of (9):∑
`

πn−1(`)λ`i

∫
h(x)f(x−H(ai)− γ(Yn−1 −H(a`)))dx

By similar calculations one obtains an expression for the right hand
side, which finally lead to the filter:

πn(i) =
∑

` f
(
Yn −H(ai)− γ(Yn−1 −H(a`))

)
λ`iπn−1(`)∑

i

∑
` f

(
Yn −H(ai)− γ(Yn−1 −H(a`))

)
λ`iπn−1(`)

, n ≥ 2 (10)

Since ξ0 = 0, Y1 = θ1 + ξ1 = θ1 + ε1:

π1(i) =
∑

` f
(
Y1 −H(ai)

)
λ`ip(`)∑

i

∑
` f

(
Y1 −H(ai)

)
λ`ip(`)

(11)

Note that for γ = 0, this filter is reduced to the conventional
Wonham filter.


