RANDOM PROCESSES. THE FINAL TEST SOLUTION.
June, 26th, 2000

Problem 1.
(a) E[E(X|Y)|X] £ X. Wrong. E.g. if X and Y are independent, then
E(X|Y)=EX and E[E(X|Y)|X]| =EX # X

(b) E(X|Y) = EX == X and Y indepedent. Wrong. E.g. let ¢
be a r.v. with zero mean and Y € {0, 1} with prob. {1 —p,p}. £ and
Y are independent. Set X = Y Consider the pair (X,Y). Clearly:

EX|Y)=E(Y|Y)=YE{=0=EX
Let us show that X and Y depend:
E[X|Y = E[(Y|Y = E[¢[Y? = E[¢|]Y = pE[¢|
on the other hand:
E|X| EY = E[Y|-p = p°E[¢|

That is:
E|X|Y # E|X|EY

(c) E(X|Y) L E[X|E(X|Y)]. Correct. By definition
E[X|E(X]Y)] = ¢(E(X|Y))
such that:
E[X - ¢(E(X|Y))]g9(E(X]Y)) =0 (1)

for all bounded g. Take ¢(z) = x and note that g(E(X|Y)) is
actually a function of Y, so that (1) holds. Due to uniqueness of
cond. expectation with prob. 1, we conclude that the statement is
correct.
(d) {X,Y, Z} is Gaussian, such that EX = 0 and Y and Z are indepen-
dent, then

E(X|Y,Z) = E(X|Y) + E(X|2)

This is correct and verified e.g. by explicit calculation (see also
lecture notes)

E(X|Y,Z)=Cov(X,Y)/Cov(Y,Y)(Y —EY) +
+Cov(X,Z2)/Cov(Z,Z)(Z —EZ)=EX|Y)+E(X|Z) (2
(e) If {X,Y,Z} is non Gaussian, then (2) is generally false. Assume
EX =0 and let X = ZY, so that Z and Y are independent and

with zero mean. Then E(X|Y,Z) =Z2Y #E(X|Y)+ E(X|Z) =0
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(f) () If E(X|Y) = co + ¢1Y, then E(X|Y) = E(X|Y) with prob. 1.
Let us show that

E(E(X]Y) - E(X|Y))* =0 (3)

E(E(X|Y) - E(X|Y))? = E(EX]Y) - X + X — B(X|V))* =
—E(E(X]Y) - X)? - 2E(E(X|Y) - X)(X - E(X[|Y)) +
+E(X - B(X|Y))®
But (why?)
E(E(X|Y) - X) (X —E(X|Y)) = E(E(X]Y) — X) (X — E(X|Y))
E(E(X|Y) - E(X[Y))" = E(X - E(X|Y))” - E(X - E(X]Y))’
Clearly E(X — B(X|Y))? > E(X — E(X[|Y))%.
But since E(X|Y) is linear in ¥, we have E(X — B(X|Y))? <
E(X — E(X]Y))2 (recall that orthogonal projection is the best

linear estimate). This implies (3).
(IT) Since EX? < co and EY? < oo for any linear function £(x)

E(X - E(X|Y)){(Y) =0

Since E(X|Y) = ¢op + 1Y (i.e. linear (affine) in Y) and by
uniqueness of the orthogonal projection we conclude E(X|Y) =
E(X|Y).

(g) (I) E.g. let ¢ bearv. with E€=1and Y be ar.v. with EY =0,
EY? < co. € and Y are independent. Define X = £¢Y. Then

EX|Y)=E(Y|Y)=YE¢(=Y
Note that EX = 0 and
Cov(X,Y) EXY EcYy?
—— (Y —-EY) = Y =
Cov(Y,Y) ( )

E(X|Y) = Y=Y E¢=Y

EY? EY?

(IT) Simply pick any independent X = ¢y + ¢1Y. Or X and Y
independent (in this case ¢g = EX and ¢; = 0.)

(h) X > Y = E(X|Z) > E(Y|Z). Wrong. A simple example is
Y =C < 0and X = |{], where ¢ is e.g. Gaussian. Clearly X > Y.
Moreover E(Y\Z) = C and E(X]Z) = o+ BZ, where o and 3 are
some constants (o = E[¢|, etc.). Clearly Z can be chosen so that
P{a+ pZ < C} > 0 (e.g. choose Z Gaussian), which means that
P{E(X|Z) <E(Y|Z)} > 0.

In several particular cases, the property holds, e.g. X and Y are
orthogonal to Z:

E(X|Z) =EX, E(Y|Z)=EY



But
X>Y — EX >EY
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Problem 2.
(a) Given 0, the process (X, Yy)n>1 is Gaussian.
Introduce Gaussian processes (X,(f),Yn(l))nzo, ¢t = 1,...,d, gener-
ated by:

X0 = a()Xp1 +b(i)en, X =Xq

vO = xO Loe n>1

n

and let ¢ (A}, u}) denote its characteristic function:

&5 (A5, 1) Eexp{ Z)\EX —i—zz,ugY }

where )\; and p; are real numbers.
Let ¢ (A, u;0) denote the conditional characteristic function of

(X, Y,), ie
QSTL( 87N1a Eexp{ ZAZX€+ ZMYE‘ }
Clearly

(;5 Onul? Z¢Z n n 9_1)

so that ¢y, (A7, 11; @) has a form of a Gaussian characteristic function
(depending of @, of course)
(b) Set my, := E(X,|0), then:

mp, = E(Xp|0) =E(a(0)Xn-1]0) + E(b(0)en]d) =
= a(0)E(X,-1|0) = a(§)mp—1

Similarly:
Vi = a2(9)Vn71 + b2(9)

(¢) (Xn,Yy,)n>1 is not a Gaussian process, e.g. the distribution of X; is
non Gaussian, in fact it is a Gaussian mizture:

flay = L =TE = Ymato

where ¢;(z) is the density of a Gaussian r.v. with zero mean and
variance a?(i) + b%(4).

(d) Note that (X, Y,)n>1 is Gaussian, conditioned on {# = i}. So the
optimal estimate X, (i) = E(X,|Y]",0 = i) is given by the Kalman



aPn_l(i)

Xo(i) = a(i)Xn_1(i) + W(Yn — Xn-1(4)) (4)
a’(i)P2_ (i
Rai) = @@)Pas(i) () — i
subject to )?o(i) =0and Py(i) =1,i€ S.
Le.

d
2u(0) = 3 X160 =)
i=1
(e) Clearly:

X = B(Xo V") =) P{0 = Y EX, Y, 0 = j) = m(5) Xn()
J J

i.e. the optimal on-line filter in this case can be constructed by a
combination of a bank of d Kalman filters and a Wonham filter (as

we will see shortly)
(f) The conditional probability 7, (i) is found as a function G/(z; Y1),

such that:

B[I(0 = )bV Y] = B[G(Va 7 ) h(V) V7] (5)

for any bounded h.

The left hand side:

B(1(0 = i) [h(Yo)|0 =i, Y7y !) =
B0 =) [ ha)pilapdalyy ) =

:Wn_l(i)/h(z)cpi(x)da:

where ¢;(z) is a Gaussian density with mean X,_1(i) and variance
Po1(i) + o2, ie.

pi(z) = L exp — (z = X0 1)
' V21 (Py1(i) + 02) 2(Py—1(i) + 02)
This follows from the fact that given # = 4, the conditional distribu-

tion of Y;, given Yln_1 is Gaussian. Calculating the right hand side
of (5) and using the arbitrariness of h(x) we arrive at:

L o1 (D) ei(Ya)
) = () (V) ©)

subject to m (i) = p(i).
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Problem 3.

(a) See lecture note 9 (optimal filtering of finite state Markov chain)
(b) See lecture note 9 (optimal linear filtering of finite state Markov
chain)
(¢c) (I) Let I, be a vector with elements I(6,, = a;), a; € S. Then
(these formulae have been derived in class)
I, = ATInfl +vn
where (vp)n>1 is a vector sequence such that:

Ev, =0, Ev,w| =dn—m)D,

D,, = diag(V;,) — A" diag(V,,_1)A
and
Vi=AVoy
subject to V,, = p.
Introduce an augmented state vector (in RZ+1):

I
Xpi=1—
&n
Then
AT 0 ~
Xn = < 0 ’y) anl =+ En
—_——
=I
Y, = §8'X,=8"TX,_.1+5"&,
where
H(ay)
H(az)
S=] : |ert
H(aq)
1
and (Ep)p>1 is an R valued sequence of zero mean r.v. such
that:

Ez,.g,, =0(n—m) <%n (1)> =Qn
The linear optimal estimate is given by the Kalman filter:
X, = IXyo1 4+ (0Pl TST +Q,5) - (7)
(STTP, TS+ 87Q,8) (Y, — ST X, 1)
P, = TP, I'' +Q,— (TP, ST +Q,5)-
(STTP, TS+ 587Q,8) (TP, TTST +Q,5" (8



~

and 0, = B(0,/Y]") = ¥, a; X ().

(IT) Let H be a vector with elements H(a;), v := I, — AT I,,_; and
J denote the identity matrix:

Y,=0,+ gn = HTIn + ’an—l +en = HTIn + ’V(Yn—l - HTIn—l) +én
=H (A Ty +v) + YY1 —H Liy) +en =
=H' (AT =y o1+ Yno1 +H vy + 2y

Together with I, = ATI,_ + vy, a linear model, suitable for
the Kalman filter is obtained.
(d) Following the standard technique, we look for a function G'(x; Y1)
such that:

E[I(6n = ai)h(Yo)[Y!"™ '] = E[G(V3; Y HR(Ya) Y] (9)
First calculate:
E[1(0n = ai)h(Yy)|0n—1, Y]] =
=E[>_1(6n1 = an)(6n = ai)h(H(ai) + 161 + )00, Y] =
L

=3 1(0n 1 = ) / h(H (a5) + (Vo1 — ag) + o) f(x)da
V4

Taking the conditional expectation with respect to Yln_1 of the latter
equation we arrive at an expression for the left hand side of (9):

> maa(Oa [ W)@~ Hi@w) = 1(Yaor — Hlar)dz
l

By similar calculations one obtains an expression for the right hand
side, which finally lead to the filter:

oo f (Yo — H(ai) = (Y1 — H(ag))) Aeimn—1(£)

") = S S F (Ve — H(@) =7 (Va1 — Hla) (@ =2 1
Since §=0,Y, =01+ & =01 +€1:
(i) = S0 f (Y1 — H(a;)) Aeip(£) (11)

X f(Yi — H(ai) Aap(0)
Note that for v = 0, this filter is reduced to the conventional
Wonham filter.



