RANDOM PROCESSES. THE SOLUTION TO FINAL TEST.
April, 2000

Problem 1.

a) The optimal linear estimate a) = ar&y satisfies the orthogo-
k#0
nality principle:

E(%— Y &) =0, (#0
k#£0

Note that if we set ap = 0 and choose some constant v (which does
not necessarily equals 0), the orthogonality eq. becomes:

[e.e]

E(¢ — Z ake)&e =0, for all ¢

k=—o0

Let R(m) = E&,&n+m, then

R(t)— > apR(k+€) =70, forall ¢

k=—o00

Now calculate the Fourier transform of both sides:

f) = AT NN =~
Clearly A()) is real and since f(\) > 0:

gl
AN =1— —
W=
The constant ~ is determined by the constrain ag = 0:
1 1
AN d =1 —~y— 1/f(A)dA=0

0= % [—m,m] 27 [—m,7]
which implies:
27
A N IP VAN
S AMFO

Now the filter is completely specified.
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o0

= E(& — Z aréy)? = R(0 —22%R —|—ZZakamR(k—m)
k m

_1
Cor

1
o

k=—o0

o (FO) =240 F () + AN F (V) dA =

_ 1 7
IO An = /[ =

(¢) For white noise (i.e. f(A) = 02), we expect that & = 0. Indeed, in
this case A(\) = 0.
(d) Of course, the solution can be obtained as a special case of (a).
Alternatively, if one notes that {{;,k # 0} and {&1,&-1,e, k #
0,1} are related by a one-to-one linear transformation, the solution
can be simplified, since then ! with prob. one

E(&o[ék, k # 0) = E(&0l€1, 61,6,k # 0,1} = E(§0/€1,6-1)
where the last equality follows from independence of {e,k # 0,1}

and {&_

ponent

1,€0,&1}. Now the problem is reduced to estimating a com-
of a Gaussian vector:

&1 = a& +bey
§1 = &ja—b/asy

Since the process is stationary

and

E&oé1
E&oé -1
E§ &

So that:

E E -
) = (E&& E&E) <E§)§ E?E) (5 1> }
a -1
1

E(&0/&1,¢&-

bQ
1—a?

E¢, =0, E& =

= E&(a& + ber) = ab?/(1 — a?)

= E¢ (a1 +beg = ab®/(1 — a?)

= E(a& + be1)(éo/a — b/agy) = EE — bE&ye =
=b2/(1 —a®) — b* = b%a?/(1 — a?)

() () (E)-
- %&(1 h(e 1) (&)=

= 1+a 2[61‘}'5 ]

since &, is Gaussian, the orthogonal projection is replaced by conditional expectation



To calculate the corresponding error note that:

a a
m[& +éal= 1+ a2 ((a+1/a)& + ber — bjagg) =
= & + (be1 — b/aeo)

from which it follows that:
—~ b?
P=E(—-§)P?=——

(e) Note that vectors {i1,&a, ..., and {&1, €9, ...,e2} are related by
one-to-one linear transformation. Then with probability one

E(&le!) = E(&lé1,€3) = E(éolér)

where the last inequality follows from independence of & and ey,
k> 1.
For n > 1:

ab?/(1 — a?)
a?b?/(1 — a2) + b2

~ E
o(n) = ég?

&= &1 =ay

and the error is:
P =E(& — a&1)? = E(&(1 — a?) — abey)” = b?
(f) Identical to (e)

Problem 2

(a) Introduce:

1(0, = ay) a1
1(0,, = a9) as
Xn = . 3 J = .
1(0, = aq) agq

Clearly 0, = J' X, and Y,, = J T X;, + vJ " Xp, 1 + &, Let (X1,
be generated by a recursion:

X’rll = ATX,;L_l + En

Y, = J'X)4yd X, + &
where ¢, is a sequence of independent Gaussian vector r.v. in R,
such that:
Ee, =0, Ee,e, = diag(p,) — A'diag (p,_1) A := D,
and

pn=ATp,_1, subject to po

Note that X,, and X/ have the same correlation structure (see lecture
note No. 9), so that the optimal linear estimate of X, from Y} is



obtained by applying the Kalman filter for the pair (X,,,Y,)) to the
observations Y,,:

Xy = ANXy 1 +PY P ' (V=T AT X 1 — AT X, 1)
P, = P;ffl - Prfgl[Pg—l]il[P;gl]T
where

@ = A'P,_iA+D,

PY = AP, (AJ+~J)+D,J

n—1
PV . = (JAT 44T Py 1(AJ +~J)+ ' D,J + EE2

n—1
(b) Let:
(i) = P{0n = ai|Y]"} = E[I(0, = a))|Y]"] := G(Yo, Y]' ™)
and
Tafn—1(i) = P{0n = ai|Y]'""'} = Bl (0 = a;)|¥]"™"]
Then for any bounded h(z) and H(z1, ..., Zn—1)
Eh(Yo)H(Y1, ..., Y1) [1(0n = a;) = G(Y,,, Y1) =0
or equivalently:
E(h(Yo) [1(0n = a;) = G(¥,, Y] [¥71) =0
Calculate each term separately:
E[I(0, = a;))h(Yo) Y = E{E[1(0, = a;)h(Yo)[Y" ", 01| Y7}
=E{E[I(0h = ai)h(a; +v0n—1 + &)Y 0n 1] Y7} =

= Z Fn—l(j) / )\jih(ai +yaj + JJ)f(.%‘)dm —

- R
J
- /R S mu 1 () Aih(@) f(z — a; — ya;)da (1)
j
and similarly:
E(h(Y,)G (Y, Y DY) = EE { (M0 + Y0n—1 + &)
G(en +'79n—1 +§n7Y1n_1)’0n—17}/1n_1)} = (2)
D o ma1()) /]R Njib(ai +ya; + 2)G(a; + yaj + =, Y f(z)de =

J

= /RZ Tn-1(5) 2 Nyih(@) G, YT flo = @i = ya;)da



Since (1) and (2) should be equal for any h(z), we deduce:

Zﬂ'n 1 ]zf aq — ’Yaj) =
= Zﬂn—1(j) > NG, YY) o — a; — vay)
f ;

or:
225 1) Aji f (& — ai — va;)

Zzﬁn 1()Ajif (@ — ai — vay)

and the recursion is obtained by 7, (j) = G(Yy,, " 1).

(c) If v =0, a conventional Wonham filter is obtained.
(d) Note that Y;, is a Gaussian r.v. given 6,, and 6,,_; with mean:

E(Yn|9n7 anl) =0p + 701

G(x, Y™ 1)

and variance:
E([Yn — E(Y,(0n, 9n—1)]29m 9n—1> = 92_103 + 052 = 02(0n_1)
So (1) reads:
E[I(0, = a)h(Yo)Y] '] =+ =

= Ynal ) [ Ah(a)e @0+, 0(a)) da
where

pira = o {-252)

Similarly modifying (2), we conclude that the optimal filter is given

by (3), with f(Y;,—a;—va;) replaced by @(Yn, a;+yaj, | /ajz-ag + ag).

Problem 3

Let for brevity?g(x) = |z|/(|z| + 1).

2By the way, d(X,Y) = Eg(X —Y) is indeed a metric. All the properties are obvious,
except maybe for the triangle inequality. This is proved as follows: we should verify that
for any z:

|z — y| |z — 2| |z =yl
e —yl+1 = Jz—2|+1 |z—y|+1

To prove this, not that for fixed = and y the right hand side expression obeys a global
minimum, which equals to the left hand side and attained at z = x and z = y. E.g. let
z >y > x, then:

|z — 2| |z — | z—x z—y z—x y—x
+ =
le—2l+1 |z—yl+1 z—z+1 z—y+1~" z—z+1 " y—z+1

etc.



(a) For any € > 0

Eg fn — §
Py~ > 6} =P {gl6n - 9 > 9(e)} < T 0, oo
where the equality holds since g(x) is one to one and Chebyshev
inequality holds (non trivially) since g(z) is bounded (Eg(&, — &) <
(b) By the way, note that since g(z) is a continuous function (see exam
1999)

fr ot = 6 -6 20 = g6, —6) 2 g(0) =0

So that the sequence (, := ¢g(&, — &) converges to 0 in probabil-
ity. Since 0 < (, < 1, we conclude (why?) that E(, — 0, which
completes the proof.

A straight forward approach is also possible: note that g(x) < 1,
so for any € > 0

d(&n, &) = Bg(§n — &) =
=Eg(& — OI(1& — €&l > ) + Eg(§n — OI(|€ — €[ <) <
<1-P{l& —¢&l>¢e}+g(e) = g(e), n—o0

Since g(¢) is a strictly decreasing function of € and e can be chosen
arbitrary small we conclude:

d(&n,§) — 0, n— o0
The proof of (a) and (b) can be also easily deduced from
Lemma 1.1. For any fized € > 0:

| X € 1+e¢ | X|
E - <P(|X|>¢) < E 4
1+|X| 14e~ (1X1>€) < 14 |X]| (4)
Proof.
X X X
E X =E X I(|X|>e)+E X I(|X|<e) >

14 |X]| 14+ |X]| 1+ |X]|
€ €
>E—I(|X|>¢) = —P(|X]| >
> B —1(1X| 2 ) = -P(X| 2 ¢)
which implies the upper bound. The lower bound is derived similarly
X 1X] x|
1+ |X]| 1+ |X]| 14+ |X]|

<BI(X|>¢)+

E

I(|X|>e)+E

I(|X] <e) <

€
1+¢
[l
(c)
(I) For example d'(&,,&) = E|&, —£], i.e. convergence in prob. does

not imply convergence in the mean (take e.g. £, = &/n with ¢
ar.v. with E£ = 00)
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(IT) For another example, set d”(&,,&) = EI(, # &) = P{¢&, # £}
It is indeed a metric (with prob. 1): for any two r.v. n and &
(i) §=n = d"(n,§) =0 and

d'(&n) =0 = P{{#n} =0 = £ =n with prob. 1
(i) d"(&,m) >0

(iii) For any numbers a, b, ¢

Ia#0b) <I(a#c)+I(b#c)
(which is verified by trying all the combinations a = b # c,
a # b # ¢, etc.) Using this inequality with r.v. and
taking expectation from both sides leads to the triangle
inequality.
Now take some &,, so that &, P, 0and P{¢, # 0} =1, clearly
d//(§n7 g) 7L) 0.

(d) The idea is to define a metric, convergence in which will be equivalent
to convergence in distribution. Once such metric is chosen, one
can pick a sequence which converges in distribution and does not
converge in probability. Construction of such metric is possible?,
but non trivial.

(e) Since &, 4c , by definition for any bounded and continuous func-
tion f(x):

Ef(&,) — Ef(C)
Take special function f/(z) = |z — C|/(|x — C| + 1), then:

Ef'(¢&.) —Ef(C)=0
which is nothing but
d(€n, C) = 0 => &, —= C

Srefer "Probability’, Second edition, A.N. Shiryaev - look for weak convergence and
Prokhorov-Levy metric



