SOLUTION TO EXAM 2002

Problem 1

(a) false: e.g. take Y ~ N(0,1) and X = £Y, where ¢ is an independent symmetric
random sign. Then X is Gaussian (check its characteristic function) and EXY =
E¢Y? = E¢ = 0. However the vector (X,Y) is not Gaussian, since e.g.

PX+Y=0)=1/2
i.e. linear combination of the two has an atom.

(b) true: if E(X|Y) = a+ Y and its variance is nonzero, then 8 # 0 and hence

Y = (E(X|Y)—«)/8. SoY is a linear function of a Gaussian random variable and
hence itself is Gaussian.

(c) false: example similar to (a), let Y ~ A(0,1) and X = ({ +1)Y. Then
E(X|Y)=YE(E+1)=Y

and so also (why?) E(X|Y) =Y. Moreover Y is Gaussian (with positive variance)
and hence also E(X|Y'), however (X,Y) is still not, e.g.

P(X =0)=1/2

(d) true by direct calculation (the case EY? = 0 is trivial)
EXY

EXE(X]Y) = £o5BXY =0 = EXY=0

(e) false, in the example of (a) we have E(X|Y) = 0 so that E(X|Y) and X are
independent, however X and Y clearly depend, e.g.

E(X?]Y)=Y?

(f) true, by direct calculation

EE(Z|X)Y _EEZXxy

(& EX?2
E(E(Z\X)]Y) —Y— = s
B aEX? EZ(aX +V) EZY -
yEXZ Ay —y —B(zly
EY? EY?2 Ey? — EZIY)

(g) true: for any bounded function ¢
EWY)E(E(Z|X)|Y) = Ey(Y)E(Z|X) = E¢(aX + V)E(Z|X) =

E/q/}(aX + $)E(Z|X)dF,(s) = EE(Z/w(aX + s)dFv(s)|X) =

E(Z/w(aX + s)dFU(s)> = EE(Zw(aX +V)|X, Z) =

EE(Z¢(Y)|X, Z) — Ey(Y)Z



2

where F,(s) = P(V < s). The claim follows from the definition of conditional
expectation.

Problem 2

(a) As usual we look for G(Y;"*;Y,,), such that
E(1(X, = DY) 137 ) = B(GOZ ™ Ya)h(Va) Y3 ) (1)
The right hand side becomes
B(1(X, = Dh(Va)g ") =

B(1(X0 = Dh(1 = Xo )3 ) = 1/2{h(O0)mus + h@)(1 = m01)}
whereas the left hand side is
E(G(Y;*l;Yn)h(Yn)|Y2"*1) -
E(G(Y;—l; X — X 1)h(Xn — Xn_1)|Y2"_1) -
E(I(X, = DGOF™51 = X )h(1 = X, )37+
E(I(Xn = DG —1 - Xp_y)h(—1 — Xn,1)|Y2"*1) -
1/2(0(1/2"—1; 0)h(0)mn_1 + G(Y 1 2)h(2)(1 — wn_1)>—|—
1/2(@(1/2“*1; 0)h(0)(1 — 1) + GV —2>h(—2)7rn,1)
Comparing h(0), h(—2) and h(2) terms in the above expressions we find:
1 Y, =2
Tp=G(Y3 5 Y0) = {1 V=0 (2)
0 Y, = -2
The same answer can be obtained by a shortcut - note that Y,, € {2,0,—2}. If
{Y,, = 2} then {X,, = 1,X,,_1 = —1}; if {Y,, = =2} then {X,, = -1, X,,_1 = 1}.
{Y,, = 0} means that {X,, = X,,_1}, so
P(X,=1y;""Y,=0) =
P(X,=1Y3"" X, =X,1) =
P(X, 1 =1|Y37 X, = X, 1) =
P(X, =1y X, =1) =
P(X,-1 = 1Y) =m0

Summarizing the above we get (2) subject to m; = 1/2 or which is the same (why

7)
1-— 27T'n,1
8

Tn =

1
Y72+ ZY" + Thoq



(b) The model suitable for Kalman filter application is
0, = X,
Yn = Hn —Xn_l,n Z 2

Now §n|n_1 = (9 |Y2” h = (X [Y;*~1) = 0, since Y;* ! is a linear combination
of { X1y, Xpo1}; Yooy = E(Y, YY) = E(6, — ,H\YQ’H) = —f,_1. So

PY_ =E02 =1 P} | =E(0 — (01— 6,-1))" =1+ P,_1, where P,_; =
E(0,-1 — 0-1)2 Finally P%Y | = Efy (0 — (0n—1 — 0,1)) = 1. Hence
0, = —— (Y + 0,
1+ Pnfl ( * 1)
1
P=1-—
1+ Pn—l

subject to 51 =0and P, =1.

(¢) Once again the conventional approach works (see (1)):
E(1(X, = Dh(Z,)|257") =
B(1(X, = Dh(Xa/ X0 257") =
E(I(X, = DA(X,-1)|257") =

1/2{h(V)pn-1 + (1)1 = po-1) |

and
E(G (ZnY. Z,) (Zn)|Z;—1) -
E(G(Z5™ X/ X )Xo/ X0 1)| Z571) =
1/2(G(25 7 X )h(X00)|125 7 )+
1/2(GZ -l x 1)h(—Xn_1)|Z§L‘1) -
(D1 + G(Z5 ™ =Dh(=1)(1 = puo) )+

1/2(G(Z3 ~Dh(- Vs + G2 DR~ o)) =
1/2G(Z8 5 1)h(1) +1/2G(Zy Y —1)h(—1)

(Z3

(
1/2(G(Z “1.1)h

(

which leads to the conclusion
o = Pn—1, Zn =1
" 1= pn_1, Zn=-1

Now since ps = P(X35|X2/X1) = 1/2, we get p, = 1/2.
The answer can be obtained intuitively - we feel that ZJ contains! no information
about X, since it ”scrambles” the signal, i.e. p, = P(X,, = 1) = 1/2. To prove

lit can be even shown that {Z2,...; Zn, Xn} is an i.i.d. vector.
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fix 1 : R* ! — R, then
E(I(X, = 1)¢(Zs, ..., Zn)) =
V(Za, ey Zn) | XTTH) =
Y (Zas oo Zn 1, Xnf X 1)| XP71) = (3)

On the other hand
E(’L/J(ZQ, ...,Zn)) =E¢(Za, ... Xpn/Xn-1) =
1/2E(Za, ..., Xn—1) + 1/2Ep(Zs, ...y — X 1) =

1 2E)(Zg, .., Xpno1) + 1/2E0(Xo /X1, oo, Xnm1 / X2y, —Xpn1) =

( Xn-1) (
4
1/2E(Za, ooy Xnot) + 1/2Eh(= Xa/ — X1y s — X1/ — Xn2, —Xn_1) = W
( Xn-1) (

1/2E)(Za, .y Xpn—1) + 1/2E( X2/ X1, oo, X1 /X2, Xpm1) =

EY(Zs, ..., Xp1)
where the equality t is due to symmetry of the distribution of {X1, Xo,..., X, —1}.
Eq. (3) and (4) imply p, = 1/2.
(d) Tt immediately follows from (c) that B(X,,|Z3) = 0 and E((X,—B(X,|Z5))° =
1, for any n > 1.

(e), (d) Note that X,, = X1 + > ;_, Y%, so that

E(X,[Y;") =E(X1|Yy") + > Y
k=2
and hence
2 2
E(X1 - E(X1|Y2")) = E(Xn - E(Xn|Y2"))

Both from (a) and (b) it can be seen that lim,, .. E(X,, —E(Xn|Y2”))2 = 0, which
means that E(X;|Y3") converges to X7 in L? (hence also in L' and with probability
and in law). P-a.s. convergence follows from Borel-Cantelli Lemma, since

PEX:|Y;) #X1) =P(Yo=0,Y3=0,....Y, =0) =

1/2P(Y2 =0,...Y, =0[X; =1) + 1/2P(Y2 = 0,...,Y,, = 0|X; = -1) =
12P(Xo=1,., X, =1X; =1)+1/2P(Xo = -1,..., X, = -1|X; = -1) =
= (1/2)"!

so that Y-, P(E(X1|YY) # X1) < oc.
By (c) we get E(X1]Z%) =0 (i.e. trivially converges to zero in all senses).

Problem 3

(a) Since 6, = Y;/t = (t0 + W,)/t = 6 + W, /t, we have
EW? 1
2

E(0—0) = E(9f§)2:t =

)

t



(b) By It6 formula

7) Yy dY 1 1 1 ~
(c) We have
E 1 B 1 T
Ltexp{t/2=Yi} " 1+exp{(1/2-0)t =W}
1 1 1 1
2 T Foxp{—1/2L— Wi} | 21+ exp{l/2t =Wy}
B lE 1 1 exp{-1/2t+W;} ¢
2 14exp{-1/2t —W;} 2 exp{-1/2t+W,;}+1
B EE 1 1. exp{-1/2t—Wi}
27 L+exp{—1/2t —W,} 2 exp{-1/2t—W,}+1
EE 1 exp{—1/2t — W;} —1/2
2 \l+4exp{-1/2t —W;} exp{-1/2t—Wi}+1)

where { is due to independence of # and W, and 1 is due to symmetry of the
distribution of W;. So E(m; — 6) = 0, i.e. the estimate is unbiased.

(d) Let & = exp{t/2 — Y;}. Then by Ito formula

d, exp{t/2 — Y;} (1/2dt — dY;) + 1/2exp{t/2 — Y; }dt =

exp{t/2 — Y;}dt — exp{t/2 — Y; }dY; = &dt — :dY;

Now since my = 1/(1+&;) and § = 1/m — 1 we have

1 1
L A R
_ 1 _ 1 9
B (1 +§t)2£t(dt a¥s)+ (1+ ft)ggt “
= —m(1/m —1)(dt — dYy) + 7} (1/m — 1)2dt =
= —Wt(l—ﬂt)(dt—d}/t)+7Tt(1—71't)2dt:
= 7Tt(1—7Tt)<—dt—‘rdyvt—f—(l—ﬂ't)dt) =

= ’/Tt(l *ﬂ't)(dY; *ﬂ'tdt)

F&rdt =

Appendix: what so special about m; anyway ?

It can be shown that 7, = E(0|Y{), and moreover it is the particular case of the
Wonham filter for continuous time processes. This is of course beyond the scope of
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the course. But let’s see that 7, is a at least better estimate than é\t

2 1 ’
@ = BO-m) =B~ o) -

1 1 2 1 1 2
n §E(1—|—exp{1/2t—Wt}> QE( 1+exp{—1/2t—Wt}) B
1 1 2 1 1 2
- §E(1+exp{1/2t7Wt}) +2E(exp{1/2t+Wt}+1) -
1 1 2 1 1 2
- iE(l—i—exp{l/Qt—Wt}) 2 (exp{1/2t—Wt}+1) -
E ! ’
B (1+exp{1/2t—|—Wt})

Let n(t) be a Gaussian random variable with En(t) = t/2 and variance E(n(t) —
t/2)? = t, then
Q=B |
) \/ﬁ 1+er)2

Note that the function (1+€%)~2 is less than 1 for any = and less than e 2% < e=%
for x > 0. So the integral in (5) can be bounded as

Se (:zft/2)2/2tdl, (5)

(z—t/2)? /2t o + me—xe—(m—t/2)2/2tdx =1+ 1

\/ﬁ V2rt Jo
Integrating I} w.r.t y = (z —t/2)/V/t we get, t > 0
A L [TV g
:\/ﬁ/ﬂo e ﬁdy:ﬁ/,o@ eV 2dy =P (¢ < —Vt/2)

where ( is a standard Gaussian r.v.
Similarly

Qi <

1 e 2
e e~ (z—t/2)? /2td / 6—($+t/2) /2tdl' _
f2= V2 / V2t Jo

_ L = v 2,
v ﬁme v 2dr = P(C > Vt)/2)
That is
Q1 <2P(¢ > Vt/2)

so using the well known bound

1 [* . 1 e2%
P(>x)=— e 5 2ds <
(¢z2) \/277/1 T N2ma 4 2?2+ 2/7
we get
1 et
Q: < (6)
V2T VE/2 + )2+ 2/T

which is much better than the rate in the linear case.



