
SOLUTION TO EXAM 2002

Problem 1

(a) false: e.g. take Y ∼ N (0, 1) and X = ξY , where ξ is an independent symmetric
random sign. Then X is Gaussian (check its characteristic function) and EXY =
EξY 2 = Eξ = 0. However the vector (X,Y ) is not Gaussian, since e.g.

P (X + Y = 0) = 1/2

i.e. linear combination of the two has an atom.

(b) true: if Ê(X|Y ) = α+ βY and its variance is nonzero, then β 6= 0 and hence
Y = (Ê(X|Y )−α)/β. So Y is a linear function of a Gaussian random variable and
hence itself is Gaussian.

(c) false: example similar to (a), let Y ∼ N (0, 1) and X = (ξ + 1)Y . Then

E(X|Y ) = YE(ξ + 1) = Y

and so also (why?) Ê(X|Y ) = Y . Moreover Y is Gaussian (with positive variance)
and hence also E(X|Y ), however (X,Y ) is still not, e.g.

P (X = 0) = 1/2

(d) true by direct calculation (the case EY 2 = 0 is trivial)

EXÊ
(
X|Y

)
=

EXY
EY 2

EXY = 0 =⇒ EXY = 0

(e) false, in the example of (a) we have E(X|Y ) = 0 so that E(X|Y ) and X are
independent, however X and Y clearly depend, e.g.

E(X2|Y ) = Y 2

(f) true, by direct calculation

Ê
(
Ê

(
Z|X

)∣∣Y )
= Y

EÊ
(
Z|X

)
Y

EY 2
= Y

EEZX
EX2 XY

EY 2
=

Y
EZX
EX2 αEX2

EY 2
= Y

EZ(αX + V )
EY 2

= Y
EZY
EY 2

= Ê(Z|Y )

(g) true: for any bounded function ψ

Eψ(Y )E
(
E(Z|X)|Y

)
= Eψ(Y )E(Z|X) = Eψ(αX + V )E(Z|X) =

E
∫
ψ(αX + s)E(Z|X)dFv(s) = EE

(
Z

∫
ψ(αX + s)dFv(s)

∣∣X)
=

E
(
Z

∫
ψ(αX + s)dFv(s)

)
= EE

(
Zψ(αX + V )

∣∣X,Z)
=

EE
(
Zψ(Y )

∣∣X,Z)
= Eψ(Y )Z

1
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where Fv(s) = P(V ≤ s). The claim follows from the definition of conditional
expectation.

Problem 2

(a) As usual we look for G(Y n−1
2 ;Yn), such that

E
(
I(Xn = 1)h(Yn)|Y n−1

2

)
= E

(
G(Y n−1

2 ;Yn)h(Yn)|Y n−1
2

)
(1)

The right hand side becomes

E
(
I(Xn = 1)h(Yn)|Y n−1

2

)
=

E
(
I(Xn = 1)h(1−Xn−1)|Y n−1

2

)
= 1/2

{
h(0)πn−1 + h(2)(1− πn−1)

}
whereas the left hand side is

E
(
G(Y n−1

2 ;Yn)h(Yn)|Y n−1
2

)
=

E
(
G(Y n−1

2 ;Xn −Xn−1)h(Xn −Xn−1)|Y n−1
2

)
=

E
(
I(Xn = 1)G(Y n−1

2 ; 1−Xn−1)h(1−Xn−1)|Y n−1
2

)
+

E
(
I(Xn = −1)G(Y n−1

2 ;−1−Xn−1)h(−1−Xn−1)|Y n−1
2

)
=

1/2
(
G(Y n−1

2 ; 0)h(0)πn−1 +G(Y n−1
2 ; 2)h(2)(1− πn−1)

)
+

1/2
(
G(Y n−1

2 ; 0)h(0)(1− πn−1) +G(Y n−1
2 ;−2)h(−2)πn−1

)
Comparing h(0), h(−2) and h(2) terms in the above expressions we find:

πn = G(Y n−1
2 ;Yn) =


1 Yn = 2
πn−1 Yn = 0
0 Yn = −2

(2)

The same answer can be obtained by a shortcut - note that Yn ∈ {2, 0,−2}. If
{Yn = 2} then {Xn = 1, Xn−1 = −1}; if {Yn = −2} then {Xn = −1, Xn−1 = 1}.
{Yn = 0} means that {Xn = Xn−1}, so

P
(
Xn = 1|Y n−1

2 , Yn = 0
)

=

P
(
Xn = 1|Y n−1

2 , Xn = Xn−1

)
=

P
(
Xn−1 = 1|Y n−1

2 , Xn = Xn−1

)
=

P
(
Xn−1 = 1|Y n−1

2 , Xn = 1
)

=

P
(
Xn−1 = 1|Y n−1

2

)
= πn−1

Summarizing the above we get (2) subject to π1 = 1/2 or which is the same (why
?)

πn =
1− 2πn−1

8
Y 2

n +
1
4
Yn + πn−1
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(b) The model suitable for Kalman filter application is

θn = Xn

Yn = θn −Xn−1, n ≥ 2

Now θ̂n|n−1 = Ê(θn|Y n−1
2 ) = Ê(Xn|Y n−1

2 ) = 0, since Y n−1
2 is a linear combination

of {X1, ..., Xn−1}; Ŷn|n−1 = Ê(Yn|Y n−1
2 ) = Ê(θn − Xn−1|Y n−1

2 ) = −θ̂n−1. So
P θ

n|n−1 = Eθ2n = 1; PY
n|n−1 = E

(
θn − (θn−1 − θ̂n−1)

)2 = 1 + Pn−1, where Pn−1 =

E(θn−1 − θ̂n−1)2. Finally P θY
n|n−1 = Eθn

(
θn − (θn−1 − θ̂n−1)

)
= 1. Hence

θ̂n =
1

1 + Pn−1

(
Yn + θ̂n−1

)
Pn = 1− 1

1 + Pn−1

subject to θ̂1 = 0 and P1 = 1.

(c) Once again the conventional approach works (see (1)):

E
(
I(Xn = 1)h(Zn)|Zn−1

2

)
=

E
(
I(Xn = 1)h(Xn/Xn−1)|Zn−1

2

)
=

E
(
I(Xn = 1)h(Xn−1)|Zn−1

2

)
=

1/2
{
h(1)ρn−1 + h(−1)(1− ρn−1)

}
and

E
(
G(Zn−1

2 ;Zn)h(Zn)|Zn−1
2

)
=

E
(
G(Zn−1

2 ;Xn/Xn−1)h(Xn/Xn−1)|Zn−1
2

)
=

1/2
(
G(Zn−1

2 ;Xn−1)h(Xn−1)|Zn−1
2

)
+

1/2
(
G(Zn−1

2 ;−Xn−1)h(−Xn−1)|Zn−1
2

)
=

1/2
(
G(Zn−1

2 ; 1)h(1)ρn−1 +G(Zn−1
2 ;−1)h(−1)(1− ρn−1)

)
+

1/2
(
G(Zn−1

2 ;−1)h(−1)ρn−1 +G(Zn−1
2 ; 1)h(1)(1− ρn−1)

)
=

1/2G(Zn−1
2 ; 1)h(1) + 1/2G(Zn−1

2 ;−1)h(−1)

which leads to the conclusion

ρn =

{
ρn−1, Zn = 1
1− ρn−1, Zn = −1

Now since ρ2 = P(X2|X2/X1) = 1/2, we get ρn ≡ 1/2.
The answer can be obtained intuitively - we feel that Zn

2 contains1 no information
about Xn, since it ”scrambles” the signal, i.e. ρn ≡ P(Xn = 1) = 1/2. To prove

1it can be even shown that {Z2, ..., Zn, Xn} is an i.i.d. vector.
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fix ψ : Rn−1 → R, then

E
(
I(Xn = 1)ψ(Z2, ..., Zn)

)
=

EE
(
I(Xn = 1)ψ(Z2, ..., Zn)|Xn−1

1

)
=

EE
(
I(Xn = 1)ψ(Z2, ..., Zn−1, Xn/Xn−1)|Xn−1

1

)
=

E
(
I(Xn = 1)ψ(Z2, ..., 1/Xn−1)|Xn−1

1

)
=

1/2E
(
ψ(Z2, ..., Xn−1)

)
(3)

On the other hand

E
(
ψ(Z2, ..., Zn)

)
= Eψ(Z2, ..., Xn/Xn−1) =

1/2Eψ(Z2, ..., Xn−1) + 1/2Eψ(Z2, ...,−Xn−1) =

1/2Eψ(Z2, ..., Xn−1) + 1/2Eψ(X2/X1, ..., Xn−1/Xn−2,−Xn−1) =

1/2Eψ(Z2, ..., Xn−1) + 1/2Eψ(−X2/−X1, ...,−Xn−1/−Xn−2,−Xn−1)
†
=

1/2Eψ(Z2, ..., Xn−1) + 1/2Eψ(X2/X1, ..., Xn−1/Xn−2, Xn−1) =

Eψ(Z2, ..., Xn−1)

(4)

where the equality † is due to symmetry of the distribution of {X1, X2, ..., Xn−1}.
Eq. (3) and (4) imply ρn ≡ 1/2.

(d) It immediately follows from (c) that Ê(Xn|Zn
2 ) = 0 and E

(
(Xn−Ê(Xn|Zn

2 )
)2 =

1, for any n ≥ 1.

(e), (d) Note that Xn = X1 +
∑n

k=2 Yk, so that

E(Xn|Y n
2 ) = E(X1|Y n

2 ) +
n∑

k=2

Yk

and hence
E

(
X1 −E(X1|Y n

2 )
)2 = E

(
Xn −E(Xn|Y n

2 )
)2

Both from (a) and (b) it can be seen that limn→∞E
(
Xn−E(Xn|Y n

2 )
)2 = 0, which

means that E(X1|Y n
2 ) converges to X1 in L2 (hence also in L1 and with probability

and in law). P -a.s. convergence follows from Borel-Cantelli Lemma, since

P
(
E(X1|Y n

2 ) 6= X1

)
= P

(
Y2 = 0, Y3 = 0, ..., Yn = 0

)
=

1/2P
(
Y2 = 0, ..., Yn = 0|X1 = 1

)
+ 1/2P

(
Y2 = 0, ..., Yn = 0|X1 = −1

)
=

1/2P
(
X2 = 1, ..., Xn = 1|X1 = 1

)
+ 1/2P

(
X2 = −1, ..., Xn = −1|X1 = −1

)
=

= (1/2)n−1

so that
∑

k P
(
E(X1|Y k

2 ) 6= X1

)
<∞.

By (c) we get E(X1|Zn
2 ) ≡ 0 (i.e. trivially converges to zero in all senses).

Problem 3

(a) Since θ̂t = Yt/t = (tθ +Wt)/t = θ +Wt/t, we have

E(θ − θ̂) = 0, E(θ − θ̂)2 =
EW 2

t

t2
=

1
t
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(b) By Itô formula

dθ̂t = −Yt

t2
dt+

dYt

t
= −1

t
θ̂tdt+

1
t
dYt =

1
t

(
dYt − θ̂tdt

)

(c) We have

E
1

1 + exp{t/2− Yt}
= E

1
1 + exp{(1/2− θ)t−Wt}

†
=

=
1
2
E

1
1 + exp{−1/2t−Wt}

+
1
2
E

1
1 + exp{1/2t−Wt}

=

=
1
2
E

1
1 + exp{−1/2t−Wt}

+
1
2
E

exp{−1/2t+Wt}
exp{−1/2t+Wt}+ 1

‡
=

=
1
2
E

1
1 + exp{−1/2t−Wt}

+
1
2
E

exp{−1/2t−Wt}
exp{−1/2t−Wt}+ 1

=

1
2
E

(
1

1 + exp{−1/2t−Wt}
+

exp{−1/2t−Wt}
exp{−1/2t−Wt}+ 1

)
≡ 1/2

where † is due to independence of θ and Wt and ‡ is due to symmetry of the
distribution of Wt. So E(πt − θ) = 0, i.e. the estimate is unbiased.

(d) Let ξt = exp{t/2− Yt}. Then by Ito formula

dξt = exp{t/2− Yt} (1/2dt− dYt) + 1/2 exp{t/2− Yt}dt =
= exp{t/2− Yt}dt− exp{t/2− Yt}dYt = ξtdt− ξtdYt

Now since πt = 1/(1 + ξt) and ξt = 1/πt − 1 we have

dπt = − 1
(1 + ξt)2

dξt +
1

(1 + ξt)3
ξ2t dt =

= − 1
(1 + ξt)2

ξt
(
dt− dYt

)
+

1
(1 + ξt)3

ξ2t dt

= −π2
t (1/πt − 1)

(
dt− dYt

)
+ π3

t (1/πt − 1)2dt =

= −πt(1− πt)
(
dt− dYt

)
+ πt(1− πt)2dt =

= πt(1− πt)
(
− dt+ dYt + (1− πt)dt

)
=

= πt(1− πt)
(
dYt − πtdt

)

Appendix: what so special about πt anyway ?

It can be shown that πt = E(θ|Y t
0 ), and moreover it is the particular case of the

Wonham filter for continuous time processes. This is of course beyond the scope of
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the course. But let’s see that πt is a at least better estimate than θ̂t.

Qt = E
(
θ − πt

)2 = E
(
θ − 1

1 + exp{(1/2− θ)t−Wt}

)2

=

=
1
2
E

( 1
1 + exp{1/2t−Wt}

)2

+
1
2
E

(
1− 1

1 + exp{−1/2t−Wt}

)2

=

=
1
2
E

( 1
1 + exp{1/2t−Wt}

)2

+
1
2
E

( 1
exp{1/2t+Wt}+ 1

)2

=

=
1
2
E

( 1
1 + exp{1/2t−Wt}

)2

+
1
2
E

( 1
exp{1/2t−Wt}+ 1

)2

=

= E
( 1

1 + exp{1/2t+Wt}

)2

Let η(t) be a Gaussian random variable with Eη(t) = t/2 and variance E(η(t) −
t/2)2 = t, then

Qt = E
1

(1 + η(t))2
=

1√
2πt

∫ ∞

−∞

1
(1 + ex)2

e−(x−t/2)2/2tdx (5)

Note that the function (1+ex)−2 is less than 1 for any x and less than e−2x ≤ e−x

for x ≥ 0. So the integral in (5) can be bounded as

Qt ≤
1√
2πt

∫ 0

−∞
e−(x−t/2)2/2tdx+

1√
2πt

∫ ∞

0

e−xe−(x−t/2)2/2tdx := I1 + I2

Integrating I1 w.r.t y = (x− t/2)/
√
t we get, t ≥ 0

I1 =
1√
2πt

∫ −
√

t/2

−∞
e−y2/2

√
tdy =

1√
2π

∫ −
√

t/2

−∞
e−y2/2dy = P

(
ζ ≤ −

√
t/2

)
where ζ is a standard Gaussian r.v.

Similarly

I2 =
1√
2πt

∫ ∞

0

e−xe−(x−t/2)2/2tdx =
1√
2πt

∫ ∞

0

e−(x+t/2)2/2tdx =

=
1√
2π

∫ ∞

√
t/2

e−y2/2dx = P(ζ ≥
√
t/2)

That is
Qt ≤ 2P (ζ ≥

√
t/2)

so using the well known bound

P(ζ ≥ x) =
1√
2π

∫ ∞

x

e−s2/2ds ≤ 1√
2π

e−2x2

x+
√
x2 + 2/π

we get

Qt ≤
1√
2π

e−t2

√
t/2 +

√
t/2 + 2/π

(6)

which is much better than the rate in the linear case.


