FINAL TEST SOLUTION RANDOM PROCESSES 2003

P. CHIGANSKY

Problem 1.

(a)

$$\mathbb{E}X_{n} = \mathbb{E}\sum_{j=1}^{X_{n-1}} \xi_{n,j} = \mathbb{E}\sum_{\ell=0}^{\infty} I(X_{n-1} = \ell) \mathbb{E}\left(\sum_{j=1}^{\ell} \xi_{n,j} | X_{n-1}\right) = \mathbb{E}\sum_{\ell=0}^{\infty} I(X_{n-1} = \ell) \ell(p+2q) = (p+2q) \mathbb{E}X_{n-1}$$

and thus $X_n \xrightarrow[n \to \infty]{\mathbb{L}^1} 0$ if p + 2q < 1.

(b) Set $\rho = p + 2q$ for brevity. Clearly

$$X_n = \sum_{j=1}^{X_{n-1}} (\xi_{n,j} - \rho) + X_{n-1}\rho.$$
(1.1)

Moreover

$$\mathbb{E}X_{n-1} \sum_{j=1}^{X_{n-1}} (\xi_{n,j} - \rho) = \mathbb{E}X_{n-1} E\left(\sum_{j=1}^{X_{n-1}} (\xi_{n,j} - \rho) | X_{n-1}\right) = 0$$

and

$$\mathbb{E}\left(\sum_{j=1}^{X_{n-1}} (\xi_{n,j} - \rho)\right)^2 = \mathbb{E}\left(\sum_{\ell=0}^{\infty} I(X_{n-1} = \ell) \sum_{j=1}^{\ell} (\xi_{n,j} - \rho)\right)^2 =$$

$$\mathbb{E}\sum_{\ell=0}^{\infty} I(X_{n-1} = \ell) \mathbb{E}\left(\sum_{j=1}^{\ell} (\xi_{n,j} - \rho)\right)^2 =$$

$$\mathbb{E}\sum_{k=0}^{\infty} I(X_{n-1} = \ell) \ell \operatorname{Var}(\xi_{1,1}) = \operatorname{const.} \mathbb{E}X_{n-1} = \operatorname{const.} \rho^n$$

Squaring the eq. (1.1), obtain

$$\mathbb{E}X_n^2 = \text{const.}\,\rho^n + \rho^2 \mathbb{E}X_{n-1}^2$$

that is

$$\mathbb{E}X_n^2 = N^2 \rho^{2n} + \text{const.} \sum_{k=0}^n \rho^{n-k} \rho^{2k} = N^2 \rho^{2n} + \text{const.} \ \rho^n \underbrace{\sum_{k=0}^n \rho^k}_{\leq 1/(1-\rho)} \xrightarrow{n \to \infty} 0$$

and hence the required condition is $\rho = p + 2q < 1$.

(c) Let us verify first convergence in probability. Note that

$$\{\exists k \in [1, n] : \xi_{k,1} = 0, ..., \xi_{k,\tilde{N}} = 0\} \subseteq \{X_n = 0\}.$$

Let
$$\varepsilon = (1 - p - q)^{\widetilde{N}}$$
. Then

$$P(X_n = 0) \ge P\{\exists k \in [1, n] : \xi_{k,1} = 0, ..., \xi_{k,\tilde{N}} = 0\} = 1 - (1 - \varepsilon)^n \xrightarrow{n \to \infty} 1$$

and convergence in probability follows.

Now verify P-a.s. convergence. Note that

$$\{\exists n : \xi_{n,1} = 0, ..., \xi_{n,\tilde{N}} = 0\} \subseteq \{\lim_{n \to \infty} X_n = 0\}.$$

For any fixed m

$$P\{\exists n \leq m : \xi_{n,1} = 0, ..., \xi_{n,\tilde{N}} = 0\} = 1 - (1 - \varepsilon)^m.$$

and since

$$\{\exists n \leq m : \xi_{n,1} = 0, ..., \xi_{n,\tilde{N}} = 0\} \nearrow \{\exists n : \xi_{n,1} = 0, ..., \xi_{n,\tilde{N}} = 0\}, \text{ as } m \to \infty$$
 it follows

$$P(\lim_{n \to \infty} X_n = 0) \ge P\{\exists n : \xi_{n,1} = 0, ..., \xi_{n,\tilde{N}} = 0\} = 1 - \lim_{m \to \infty} (1 - \varepsilon)^m = 1.$$

 \mathbb{L}^p , p>0 convergence follows from convergence in probability, since $X_n\leq \widetilde{N}$.

Problem 2.

(a) First note that $\mathbb{E}(X_n|X_1^{n-1}) = \mathbb{E}(\varepsilon_n + \varepsilon_{n-1}|X_1^{n-1}) = \mathbb{E}(\varepsilon_{n-1}|X_1^{n-1}) := \widehat{\varepsilon}_{n-1}$. Since ε is Gaussian, $\widehat{\varepsilon}_{n-1} = \widehat{\mathbb{E}}(\varepsilon_{n-1}|X_1^{n-1})$ and can be calculated recursively:

$$\widehat{\varepsilon}_{n|n-1} = \widehat{\mathbb{E}}(\varepsilon_n|X_1^{n-1}) = 0$$

$$\widehat{X}_{n|n-1} = \widehat{\mathbb{E}}(X_n|X_1^{n-1}) = \widehat{\varepsilon}_{n-1}$$

$$P_{n|n-1}^{\varepsilon} = \mathbb{E}(\varepsilon_n - \widehat{\varepsilon}_{n|n-1})^2 = 1$$

$$P_{n|n-1}^{\varepsilon x} = \mathbb{E}(\varepsilon_n - \widehat{\varepsilon}_{n|n-1})(X_n - \widehat{\mathbb{E}}(X_n|X_1^{n-1})) = \mathbb{E}\varepsilon_n(\varepsilon_n + \varepsilon_{n-1} - \widehat{\varepsilon}_{n-1}) = 1$$

$$P_{n|n-1}^x = \mathbb{E}(X_n - \widehat{\mathbb{E}}(X_n|X_1^{n-1}))^2 = \mathbb{E}(\varepsilon_n + \varepsilon_{n-1} - \widehat{\varepsilon}_{n-1})^2 = 1 + P_{n-1}$$
and thus $n \ge 1$

$$\widehat{\varepsilon}_n = 1/(1 + P_{n-1}) (X_n - \widehat{\varepsilon}_{n-1})$$

$$P_n = 1 - 1/(1 + P_{n-1})$$

subject to $\widehat{\varepsilon}_0 = 0$ and $P_0 = 1$.

The sequence $R_n = 1/P_n$ satisfies

$$R_n = 1 + R_{n-1}, \quad R_0 = 1$$

and thus $R_n = n + 1$, i.e. $P_n = 1/(n + 1)$, $n \ge 0$. This leads to

$$\widehat{\varepsilon}_n = \frac{n}{n+1} (X_n - \widehat{\varepsilon}_{n-1}), \quad \widehat{\varepsilon}_0 = 0, \quad n \ge 1$$

and in turn

$$\widehat{X}_{n+1} = \frac{n}{n+1} (X_n - \widehat{X}_n), \quad \widehat{X}_1 = 0, \quad n \ge 1.$$

(b)
$$Q_n = P_{n|n-1}^x = 1 + P_{n-1} = 1 + 1/n, n \ge 2.$$

(c) Note that given ε_0 and $X_1,...,X_n$, the output of the recursion

$$\widehat{\varepsilon}'_n = X_n - \widehat{\varepsilon}'_{n-1}, \quad \widehat{\varepsilon}'_0 = \varepsilon_0$$

gives ε_n exactly (just try to unroll this recursion to see this), i.e. $\widehat{\varepsilon}_n \equiv \varepsilon_n$ and thus it is the conditional expectation. Since $\widehat{X}_{n+1}^{\circ} = \widehat{\varepsilon}'_n$, it follows that

$$\widehat{X}_{n+1}^{\circ} = X_n - \widehat{X}_n^{\circ}, \quad \widehat{X}_1^{\circ} = \varepsilon_0$$

(d) Since
$$\widehat{X}_{n+1}^{\circ} = \widehat{\varepsilon}_n' \equiv \varepsilon_n$$
, $Q_{n+1}^{\circ} = \mathbb{E}(X_{n+1} - \widehat{X}_{n+1}^{\circ})^2 = \mathbb{E}(\varepsilon_{n+1} + \varepsilon_n - \varepsilon_n)^2 \equiv 1$.

Problem 3.

(a) Let ξ_n^a (ξ_n^b) be the sequence of requests (say, taking value 1 when service is requested and 0 otherwise) from client A (B). Clearly ξ_n^a and ξ_n^b are independent i.i.d. sequences with $P(\xi_n^a = 1) = P(\xi_n^b = 1) = p$. Introduce an i.i.d. sequence η_n (independent of ξ_n^a and ξ_n^b) with $P(\eta_n = A) = P(\eta_n = B) = 1/2$.

Then X_n satisfies the following recursion¹

$$X_n = \xi_n^a \xi_n^b \left[AI(X_{n-1} = A) + BI(X_{n-1} = B) + \eta_n I(X_{n-1} = I) \right]$$

+ $A\xi_n^a (1 - \xi_n^b) + B(1 - \xi_n^a)\xi_n^b + I(1 - \xi_n^a)(1 - \xi_n^b)$ (1.2)

Due to independence of $(\xi_n^a, \xi_n^b, \eta_n)$ and X_0^{n-1} , X_n is a Markov chain regardless of distribution of $(\xi_n^a, \xi_n^b, \eta_n)$ (i.e. none of the conditions ruins the Markov property)

(b) From (1.2)

$$P(X_n = A | X_{n-1} = A) = \mathbb{E}\{\xi_n^a \xi_n^b + \xi_n^a (1 - \xi_n^b)\} = p^2 + p(1 - p) = p$$

$$P(X_n = I | X_{n-1} = A) = \mathbb{E}(1 - \xi_n^a)(1 - \xi_n^b) = (1 - p)^2$$

$$P(X_n = B | X_{n-1} = A) = \mathbb{E}(1 - \xi_n^a)\xi_n^b = (1 - p)p$$

$$P(X_n = A | X_{n-1} = I) = 1/2\mathbb{E}\xi_n^a \xi_n^b + \mathbb{E}\xi_n^a (1 - \xi_n^b) = 1/2p^2 + p(1 - p) = p - p^2/2$$

$$P(X_n = I | X_{n-1} = I) = \mathbb{E}(1 - \xi_n^a)(1 - \xi_n^b) = (1 - p)^2$$

$$P(X_n = B | X_{n-1} = I) = 1/2\mathbb{E}\xi_n^a \xi_n^b + \mathbb{E}\xi_n^b (1 - \xi_n^a) = 1/2p^2 + p(1 - p) = p - p^2/2$$

$$P(X_n = A | X_{n-1} = B) = \mathbb{E}\xi_n^a (1 - \xi_n^b) = p(1 - p)$$

$$P(X_n = I | X_{n-1} = B) = \dots = (1 - p)^2$$

$$P(X_n = B | X_{n-1} = B) = \dots = p$$
i.e.
$$\Lambda = \begin{pmatrix} p & (1 - p)^2 & (1 - p)p \\ p - p^2/2 & (1 - p)^2 & p - p^2/2 \\ p(1 - p) & (1 - p)^2 & p \end{pmatrix}$$

(c) Let
$$f_{\lambda}(t) = \lambda \exp\{-\lambda t\}$$
 and $\mathcal{F}_{n-1} = \{\alpha_1^{n-1}, \beta_1^{n-1}\}$ for brevity.

¹The multiplication for symbols A, B, I is symbolic, e.g. A1 = A, A0 = 0, A + 0 = A (A + B) is of course not defined and never happens!)

Let $\pi_t(I) = G(\alpha_n, \beta_n; \mathcal{F}_{n-1})$ and fix a bounded function h(s, t). Then G should satisfy

$$\mathbb{E}(I(X_n = I)h(\alpha_n, \beta_n)|\mathcal{F}_{n-1}) = \mathbb{E}(G(\alpha_n, \beta_n; \mathcal{F}_{n-1})h(\alpha_n, \beta_n)|\mathcal{F}_{n-1})$$

The left hand side becomes

$$\mathbb{E}\left(I(X_n=I)\int_0^\infty \int_0^\infty h(t,s)f_1(s)f_1(t)dtds|\mathcal{F}_{n-1}\right) = \pi_{n|n-1}(I)\int_0^\infty \int_0^\infty h(t,s)f_1(s)f_1(t)dtds$$

whereas the right hand side is equal to

$$\mathbb{E}\Big(\big[I(X_{n}=A) + I(X_{n}=I) + I(X_{n}=B)\big]G(\alpha_{n}, \beta_{n}; \mathcal{F}_{n-1})h(\alpha_{n}, \beta_{n})|\mathcal{F}_{n-1}\Big) = \pi_{n|n-1}(A)\int_{0}^{t}\int_{0}^{t}G(s, t; \mathcal{F}_{n-1})h(s, t)f_{\lambda}(s)f_{1}(t)dsdt + \pi_{n|n-1}(I)\int_{0}^{t}\int_{0}^{t}G(s, t; \mathcal{F}_{n-1})h(s, t)f_{1}(s)f_{1}(t)dsdt + \pi_{n|n-1}(B)\int_{0}^{t}\int_{0}^{t}G(s, t; \mathcal{F}_{n-1})h(s, t)f_{1}(s)f_{\lambda}(t)dsdt.$$

 So^2

$$G(s,t;\mathcal{F}_{n-1}) = \frac{\pi_{n|n-1}f_1(s)f_1(t)}{\pi_{n|n-1}(A)f_{\lambda}(s)f_1(t) + \pi_{n|n-1}(I)f_1(s)f_1(t) + \pi_{n|n-1}(B)f_1(s)f_{\lambda}(t)}$$

and thus

$$\pi_{n}(I) = \frac{\pi_{n|n-1}(I)f_{1}(\alpha_{n})f_{1}(\beta_{n})}{\pi_{n|n-1}(A)f_{\lambda}(\alpha_{n})f_{1}(\beta_{n}) + \pi_{n|n-1}(I)f_{1}(\alpha_{n})f_{1}(\beta_{n}) + \pi_{n|n-1}(B)f_{1}(\alpha_{n})f_{\lambda}(\beta_{n})} = \frac{\pi_{n|n-1}(I)\exp\{-\alpha_{n} - \beta_{n}\}}{\lambda\pi_{n|n-1}(A)\exp\{-\lambda\alpha_{n} - \beta_{n}\} + \pi_{n|n-1}(I)\exp\{-\alpha_{n} - \beta_{n}\} + \lambda\pi_{n|n-1}(B)\exp\{-\alpha_{n} - \lambda\beta_{n}\}} = \frac{\pi_{n|n-1}(I)}{\lambda\pi_{n|n-1}(A)\exp\{(1-\lambda)\alpha_{n}\} + \pi_{n|n-1}(I) + \lambda\pi_{n|n-1}(B)\exp\{(1-\lambda)\beta_{n}\}}$$

Problem 4.

(a) Since
$$\mathbb{E} \int_0^t S_u dW_u = 0$$
, $m_t = \mathbb{E} S_t = 1 - \int_0^t r \mathbb{E} S_u du$ and hence $\dot{m}_t = -rm_t$, $m_0 = 1$.

(b) Apply the Ito formula to S_t^2

$$dS_t^2 = 2S_t dS_t + \frac{1}{2} 2S_t^2 \sigma^2 dt$$

that is

$$S_t^2 = S_0^2 - 2\int_0^t r S_u^2 du + 2\int_0^t \sigma S_u^2 dW_u + \int_0^t S_t^2 \sigma^2 dt$$

 $^{^{2}}$ this answer may be guessed - it should be the similar to the scalar observation case

Taking $\mathbb{E}(\cdot)$ from both sides obtain equation for $Q_t = \mathbb{E}S_t^2$

$$\dot{Q}_t = (-2r + \sigma^2)Q_t$$

(c) True. The solution of this equation is³,

$$S_t = \exp\left\{\sigma W_t - (r + \sigma^2/2)t\right\} > 0$$

Indeed, $S_0 = 1$ and by Ito formula

$$dS_t = S_t \sigma dW_t - rS_t dt - 1/2\sigma^2 S_t dt + 1/2S_t \sigma^2 dt = -rS_t dt + \sigma S_t dW_t.$$

- (d) False. The process can not be Gaussian since e.g. $S_t \ge 0$ for all t.
- (e) True. From (a) we know that S_t converges in \mathbb{L}^1 and hence in probability.
- (f) True. If p = 1, the claim holds by (a). With integer p > 1, apply the Ito formula to S_t^p

$$dS_t^p = pS^{p-1}dS_t + \frac{1}{2}p(p-1)S^{p-2}\sigma^2S_t^2dt = -rpS_t^pdt + p\sigma S_t^pdW_t + \frac{1}{2}p(p-1)S_t^p\sigma^2dt$$

Set $Q_t^p = \mathbb{E} S_t^p$ and take $\mathbb{E}(\cdot)$ from both sides to obtain

$$\dot{Q}_t^p = \left[-pr + \frac{1}{2}p(p-1)\sigma^2 \right] Q_t^p.$$

Clearly this equation is stable if $pr > 1/2p(p-1)\sigma^2$ or $\sigma^2 < 2r/(p-1)$.

 $^{^3}$ See exercise 8.7