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PAVEL CHIGANSKY

Problem 1.

(a) If & =1, then V4 = 2 and X; = 1. In this case for any n > 2, V,, =0
and X, = 1. If & = —1, then X; = —1 and V}; = 2. At n =2, V5 = 4 and
Xo=-3if & = —1 or X =1 if & = 1. In the latter case X,, =1 and V,, =0 for
n > 3, etc. By induction arguments, it is clear that X,, = 1 for any n > 7 where
7 =min{n : &, = 1}. Then

P(lim X,=1)=P(r<o0)=1-P& =-1,&=-1,..)=1- lim (1-p)" =1

n—oo n—oo

i.e. X, converges to 1 for any p > 0 with probability one and thus also in probability
and in distribution. Further

E|X, —1]=2"P(& = —1,...,& = —1) = 2"(1 — p)".

So X,, converges to 1 in L! if p > 1/2.
(b) As shown above X, = 1.

(c) Pr=m) =P = —1,..6m_1 = —1,&m = 1) = (1 —p)™1p, ie. 7 has
geometrical distribution. In particular

P

m=1 m=1

Er=)Y mP(r=m)=p» m(l-p"= —p(l—p)di Y (1-pm=

P =p) S =p)" = (1= p) (1= p)fp=1/p -1

m

o

(d) The player wins eventually one dollar, but the amount of money he loses till
he wins grows as 2". Since ET < oo the game is finite with probability one, i.e.
P(7 < 00) = 1. That is (a) and (b) are true, while (c) and (d) are false.

Problem 2.
(a) Let G(z;y) be a function, such that m,(i) = G(Y,""',Y,) for some fixed i.
Then it satisfies

E(I(Xn = a))h(Y,)|Y"™") = E(G(Y" ™, Vo) h(Y) Y7 ) (1.1)
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for any bounded function h : R +— R. The left hand side reads
E(I(Xn = ai)h(Yn)|Y1n_1) = E(I(Xn = ai)h(Xn—l + gn)‘yln_l) =

E(ZI(Xn—l =a;) (X, = a;)h(a, +€")|Yln_1) _

j=1

d
; Ajitn-1(j) /]R f(z — a;)h(z)dz.

Similarly
d
E(GY YY) ™) = E(Y I(Xn1 = a)) GV ay + &a)h(a; + &)Y ) =

j=1

d
B( | GOT (o) Y- mocs )~ el )

By arbitrariness of h
d .
AT — T —a;
o) = GO Y, = S T2
> et Tn—1(4)f (@ — aj)

A*D(Y,) 1
Ty = ————7nml oy >
(1,D(Yn)7rn_1>

subject to p, where D(y) is the diagonal matrix with entries f(y —a;), j =1,...,d.

or in the vector form

(b) Recall that I,, satisfies the recursion
I, =AI, 1 +e, n>1 (1.2)
where Fe,, =0, Ee,ek, = 0forn # mand V,, := FEe,ef = diag(p,)—A* diag(pn—1)A
with p, = (A*)™pg. Since the observation process satisfies Y,, = a*I,,_1 + &,, T, is
generated by the Kalman filter (n > 1)
A*Pnfl(l
a*P,_1a+1
A*Pn_laa*Pn_lA
a*P,_1a+1

Tn=NTp_1+

(Yn — a*%n_l)

P, = AP, (A+V, —

)

*

subject to Ty = p and Py = diag(p) — pp™.
(¢) Note that X,, = a*I,,, where I, is the vector of indicators I(X,, = a;), i =
1,...,d. Multiply recursion by a* the equation (1.2) to obtain
X=X 1+¢En.
where €, = a*e,. Clearly Ee, =0, Eg,&,, = 0 when n # m and
F22 = a*V,a = a* diag(py,)a — a*A* diag(p,_1)Aa =
a* diag(pn)a — 7*a* diag(pp—1)a = (1 — 7*)a* diag(p)a = (1 - 7*)(a?)

where the latter equality holds, since p,, = pu. Note that this suggests that |y| < 1,
which is indeed true for transition probabilities matrices (which are also called
stochastic matrices).



(d) Since the observation process is generated by
Yn = Xn—l + §7L~

the optimal linear estimate X, = E(X,|Y{") is generated by the Kalman filter
v v ’YPn—l o
Xn = an o Yn - Xn,
Y 1+ P+ 1( 1)
2P2
P, =~%P,_ 1—~2 2y VT
PPat (L= -
subject to Xo = a*y and Py = (a2) — (a*p)2.

Problem 3.

(a) (Wy, Wy) is a Gaussian pair with zero mean and EW? =t and EW, W, =t A s,
so

cov(We, W1)

EWiWh) = cov(Wh)

Wi =tW;

covZ(Wy, Wy)
cov(W7y)
EWy— EW|W1)) (W, — E(W[Wh)) =sAt—ts—st+st=sANt—st

E(W; — E(W|W1))? = cov(W;) — =t—t?

(b) Since (Wi, W7) is Gaussian, the conditional distribution is Gaussian as well,

ie. —"
2 t(1—t) }

0 1

—PW, <x|Wj) = ————=expq —
Oz ( t > | 1) 27Tt(1—t) P{
(c) If Wi = W, — t(W; — ), then EWF = EW, — t(EW; — «) = tz. Similarly
cov(WF) = B(WF — at)? = B(Wy — Wit)? = t — £2 and cov(W?, W§) = B(W; —
Wit)(Ws — Wis) = s At — st.

(d) Yes. Denote by p(z;2), z € R,z € R the probability density of the vector
(thi, ey VV;’:L)7 i.e.

6” x xT
p(z ) = WP(WtI <z, WE < 2p).

This density is Gaussian with the mean and covariance matrix, whose entries were
found in (b). On the other hand, by (a) the conditional density of (W4, ..., W;,)
given Wj has the same mean and covariance as p(z;z) does, and hence

8?7,

W)= g o

P(th <21y, Wi, < zn\Wl) =p(z;W1), P —a.s.
In other words

E (1 (W)|W; = 2) = / n(@p(za)d = B, (W), as

(e) By the Ito formula

AW, d AW
0 0

1—s -5
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Taking into account that

/t AW,  at—V7
0

1—-s  1—t¢
it follows
t—Ve B
dVi® = wdt + - dt — AW, = T—1=dt — WV},

i.e. V* is the solution of the equation

x—=V7
1-—1t

AVy = dt—dWw,, 0<t<1

subject to Vi’ = 0.

(F) E(VF—2)’ = E (a:(t ~1) -1t [y ({V_V;)2 < 2x2(t—1)2+2(1—t)2E( 5%)2-

By the properties of the Ito integral

2

t t
> / dWy 7/ 1 ds — t
0 1—s 0 (1_8)2 1—1t

t—1

E(VF —2)? <222t — 1)> +2(1 —t)t =0,

and so

i.e. V;® converges to x in L? as t — 1.

(8)

dWs

t
EVf::ct—(l—t)E/
0

cov(VE) = (1 — )2 (/Of fWSS> R e

cov(VE V) =1 —s)1-t)E (/Ot f‘f‘;) (/Os ldlj/z))

R R R

1—u)? I—sAt
{(1—t)s s<t

=xt
2

=sAt—st
(I—s)t s>t

(h) V* is a Gaussian process, since it is a linear functional of .

(i) Yes. By the same argument as in (d) - note that V® and W7 has the same mean
and covariance.



G) I P(VF =W{) =1, then BE(V® — W{F)? =0. Set x = 0. Then
Law, )2

E(WtO—VtO)Q:E<Wt—tW1+(1—t)/0 ) =

taw,\”
EW? +t?EW? + (1 —t)’E (/ 13) — 2AEW, W1+
y 1
L dw,
2(1—t)E(Wt—tW1)/ = =
o 1—s

t
t+t2 4+ (1— ”2% =2t +2(1 = ) E(W, — th)/ il
0

1-s
By the Ito formula

dt

W, dW, Wi
d(lt) B 17t+(17t)2

/t dW, W, /t W,

— — 2ds.
o l—s 1—t J, 1—ys)
Then

td < td g t t
EWt/ W :EW1/ W :—f/ s =

)} s=t t 1

and hence

5:0:m—m—ln(l—t)"_l:—ln(l—t)

EWY =V =t 48+ (1) — -

Since the ”In” term is left uncompensated, there are t’s for which
EW? -V92>0

and thus P(W? — V,? # 0) > 1. In other words V;* and W}* are distinct processes,
with the same distributions!

2t —2(1 —t)?In(1 — t)



