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Problem 1.

(a) If ξ1 = 1, then V1 = 2 and X1 = 1. In this case for any n ≥ 2, Vn ≡ 0
and Xn ≡ 1. If ξ1 = −1, then X1 = −1 and V1 = 2. At n = 2, V2 = 4 and
X2 = −3 if ξ2 = −1 or X2 = 1 if ξ2 = 1. In the latter case Xn ≡ 1 and Vn ≡ 0 for
n ≥ 3, etc. By induction arguments, it is clear that Xn ≡ 1 for any n ≥ τ where
τ = min{n : ξn = 1}. Then

P ( lim
n→∞

Xn = 1) = P (τ < ∞) = 1−P (ξ1 = −1, ξ2 = −1, ...) = 1− lim
n→∞

(1−p)n = 1

i.e. Xn converges to 1 for any p > 0 with probability one and thus also in probability
and in distribution. Further

E|Xn − 1| = 2nP (ξ1 = −1, ..., ξn = −1) = 2n(1− p)n.

So Xn converges to 1 in L1 if p > 1/2.

(b) As shown above X∞ = 1.

(c) P (τ = m) = P (ξ1 = −1, ..., ξm−1 = −1, ξm = 1) = (1 − p)m−1p, i.e. τ has
geometrical distribution. In particular

Eτ =
∞∑

m=1

mP (τ = m) = p

∞∑
m=1

m(1− p)m = −p(1− p)
d

dp

∞∑
m=1

(1− p)m =

− p(1− p)
d

dp
(1− p)

∞∑
m=0

(1− p)m = −p(1− p)
d

dp
(1− p)/p = 1/p− 1

(d) The player wins eventually one dollar, but the amount of money he loses till
he wins grows as 2n. Since Eτ < ∞ the game is finite with probability one, i.e.
P (τ < ∞) = 1. That is (a) and (b) are true, while (c) and (d) are false.

Problem 2.

(a) Let G(z; y) be a function, such that πn(i) = G(Y n−1
1 , Yn) for some fixed i.

Then it satisfies

E
(
I(Xn = ai)h(Yn)|Y n−1

1

)
= E

(
G(Y n−1

1 , Yn)h(Yn)|Y n−1
1

)
(1.1)

1
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for any bounded function h : R 7→ R. The left hand side reads

E
(
I(Xn = ai)h(Yn)|Y n−1

1

)
= E

(
I(Xn = ai)h(Xn−1 + ξn)|Y n−1

1

)
=

E
( d∑

j=1

I(Xn−1 = aj)I(Xn = ai)h(aj + ξn)|Y n−1
1

)
=

d∑

j=1

λjiπn−1(j)
∫

R
f(x− aj)h(x)dx.

Similarly

E
(
G(Y n−1

1 , Yn)h(Yn)|Y n−1
1

)
= E

( d∑

j=1

I(Xn−1 = aj)G(Y n−1
1 , aj + ξn)h(aj + ξn)|Y n−1

1

)
=

E
( ∫

R
G(Y n−1

1 , x)h(x)
d∑

j=1

πn−1(j)f(x− aj)dx|Y n−1
1

)

By arbitrariness of h

πn(i) = G(Y n
1 ; Yn) =

∑d
j=1 λjiπn−1(j)f(x− aj)∑d

j=1 πn−1(j)f(x− aj)

or in the vector form

πn =
Λ∗D(Yn)πn−1

〈1, D(Yn)πn−1〉 , n ≥ 1

subject to p, where D(y) is the diagonal matrix with entries f(y − aj), j = 1, ..., d.

(b) Recall that In satisfies the recursion

In = Λ∗In−1 + εn, n ≥ 1 (1.2)

where Eεn = 0, Eεnε∗m = 0 for n 6= m and Vn := Eεnε∗n = diag(pn)−Λ∗ diag(pn−1)Λ
with pn = (Λ∗)np0. Since the observation process satisfies Yn = a∗In−1 + ξn, π̂n is
generated by the Kalman filter (n ≥ 1)

π̂n = Λ∗π̂n−1 +
Λ∗Pn−1a

a∗Pn−1a + 1
(
Yn − a∗π̂n−1

)

Pn = Λ∗Pn−1Λ + Vn − Λ∗Pn−1aa∗Pn−1Λ
a∗Pn−1a + 1

,

subject to π̂0 = p and P0 = diag(p)− pp∗.

(c) Note that Xn = a∗In, where In is the vector of indicators I(Xn = ai), i =
1, ..., d. Multiply recursion by a∗ the equation (1.2) to obtain

Xn = γXn−1 + ε̃n.

where ε̃n = a∗εn. Clearly Eε̃n = 0, Eε̃nε̃m = 0 when n 6= m and

Eε̃2
n = a∗Vna = a∗ diag(pn)a− a∗Λ∗ diag(pn−1)Λa =

a∗ diag(pn)a− γ2a∗ diag(pn−1)a = (1− γ2)a∗ diag(µ)a = (1− γ2)〈a2〉
where the latter equality holds, since pn = µ. Note that this suggests that |γ| < 1,
which is indeed true for transition probabilities matrices (which are also called
stochastic matrices).
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(d) Since the observation process is generated by

Yn = Xn−1 + ξn.

the optimal linear estimate X̂n = Ê(Xn|Y n
1 ) is generated by the Kalman filter

X̂n = γX̂n−1 +
γPn−1

Pn−1 + 1
(Yn − X̂n−1)

Pn = γ2Pn−1 + (1− γ2)〈a2〉 − γ2P 2
n−1

Pn−1 + 1

subject to X̂0 = a∗µ and P0 = 〈a2〉 − (a∗µ)2.

Problem 3.

(a) (Wt,W1) is a Gaussian pair with zero mean and EW 2
t = t and EWtWs = t∧ s,

so

E(Wt|W1) =
cov(Wt,W1)

cov(W1)
W1 = tW1

E(Wt − E(Wt|W1))2 = cov(Wt)− cov2(Wt,W1)
cov(W1)

= t− t2

E(Ws − E(Ws|W1))(Wt − E(Wt|W1)) = s ∧ t− ts− st + st = s ∧ t− st

(b) Since (Wt,W1) is Gaussian, the conditional distribution is Gaussian as well,
i.e.

∂

∂x
P (Wt ≤ x|W1) =

1√
2πt(1− t)

exp
{
−1

2
(x− tW1)2

t(1− t)

}
.

(c) If W x
t = Wt − t(W1 − x), then EW x

t = EWt − t(EW1 − x) = tx. Similarly
cov(W x

t ) = E(W x
t − xt)2 = E(Wt −W1t)2 = t − t2 and cov(W x

s ,W x
t ) = E(Wt −

W1t)(Ws −W1s) = s ∧ t− st.

(d) Yes. Denote by p(z;x), z ∈ Rn, x ∈ R the probability density of the vector
(W x

t1 , ..., W
x
tn

), i.e.

p(z; x) =
∂n

∂z1...∂zn
P

(
W x

t1 ≤ z1, ...,W
x
tn
≤ zn

)
.

This density is Gaussian with the mean and covariance matrix, whose entries were
found in (b). On the other hand, by (a) the conditional density of (Wt1 , ..., Wtn)
given W1 has the same mean and covariance as p(z; x) does, and hence

q(z; W1) :=
∂n

∂z1...∂zn
P

(
Wt1 ≤ z1, ..., Wtn ≤ zn|W1

)
= p(z;W1), P − a.s.

In other words

E
(
ψn(W )|W1 = x

)
=

∫

Rn

ψn(z)p(z;x)dz = Eψn(W x), a.s.

(e) By the Ito formula

dV x
t = xdt +

(∫ t

0

dWs

1− s

)
dt− (1− t)

dWt

1− t
= xdt +

(∫ t

0

dWs

1− s

)
dt− dWt
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Taking into account that
∫ t

0

dWs

1− s
=

xt− V x
t

1− t

it follows

dV x
t = xdt +

xt− V x
t

1− t
dt− dWt =

x− V x
t

1− t
dt− dWt,

i.e. V x is the solution of the equation

dV x
t =

x− V x
t

1− t
dt− dWt, 0 ≤ t ≤ 1

subject to V x
0 = 0.

(f) E
(
V x

t −x
)2 = E

(
x(t− 1)− (1− t)

∫ t

0
dWs

1−s

)2

≤ 2x2(t−1)2+2(1−t)2E
(∫ t

0
dWs

1−s

)2

.

By the properties of the Ito integral

E

(∫ t

0

dWs

1− s

)2

=
∫ t

0

1
(1− s)2

ds =
t

1− t

and so

E
(
V x

t − x
)2 ≤ 2x2(t− 1)2 + 2(1− t)t t→1−−−→ 0,

i.e. V x
t converges to x in L2 as t → 1.

(g)

EV x
t = xt− (1− t)E

∫ t

0

dWs

1− s
= xt

cov(V x
t ) = (1− t)2E

(∫ t

0

dWs

1− s

)2

= (1− t)2
t

1− t
= t− t2

cov(V x
s , V x

t ) = (1− s)(1− t)E
(∫ t

0

dWu

1− u

)(∫ s

0

dWv

1− v

)

= (1− s)(1− t)
∫ s∧t

0

du

(1− u)2
= (1− s)(1− t)

s ∧ t

1− s ∧ t
=

{
(1− t)s s ≤ t

(1− s)t s > t
= s ∧ t− st

(h) V x is a Gaussian process, since it is a linear functional of W .

(i) Yes. By the same argument as in (d) - note that V x and W x has the same mean
and covariance.
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(j) If P (V x
t = W x

t ) = 1, then E(V x
t −W x

t )2 = 0. Set x = 0. Then

E(W 0
t − V 0

t )2 = E

(
Wt − tW1 + (1− t)

∫ t

0

dWs

1− s

)2

=

EW 2
t + t2EW 2

1 + (1− t)2E
(∫ t

0

dWs

1− s

)2

− 2tEWtW1+

2(1− t)E(Wt − tW1)
∫ t

0

dWs

1− s
=

t + t2 + (1− t)2
t

1− t
− 2t2 + 2(1− t)E(Wt − tW1)

∫ t

0

dWs

1− s

By the Ito formula

d

(
Wt

1− t

)
=

dWt

1− t
+

Wt

(1− t)2
dt

and hence ∫ t

0

dWs

1− s
=

Wt

1− t
−

∫ t

0

Ws

(1− s)2
ds.

Then

EWt

∫ t

0

dWs

1− s
= EW1

∫ t

0

dWs

1− s
=

t

1− t
−

∫ t

0

s

(1− s)2
ds =

t

1− t
−

[ 1
1− s

+ ln(1− s)
]s=t

s=0
=

t

1− t
− 1

1− t
− ln(1− t) + 1 = − ln(1− t)

and
E(W 0

t − V 0
t )2 = t + t2 + (1− t)2

t

1− t
− 2t2 − 2(1− t)2 ln(1− t)

Since the ”ln” term is left uncompensated, there are t’s for which

E(W 0
t − V 0

t )2 > 0

and thus P (W 0
t − V 0

t 6= 0) > 1. In other words V x
t and W x

t are distinct processes,
with the same distributions!


