SOLUTION TO THE EXAM 2004 (SUMMER COURSE)

P. CHIGANSKY

Problem 1.
(a) The optimal receiver is given by the Kalman formulae
v v ann—l -
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subject to )?0 =0and Py =1.
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so that
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Since v, = E(an + b, X)? = a2 + b2 < v the choice a,, = 0 and b,, = /7 minimizes P,
for any n > 1 and keeps the power within the required limit v, <~. The minimal error
is then

Py =1/(1+ny).

(c) If & were not Gaussian, smaller estimation error may be attained for any chosen
transmitter (why?) - in particular for the transmitter from (b). Thus the error may only
decrease.

(d) The generalized Kalman filter implements the optimal receiver: the optimal filter
and the conditional mean square error are given by the same equations (1)-(2) with a,
depending on the past of Y.

(e) Y is not necessarily Gaussian, since a,, is allowed to depend nonlinearly on Y - e.g.
if ag = sign(Y), Y3 is non Gaussian (why?)

(f) Note that
Tn = E(a"rb(yln_l) + an)z = E(a'n(yln_l) + bn)z'n—l + bn(X - )?n—l))Q -
E(an(Y ) +0,X0 1)  +02P 1< 7. (3)
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On the other hand, the equation of P, depends only on b,:
1
"R2P, 41

By (3) b2P,_1 <~ and so the latter implies

n 1 n 1 1 n
P, = > = .
" l};[lbipkfl—i_l_kl;[l’y—’_l <’)’+1>

This bound is attained if b2 P, _; = -, which requires that an(Ylnfl) = —)?n,l is chosen.
Then

P,=P,_ Py=1.

b = /7 Pa1 = /(1 + 7)1

(g) As before
1

(Y TP

P,=P,_

and so

k=1

Both exp(-) and - 10g(~) are convex functions and so

EP, > exp {Z —log (1 + Ebi(Ylk_l)Pk_l)}

k=1
which in turn implies

EP, > _ .
1};[1 14+ Eb (Y1) Pey

Now the power constraint gives

Yo =E(an (Y1) 4+ b, (Y1) X)? =

E«%QT”HWMK“HK1Q+bﬂ?”ﬂX—X,)f:

E(a"(yln_l) +bn (Yln_l))?n—l) + Eb2 (Y"

E(an (YY) + ba (Y1) X0 1)” + B2 (YY"
and thus the lower bound in (4) implies

N |
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The power constraint is clearly satisfied if b%(Yln_l)Pn_l =~ and an(Yln_l) = fbn)A(n_l
are set. Moreover in this case

n n
1 1
el ()
wor 1 EY +7
so that the lower bound for E'P, is attained. So the optimal transmitter is given by

P,y (Yn - )?n71> =V ’7(1 + 7)71_1 (Yn - )?nfl)-
n—1

Surprisingly no further improvement is gained by letting b,, depend on {Y7,...,Y,_1}




Problem 2.

(a) Since EX} < oo, the strong ( e.g. Cantelli) law of large numbers implies
L 2 n—oo 2
Sn = ;X —— EX{.

The function 1/y/z is continuous at z = 1 and so 1/4/S,, converges P-a.s. and thus also
in probability to 1. Then

X X n—oo
VnY™(1) = AU S!

= = X
R /Z?:l Xz \/E P—a.s. 1

and also in probability (see problem 1.8 in the exercises file #1). Hence Y™ (1) converges
weakly as well. Since Y™(1) is bounded it also converges in L2.

(b) Suppose X; is a standard Gaussian r.v. (without loss of generality EX? = 1 is
assumed) and let U be an orthogonal matrix. Denote by X™ the vector with entries
X1, ..., Xn, so that Y™ = X™/||X"||. Then the rotated vector satisfies

Y"i=UY" =UX"/|X"|| = UX"/|UX"||

where the latter is due to UU* = I. The vector UX™ is Gaussian with zero mean and
unit covariance (why?), so it is distributed exactly as X™. So Y™ is distributed as Y™
for any rotation U.

Clearly atomic X; cannot lead to the uniform distribution, since rotations would
translate the atoms all over the sphere.

(c) Since the uniform distribution is unique and can be realized by Gaussian X;’s, Y (1)
should converge to a Gaussian r.v. weakly (in distribution). Obviously it may not
converge in probability - imagine that for each n independent X;’s are used!

Problem 3.

(a) Since

3
N
I
=
I

P(X,=1,.,Xo=1)=
P(Xp =1 Xp=1 = 1)..P(Xy = 1]X0 = 1)p(1) = (A1) "p(1) == 0,
Z, converges to zero in probability and hence in law. Since |Z,| < 1, it also converges

in L. Moreover since Y~ P(Z, = 1) < oo, P(Z, = 1,i.0.) = 0 and so Z, converges
to zero P-a.s. by the Borel-Cantelli lemma.

(b) Clearly
EP(Z, =1|Y{") = P(Z, = 1)

and thus P(Z, = 1]Y]") also converges to zero in prob., weakly and 2.
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(c) Z is a Markov process:
P(Z, =1Z}y Y)Y = E(Z,|Z)") = Zy 1 E(Xn|Zy™) = Zy 1 E(Xp|Znq = 1) =
ZnaEXn|Xo=1,..Xpn1=1)=2Z, 1 P(X, =1/ X1 =1) = Zp,_1\1.
The transition probabilities are
P(Z,=0|Z,-1=0)=1, P(Z,=1Z,—1=1)= ).

(d) Apply the formulae, developed in class
-1
=1+ f(Yn)((l - )\I)Trn—l + )\0(1 - 7rn—1))
" FVn = 1) (M1 + (1= 2X0)(1 — mpq)) .
subject to mo = p(1) = 1/2.

(e) Let 7, := G(Yy,; Y* 1), then
B((Zn = G Y)Y 1) = 0
for any bounded ¢(x). The left hand side gives
E(Zap(Ya) Y1) = B(Znp(Xn +€a)Y77) = oo = Zyjp /RW(U)J”(U — 1du

and so!

R Znpn1f(Yn —1)

o W Dt + (=200 — ) + F ) (= A £ Mol — 7m )
as usual. Further
Zjn—s =E(Za|Y]™") = E(Zn,lE(Xn\Xn,l)lylnfl) _
E(Zua[Xacs + (1= 20)(1 — X )] [177) =
A Zno1+ (1= 20)(1 = Zn_1)

where the latter follows since Z,,_1X,_1 = Z,_1. So

_ FV =) (MZpr + (1= X0)(1 = Z,1))

n =

- FY =D (Mmn—1 + (1= ) (1 = mpe1)) + F(Yn) (1 = M) Tn—1 + Ao(1 — Tpm1))
. M Zpa+ (1= 2)A — Z,y 1)
TN (LA —m) ™

Z,

Lthe right hand side is calculated as in the case of 7,



Problem 4.
(a) Clearly
1
By = / dB,
0
(b) By the It6 formula B? = [} 2B,dB, +t and so

1
By = 1+/ 9B,dB,
0

(c) Applying the It6 formula to Byt one gets the integration by parts rule

1 1
0 0

1 1 1
0 0 0

(d) Apply the It6 formula to B}
1 1
. 1
B} = 3/ B?dB; + f/ 6B, dt
0 2 Jo
Combining this with (5) one gets

1
B} = / 3(Bf +1—t)dB,
0

(e) Apply the It6 formula to eB:—t/2;

d<eBt—t/2> — —%eBt_t/Zdt + eBt—t/QdBt + %eBt—t/th — eBt—t/QdBt

which implies

1
eB1-1/2 1 = / eBe=ti2qp,
0
or 1
B 261/2+/ e(Be—t/241/2) g
0

(f) Apply the It6 formula to e!/? sin By:

1
d(e'?sin B;) = §et/2 sin Bydt + e'/*dsin B, =

1 1
iet/z sin B.dt + et/? ( cos B;dB; — 3 sin Btdt) =et/? cos B:dB;

and so

1 1
e'/? sin B, = / e'’?cos BjdB;, = sinB; = / e(t=1/2 cos B,dB,
0

0



