
SOLUTION TO THE EXAM 2004 (SUMMER COURSE)

P. CHIGANSKY

Problem 1.

(a) The optimal receiver is given by the Kalman formulae

X̂n = X̂n−1 +
bnPn−1

1 + b2
nPn−1

(
Yn − an − bnX̂n−1

)
(1)

Pn = Pn−1 −
b2
nP 2

n−1

1 + b2
nPn−1

(2)

subject to X̂0 = 0 and P0 = 1.

(b) Note that

Pn =
Pn−1

1 + b2
nPn−1

and

Qn := P−1
n = Qn−1 + b2

n = 1 +
n∑

m=1

b2
m

so that
Pn =

1
1 +

∑n
m=1 b2

m

.

Since γn = E(an + bnX)2 = a2
n + b2

n ≤ γ the choice an = 0 and bn =
√

γ minimizes Pn

for any n ≥ 1 and keeps the power within the required limit γn ≤ γ. The minimal error
is then

Pn = 1/(1 + nγ).

(c) If ξ1 were not Gaussian, smaller estimation error may be attained for any chosen
transmitter (why?) - in particular for the transmitter from (b). Thus the error may only
decrease.

(d) The generalized Kalman filter implements the optimal receiver: the optimal filter
and the conditional mean square error are given by the same equations (1)-(2) with an

depending on the past of Y .

(e) Y is not necessarily Gaussian, since an is allowed to depend nonlinearly on Y - e.g.
if a2 = sign(Y1), Y2 is non Gaussian (why?)

(f) Note that

γn = E
(
an(Y n−1

1 ) + bnX
)2 = E

(
an(Y n−1

1 ) + bnX̂n−1 + bn(X − X̂n−1)
)2 =

E
(
an(Y n−1

1 ) + bnX̂n−1

)2 + b2
nPn−1 ≤ γ. (3)

1
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On the other hand, the equation of Pn depends only on bn:

Pn = Pn−1
1

b2
nPn−1 + 1

, P0 = 1.

By (3) b2
nPn−1 ≤ γ and so the latter implies

Pn =
n∏

k=1

1
b2
kPk−1 + 1

≥
n∏

k=1

1
γ + 1

=
(

1
γ + 1

)n

.

This bound is attained if b2
nPn−1 = γ, which requires that an(Y n−1

1 ) = −X̂n−1 is chosen.
Then

bn =
√

γ/Pn−1 =
√

γ(1 + γ)n−1

(g) As before

Pn = Pn−1
1

1 + b2
n(Y n−1

1 )Pn−1

and so

Pn =
n∏

k=1

1
1 + b2

k(Y k−1
1 )Pk−1

= exp

{
n∑

k=1

− log
(
1 + b2

k(Y k−1
1 )Pk−1

)
}

Both exp(·) and − log(·) are convex functions and so

EPn ≥ exp

{
n∑

k=1

− log
(
1 + Eb2

k(Y k−1
1 )Pk−1

)
}

which in turn implies

EPn ≥
n∏

k=1

1
1 + Eb2

k(Y k−1
1 )Pk−1

. (4)

Now the power constraint gives

γn =E
(
an(Y n−1

1 ) + bn(Y n−1
1 )X

)2 =

E
(
(an(Y n−1

1 ) + bn(Y n−1
1 )X̂n−1) + bn(Y n−1

1 )(X − X̂n−1)
)2 =

E
(
an(Y n−1

1 ) + bn(Y n−1
1 )X̂n−1

)2 + Eb2
n(Y n−1

1 )(X − X̂n−1)2 =

E
(
an(Y n−1

1 ) + bn(Y n−1
1 )X̂n−1

)2 + Eb2
n(Y n−1

1 )Pn−1 ≤ γ

and thus the lower bound in (4) implies

EPn ≥
n∏

k=1

1
1 + γ

.

The power constraint is clearly satisfied if b2
n(Y n−1

1 )Pn−1 = γ and an(Y n−1
1 ) = −bnX̂n−1

are set. Moreover in this case

Pn =
n∏

k=1

1
1 + γ

=
(

1
1 + γ

)n

so that the lower bound for EPn is attained. So the optimal transmitter is given by√
γ

Pn−1

(
Yn − X̂n−1

)
=

√
γ(1 + γ)n−1

(
Yn − X̂n−1

)
.

Surprisingly no further improvement is gained by letting bn depend on {Y1, ..., Yn−1}



3

Problem 2.

(a) Since EX4
i < ∞, the strong ( e.g. Cantelli) law of large numbers implies

Sn =
1
n

n∑

i=1

X2
i

n→∞−−−−→
P−a.s.

EX2
1 .

The function 1/
√

x is continuous at x = 1 and so 1/
√

Sn converges P -a.s. and thus also
in probability to 1. Then

√
nY n(1) =

√
nX1√∑n
i=1 Xi

=
X1√
Sn

n→∞−−−−→
P−a.s.

X1

and also in probability (see problem 1.8 in the exercises file #1). Hence Y n(1) converges
weakly as well. Since Y n(1) is bounded it also converges in L2.

(b) Suppose X1 is a standard Gaussian r.v. (without loss of generality EX2
1 = 1 is

assumed) and let U be an orthogonal matrix. Denote by Xn the vector with entries
X1, ..., Xn, so that Y n = Xn/‖Xn‖. Then the rotated vector satisfies

Ỹ n := UY n = UXn/‖Xn‖ = UXn/‖UXn‖

where the latter is due to UU∗ = I. The vector UXn is Gaussian with zero mean and
unit covariance (why?), so it is distributed exactly as Xn. So Ỹ n is distributed as Y n

for any rotation U .
Clearly atomic X1 cannot lead to the uniform distribution, since rotations would

translate the atoms all over the sphere.

(c) Since the uniform distribution is unique and can be realized by Gaussian Xi’s, Y n(1)
should converge to a Gaussian r.v. weakly (in distribution). Obviously it may not
converge in probability - imagine that for each n independent Xi’s are used!

Problem 3.

(a) Since

P (Zn = 1) = P
(
Xn = 1, ..., X0 = 1

)
=

P (Xn = 1|Xn=1 = 1)...P (X1 = 1|X0 = 1)p(1) =
(
λ11

)n
p(1) n→∞−−−−→ 0,

Zn converges to zero in probability and hence in law. Since |Zn| ≤ 1, it also converges
in L2. Moreover since

∑∞
n=0 P (Zn = 1) < ∞, P (Zn = 1, i.o.) = 0 and so Zn converges

to zero P -a.s. by the Borel-Cantelli lemma.

(b) Clearly

EP (Zn = 1|Y n
1 ) = P (Zn = 1)

and thus P (Zn = 1|Y n
1 ) also converges to zero in prob., weakly and L2.



4 P. CHIGANSKY

(c) Z is a Markov process:

P (Zn = 1|Zn−1
0 ) = E(Zn|Zn−1

0 ) = Zn−1E(Xn|Zn−1
0 ) = Zn−1E(Xn|Zn−1 = 1) =

Zn−1E(Xn|X0 = 1, ..., Xn−1 = 1) = Zn−1P (Xn = 1|Xn−1 = 1) = Zn−1λ1.

The transition probabilities are

P (Zn = 0|Zn−1 = 0) = 1, P (Zn = 1|Zn−1 = 1) = λ1.

(d) Apply the formulae, developed in class

πn =

(
1 +

f(Yn)
(
(1− λ1)πn−1 + λ0(1− πn−1)

)

f(Yn − 1)
(
λ1πn−1 + (1− λ0)(1− πn−1)

)
)−1

.

subject to π0 = p(1) = 1/2.

(e) Let rn := G(Yn; Y n−1
1 ), then

E
((

Zn −G(Yn; Y n−1
1 )

)
ϕ(Yn)

∣∣Y n−1
1

)
= 0

for any bounded ϕ(x). The left hand side gives

E
(
Znϕ(Yn)|Y n−1

1

)
= E

(
Znϕ(Xn + εn)|Y n−1

1

)
= ... = Ẑn|n−1

∫

R
ϕ(u)f(u− 1)du

and so1

Ẑn =
Ẑn|n−1f(Yn − 1)

f(Yn − 1)
(
λ1πn−1 + (1− λ0)(1− πn−1)

)
+ f(Yn)

(
(1− λ1)πn−1 + λ0(1− πn−1)

)

as usual. Further

Ẑn|n−1 =E
(
Zn|Y n−1

1

)
= E

(
Zn−1E(Xn|Xn−1)

∣∣Y n−1
1

)
=

E
(
Zn−1

[
λ1Xn−1 + (1− λ0)(1−Xn−1)

]∣∣Y n−1
1

)
=

λ1Ẑn−1 + (1− λ0)(1− Ẑn−1)

where the latter follows since Zn−1Xn−1 = Zn−1. So

Ẑn =
f(Yn − 1)

(
λ1Ẑn−1 + (1− λ0)(1− Ẑn−1)

)

f(Yn − 1)
(
λ1πn−1 + (1− λ0)(1− πn−1)

)
+ f(Yn)

(
(1− λ1)πn−1 + λ0(1− πn−1)

)
or

Ẑn =
λ1Ẑn−1 + (1− λ0)(1− Ẑn−1)
λ1πn−1 + (1− λ0)(1− πn−1)

πn.

1the right hand side is calculated as in the case of πn
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Problem 4.

(a) Clearly

B1 =
∫ 1

0

dBs

(b) By the Itô formula B2
t =

∫ t

0
2BudBu + t and so

B1 = 1 +
∫ 1

0

2BudBu

(c) Applying the Itô formula to Btt one gets the integration by parts rule

d(Btt) = Btdt + tdBt =⇒ B1 =
∫ 1

0

Btdt +
∫ 1

0

tdBt.

So ∫ 1

0

Btdt = B1 −
∫ 1

0

tBt =
∫ 1

0

(1− t)Bt. (5)

(d) Apply the Itô formula to B3
t

B3
1 = 3

∫ 1

0

B2
t dBt +

1
2

∫ 1

0

6Btdt

Combining this with (5) one gets

B3
1 =

∫ 1

0

3
(
B2

t + 1− t
)
dBt

(e) Apply the Itô formula to eBt−t/2:

d
(
eBt−t/2

)
= −1

2
eBt−t/2dt + eBt−t/2dBt +

1
2
eBt−t/2dt = eBt−t/2dBt

which implies

eB1−1/2 − 1 =
∫ 1

0

eBt−t/2dBt

or

eB1 = e1/2 +
∫ 1

0

e(Bt−t/2+1/2)dBt.

(f) Apply the Itô formula to et/2 sin Bt:

d
(
et/2 sin Bt

)
=

1
2
et/2 sin Btdt + et/2d sin Bt =

1
2
et/2 sin Btdt + et/2

(
cos BtdBt − 1

2
sinBtdt

)
= et/2 cosBtdBt

and so

e1/2 sin B1 =
∫ 1

0

et/2 cos BtdBt =⇒ sin B1 =
∫ 1

0

e(t−1)/2 cos BtdBt


