
STOCHASTIC PROCESSES. SOLUTIONS TO HOME
ASSIGNMENTS

2. Stationary Random Processes

Problem 2.1

It is well known, that characteristic function of a random vector defines its
distribution. Introduce the vector

ξn =




ξ(t1)
ξ(t2)
· · ·

ξ(tn)




In this case
Φ(λ)

4
= EeiλT ξn = EE(eiλT ξn |α, β)

since γ is independent of α, β we get

Φ(λ) = E
1
2π

∫ 2π

0

exp

(
n∑

k=1

iλkα sin(βtk + γ)

)
dγ

Denote by Φh(λ) the characteristic function of the time shifted vector, namely

Φh(λ) = EE

[
exp

{
i

n∑

k=1

λkξ(tk + h)

} ∣∣∣α, β

]
=

= E
1
2π

∫ 2π

0

exp

{
i

n∑

k=1

λkα sin(βtk + βh + γ)

}
dγ =

= E
1
2π

∫ 2π+βh

βh

exp

{
i

n∑

k=1

λkα sin(βtk + γ′)

}
dγ′ =

= E
1
2π

∫ 2π

βh

exp

{
i

n∑

k=1

λkα sin(βtk + γ′)

}
dγ′ +

+E
1
2π

∫ 2π+βh

2π

exp

{
i

n∑

k=1

λkα sin(βtk + γ′)

}
dγ′ =

= E
1
2π

∫ 2π

0

exp

{
i

n∑

k=1

λkα sin(βtk + γ′′)

}
dγ′′ ≡ Φ(λ)
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Problem 2.2

(a) R(k) is non negative definite if
∑

k,m

akR(k −m)ām ≥ 0 (2.1)

for any sequence {ak}. Let S(λ) be spectral density corresponding to
R(k), then

R(k −m) =
1
2π

∫

[−π,π]

S(λ)ej(k−m)λdλ

and
∑

k,m

akR(k −m)ām =
∑

k,m

ak
1
2π

∫

[−π,π]

S(λ)ej(k−m)λdλām =

=
1
2π

∫

[−π,π]

S(λ)
∑

k,m

akejkλāme−jmλdλ =

=
1
2π

∫

[−π,π]

S(λ)
∣∣∣A(λ)

∣∣∣
2

dλ (2.2)

where A(λ) is the Fourier transform of āk. Due to (2.1), (2.2) and arbitrari-
ness of ak, S(λ) ≥ 0 follows. Starting from S(λ) ≥ 0, by (2.2), we deduce
(2.1), which proves the other direction.

(b) Assume that R(n) can be decomposed

R(n) =
∞∑

k=−∞
h(k)h̄(k − n)

Then

S(λ) =
∑
m

R(m)e−jλm =
∑
m

∑

k

h(k)h̄(k −m)e−jλm =

=
∑

k

h(k)
∑

`

h̄(`)e−jλ(k−`) =
∣∣∣H(λ)

∣∣∣
2

≥ 0

for any λ. So, by virtue of (a), R(n) is a non negative definite sequence.
(c) Let X ′

n and X ′′
n be a pair of independent processes with zero mean and

correlation functions R′(k, m) and R′′(k,m). Introduce Yn = X ′
nX ′′

n and
Zn = X ′

n + X ′′
n . Then

EYkYm = EX ′
kX ′′

k X ′
mX ′′

m = EX ′
kX ′

mEX ′′
k X ′′

m = R′(k,m)R′′(k, m)

and

EZkZm = E(X ′
k + X ′′

k )(X ′
m + X ′′

m) = R′(k, m) + R′′(k, m)

Problem 2.3

Any symmetric sequence R(n), which satisfies1

(i) R(0) ≥ R(m), m 6= 0
(ii) R(n) is positive definite

1Note that these conditions are not necessarily independent
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can be an autocorrelation function of some process.
(a) For R(n) = e−n2

(i) is obvious. Verify (ii) using the results of the previous
problem

S(λ) =
∑

n

R(n)e−jnλ =
∑

n

e−n2−jnλ = 1 + 2
∞∑

n=1

e−n2
cos(nλ) ≥

≥ 1− 2
∞∑

n=1

e−n2 ≥ 1− 2e−1 − 2e−4 − 2
∞∑

n=3

e−n =

= 1− 2e−1 − 2e−4 − 2e−3/(1− e−1) > 0, ∀λ
so that (ii) holds as well.

(b) No: S(λ) = 1 + 1.4 cos(λ) is negative for λ on some interval (e.g. around
λ = π)

(c) Note that R(n) = h(n) ? h(−n) where h(n) = I(0 ≤ n < N), so by virtue
of (b) from the previous problem, R(n) is non negative definite.

Problem 2.4

(a) Note that

λk =
v∗kRxvk

v∗kvk
(2.3)

where vk is the eigenvector corresponding to λk. Denote by vk,` the `-th
component of the k-the eigenvector. Then

v∗kRxvk =
N∑

`=1

N∑
m=1

vk,`Rx(`, m)vk,m =
N∑

`=1

N∑
m=1

vk,`rx(`−m)vk,m

where rx(`−m) = EX(`)X(m) is the autocorrelation sequence of the pro-
cess. Using the representation

rx(`−m) =
1
2π

∫

[−π,π]

Sx(λ)ejλ(`−m)dλ

obtain

v∗kRxvk =
1
2π

∫

[−π,π]

Sx(λ)

{∑

`

vk,`e
jλ`

∑
m

vk,me−jλm

}
dλ =

=
1
2π

∫

[−π,π]

Sx(λ)|Vk(λ)|2dλ

Similarly

v∗kvk =
1
2π

∫

[−π,π]

|Vk(λ)|2dλ

so that by (2.3)

λk =

∫
[−π,π]

Sx(λ)|Vk(λ)|2dλ∫
[−π,π]

|Vk(λ)|2dλ

which in turn implies

min
λ

Sx(λ) ≤ λk ≤ max
λ

Sx(λ)
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for all k.
(b) Introduce

γn =
E

( ∑N−1
k=0 Xn−kak

)2

E
(∑N−1

k=0 ξn−kak

)2

Define vectors Xn = [Xn, ..., Xn−N+1]∗, ξn = [ξn, ..., ξn−N+1]∗ and a =
[a0, ..., aN−1]∗ so that

γn ≡ γ =
E(Xn∗a)2

E(ξn∗a)2
=

a∗Rxa

σ2a∗a
= σ−2 a∗UΛU∗a

a∗UU∗a
where U is an orthogonal matrix with vk as columns and Λ is a diagonal
matrix with Λjj = λj . Set ã = U∗a, then

γ = σ−2 ã∗Λã

ã∗ã
= σ−2

∑N−1
j=0 ã2

jλj∑N−1
j=0 ã2

j

≤ λmax/σ2

where the equality holds when a = vmax, the eigenvector corresponding to
λmax = maxj λj .
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3. Linear estimation of stationary sequences

Problem 3.1

(a)

X̂n =
∞∑

k=−∞
Ykãn−k =

∞∑

k=−∞
Yn−kãk

By orthogonality principle

E(Xn − X̂n)Yn−` = 0, ` = ...,−1, 0, 1, ...

which implies:

Rxy(`)−
∑

k

Ry(`− k)ãk = 0, ` = ...,−1, 0, 1, ...

This version of Wiener-Hopf equation can be solved in the domain of Fourier
transform:

Sxy(λ) :=
∑

`

Rxy(`)e−jλ` =
∑

k

∑

`

Ry(`− k)ãke−jλ` =

=
∑

k

ãke−jλk
∑

`

Ry(`)e−jλ` = Ã(λ)Sy(λ)

Assuming that Sy(λ) > 0, we obtain the expression for the filter in terms
of spectral densities

Ã(λ) =
Sxy(λ)
Sy(λ)

The mean square error is:

E(Xn − X̂n)2 = EX2
n − EXnX̂n =

= Rx(0)−
∑

k

EXnYn−kãk = Rx(0)−
∑

k

Rxy(k)ãk =

=
1
2π

∫ π

−π

Sx(λ)dλ− 1
2π

∫ π

−π

Sxy(λ)
∑

k

ãkejλkdλ =

=
1
2π

∫ π

−π

(
Sx(λ)− Sxy(λ) ¯̃A(λ)

)
dλ =

=
1
2π

∫ π

−π

(
Sx(λ)− |Sxy(λ)|2

Sy(λ)

)
dλ

(b) By orthogonality property:

E(Xn −
∞∑

k=0

Yn−kãk)Y` = 0, ` ≤ n

and

Rxy(n− `)−
∞∑

k=0

Ry(n− `− k)ãk = 0, ` ≤ n

or

Rxy(m)−
∞∑

k=0

Ry(m− k)ãk = 0, m ≥ 0 (3.1)
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Z-transform of the left hand side of (3.1) reads:

Sxy(z)− Sy(z)Ã(z)

but only non-positive powers of z of the latter expression obey (3.1), namely:
⌊
Sxy(z)− Sy(z)Ã(z)

⌋
+

= 0

where bψ(z)c+ denotes non-positive powers of the series expansion of ψ(z).
Since Sy(z) can be factored:

⌊
Sxy(z)− Ã(z)B(z)B(1/z)

⌋
+

= 0

where, say, B(z) is the transform of casual sequence (i.e. its Z transform
has only non-positive powers).

⌊
B(1/z)

(
Sxy(z)
B(1/z)

−B(z)Ã(z)
)⌋

+

= 0

Since B(1/z) is the transform of anti-casual sequence, the only way this
equation can be satisfied is when Sxy(z)/B(1/z)−Ã(z)B(z) is the transform
of anti-casual sequence as well, by other words:

⌊
Sxy(z)/B(1/z)−B(z)Ã(z)

⌋
+

= 0

But Ã(z)B(z) corresponds to a casual sequence, that is
⌊
Ã(z)B(z)

⌋
+

= Ã(z)B(z),

so the response of the optimal casual filter can be calculated from:

Ã(z) =
1

B(z)

⌊
Sxy(z)
B(z−1)

⌋

+

(3.2)

The mean square error can be calculated as in the previous case.
(c) Again orthogonality implies

Rxy(m)−
p∑

k=0

Ry(m− k)ãk = 0, 0 ≤ m ≤ p (3.3)

Define the vectors:

ρxy =




Rxy(0)
Rxy(1)

...
Rxy(p)


 ã =




ã0

ã1

...
ãp




and the correlation matrix Ry, so that:

Ry(i, j) = Ry(i− j), 0 ≤ i, j ≤ p

Now (3.3) has the vector formulation:

Ryã = ρxy

and assuming Ry > 0, one can obtain the optimal filter:

ã =
[
Ry

]−1
ρxy
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The mean square error can be also calculated using these vector notations.
Let Y n denote the vector of (p + 1) last samples of Yn, i.e.

Y n =




Yn

Yn−1

...
Yn−p




E(Xn − a∗Y n)2 = Rx(0)− ρ∗xyã− ã∗ρxy + ã∗Ryã =

= Rx(0)− ρ∗xy

[
Ry

]−1
ρxy

Problem 3.2

(a) Consider the sequence (Xn)n∈Z, given by:

Xn =
n∑

k=−∞
an−kεk.

These series are convergent (for any fixed n, in L2) since

ξ(n)
m =

n∑

k=−m

an−kεk

is a Cauchy sequence and L2 is a complete space. Indeed (for, say, m ≥ `)

E
(
ξ(n)
m − ξ

(n)
`

)2 = E
( −∑̀

k=−m

an−kεk

)2

=
−∑̀

k=−m

a2(n−k) ≤
−∑̀

k=−∞
a2(n−k) =

a2n
∞∑

k=`

a2k = a2(n+`)/(1− a2) `→∞−−−→ 0.

Clearly X satisfies Xn = aXn−1 + εn, n ∈ Z and it is stationary. Indeed
EXn = 0 for all n and

Rx(0) = EX2
n = E

( n∑

k=−∞
an−kεk

)2

=
n∑

k=−∞
a2(n−k) =

∞∑

k=0

a2k =
1

1− a2
, ∀n.

Then
EXnXn+1 = EXn(aXn + εn+1) = aRx(0)

and by induction EXnXn+m = a|m|Rx(0), that is the covariance function
depends only on the time shift.

(b) The pair (X, Y ) is stationary as well. Clearly EYn = EXn = 0, and
Ry(k) := EYnYn+k = Rx(k) + σ2δ(k) and Rxy(k) := EXnYn+k = Rx(k).

(c) Find the spectral density of X

Sx(λ) =
∞∑

`=−∞

a|`|

1− a2
e−jλ` = ... =

1
1− 2a cos λ + a2

and
Sy(λ) = Sx(λ) + 1, Sxy(λ) = Sx(λ)
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and using the formulas from the previous problem we obtain:

A(λ) =
Sx

Sx + 1
=

1
1 + 1− 2a cos λ + a2

=
1

2− 2a cos λ + a2

The minimal mean square error is readily calculated:

E(Xn − X̂n)2 = Rx(0)−
∑

k

Rxy(k)ak =
1
2π

∫ [
Sx(λ)− |Sxy(λ)|2

Sy(λ)

]
dλ

=
1
2π

∫
Sx(λ)

Sx(λ) + 1
dλ =

1
2π

∫
1

2− 2a cosλ + a2
dλ =

1√
4 + a4

(d) Using the formula from the previous problem:

Ã(z) =
1

B(z)

⌊
Sxy(z)
B(z−1)

⌋

+

(3.4)

where B(z) is the casual term in the factorization of

Sy(z) = B(z)B(z−1)

In this case

Sy(z) = Sx(z) + 1 =
1

(1− az)(1− az−1)
+ 1 =

a

γ

(1− γz−1)(1− γz)
(1− az−1)(1− az)

where

γ :=
2 + a2 −√4 + a4

2a

Note that |γ| < 1 for |a| < 1. So B(z) is identified as:

B(z) :=
√

a

γ

1− γz−1

1− az−1

Substitute this into (3.4):

Ã(z) =
√

γ

a

1− az−1

1− γz−1

⌊√
γ/a(1− az)/(1− γz)
(1− az)(1− az−1)

⌋

+

=

=
√

γ

a

1− az−1

1− γz−1

⌊ √
γ/a

1− aγ

(
1

1− az−1
− 1

1− γ−1z−1

)⌋

+

=

=
γ

a

1
1− aγ

1− az−1

1− γz−1

1
1− az−1

=
γ

a(1− aγ)
1

1− γz−1
=

=
2 + a2 −√4 + a4

a2(
√

4 + a4 − a2)
1

1− γz−1
=

a2 − 2 +
√

4 + a4

2a2

1
1− γz−1

The filtering error can be calculated directly, using the formulas similar to
the previous case. It also equals the steady state error of the Kalman filter
(why?).

(e) Recall that

Ry(m) = Rx(m) + 1 · δ(m), Rxy(m) = Rx(m)
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hence (ã now denotes a 2-by-1 vector)

ã =
(

Rx(0) + 1 Rx(1)
Rx(1) Rx(0) + 1

)−1 (
Rx(0)
Rx(1)

)
=

=
( 1

1−a2 + 1 a
1−a2

a
1−a2

1
1−a2 + 1

)−1 ( 1
1−a2

a
1−a2

)
= ... =

(
2
a

)
1

4− a2

The corresponding error is:

E(Xn − X̂n)2 = Rx(0)− ρ∗xyã =
1

1− a2
−

(
1

1− a2
,

a

1− a2

)
ã

= ... =
2

4− a2

(f) The Kalman filter equations are

X̂n = aX̂n−1 + Pn(Yn − aX̂n−1)

Pn =
a2Pn−1 + 1
a2Pn−1 + 2

, n ≥ 1 (3.5)

subject to X̂0 = 0 and P0 = 1/(1− a2).
(g) First note that Pn ∈ [0, 1], since by optimality Pn ≤ E(Yn−Xn)2 = Eξ2

n =
1. Let P∞ be the unique nonnegative solution of

P∞ =
a2P∞ + 1
a2P∞ + 2

, (3.6)

which is (the other solution is always negative)

P∞ =
a2 − 2 +

√
4 + a4

2a2
.

The sequence Dn := |Pn − P∞| satisfies

Dn =
∣∣∣∣−

1
a2Pn−1 + 2

+
1

a2P∞ + 2

∣∣∣∣ =
a2Dn−1

(a2Pn−1 + 2)(a2P∞ + 2)
≤

a2Dn−1

2
(
a2(a2 − 2 +

√
4 + a4)/(2a2) + 2

) =
a2Dn−1

a2 + 2 +
√

4 + a4
≤ 1

2
Dn−1

and thus limn→∞Dn = 0.
The ”steady state” filter is then

X̂n = aX̂n−1 +
a2 − 2 +

√
4 + a4

2a2
(Yn − aX̂n−1) =

= a

(
1− a2 − 2 +

√
4 + a4

2a2

)
X̂n−1 +

a2 − 2 +
√

4 + a4

2a2
Yn =

=
a2 + 2−√4 + a4

2a︸ ︷︷ ︸
≡γ

X̂n−1 +
a2 − 2 +

√
4 + a4

2a2
Yn.

Note that this recursion is exactly the one which was obtained via Kolmogorov-
Wiener approach in the appropriate setup.
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(h) The best estimate is obtained via optimal smoothing in (c); next is the
filter, based on all the observations till n in (d). The Kalman filter in (f) is
inferior to the latter filter for any fixed n, but is asymptotically equivalent
to it as n → ∞. The worst is of course the filter in (e) that takes into
account only two observations. Note that for a = 0 (i.e. the signal Xn

is an i.i.d. sequence (white noise), all the estimates attain the same error
P = 1/2.

(i) The error recursion for the Kalman filter becomes:

Pn = a2Pn−1 − (a2Pn−1)2

a2Pn−1 + 1
=

a2Pn−1

a2Pn−1 + 1
This can be explicitly solved (define e.g. Qn = 1/Pn and obtain a linear
recursion for Qn) and verified that limn→∞ Pn = 0.

Problem 3.3

Recall that

Xn =
{

Xn−1, with prob. p
−Xn−1, with prob. 1− p

with P{X0 = `} = P{X0 = −`} = 1/2. Let (ξn)n≥1 be an i.i.d. binary sequence of
r.v. with

P{ξn = 1} = 1− P{ξn = 0} = p.

Clearly (Xn)n≥1 can be generated by:

Xn = (2ξn − 1)Xn−1, subject to X0

Rewrite this equation as:

Xn = (2Eξn − 1)Xn−1 + 2Xn−1(ξn − Eξn) = (2p− 1)Xn−1 + 2Xn−1(ξn − p)

Define ηn = 2Xn−1(ξn − p), then:

Eηn = 2EXn−1E(ξn − p) = 0

and (say n > m)

Eηnηm = 4EXn−1Xm−1(ξm − p)E(ξn − p) = 0

Eη2
n = 4EX2

n−1E(ξn − p)2 = 4`2(1− p)p

Moreover for k < n, Xk and ηn are uncorrelated.
Introduce an auxiliary pair of processes (X, Y ), generated by

X̃n = (2p− 1)X̃n−1 + η̃n, subject to X0

Ỹn = X̃n + εn.
(3.7)

where η̃ is a white noise sequence with the same mean and variance as η.
The orthogonal projection X̂n = Ê(X̃n|Ỹ n

1 ) is generated by the Kalman filter

X̂n = (2p− 1)X̂n−1 + Pn(Ỹn − (2p− 1)X̂n−1), n ≥ 1 (3.8)

Pn =
(2p− 1)2Pn−1 + 4`2p(1− p)

(2p− 1)2Pn−1 + 4`2p(1− p) + 1

subject to X̂0 = 0 and P0 = `2. If these equation are applied to the original
observations process Y , the obtained linear functional X̂n(Y n

1 ) can be considered
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as an estimate for Xn. Does the obtained filter realizes the orthogonal projection
Ê(Xn|Y n

1 ) for the original model?
Let L(Y n

1 ) denote any linear functional of {Y1, ..., Yn}, then

E
(
Xn − L(Y n

1 )
)2 = E

(
X̃n − L(Ỹ n

1 )
)2 ≥

E
(
X̃n − X̂n(Ỹ n

1 )
)2 = E

(
Xn − X̂n(Y n

1 )
)2

, (3.9)

where the equalities hold, since (X,Y ) and X̃, Ỹ ) have the same correlation struc-
ture by construction. The inequality (3.9) implies that X̂n(Y n

1 ) is optimal and
hence realizes the orthogonal projection.

Problem 3.4

Denote µ = Eηn. Rewrite the eq. for Yn as:

Yn = µXn−1 + ξn + (ηn − µ)Xn−1

Set ξ̃n := ξn + (ηn − µ)Xn−1. Then:

Eξ̃n = 0, Eξ̃nξ̃k = δn−k(σ2
ξ + σ2

ηVn−1)

where Vn = EX2
n satisfies (n ≥ 1)

Vn = a2Vn−1 + σ2
ε , subject to V0 = 1

Moreover ξ̃n is uncorrelated with Xm, m < n. Consider the model:

Xn = aXn−1 + εn (3.10)

Yn = µXn−1 + ξ̃n, s.t. X0

The optimal linear estimate is given by the Kalman filter

X̂n = aX̂n−1 +
aµPn−1

µ2Pn−1 + σ2
ξ + σ2

ηVn−1
(Yn − µX̂n−1)

Pn = a2Pn−1 + σ2
ε −

[aµPn−1]2

µ2Pn−1 + σ2
ξ + σ2

ηVn−1

subject to X̂0 = 0, P0 = 1.

Problem 3.5

Simple Solution:
Define an augmented state vector ϑn ∈ R(p+q)×1

ϑn =




θn

θn−1

...
θn−p+1

εn

...
εn−q+1



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Introduce A ∈ R(p+q)×(p+q) and B, C ∈ R(p+q)×1:

A =




−a1 −a2 · · · −ap b1 · · · bq

1 0 0 · · · 0
0 1 0 · · · 0
...

...
0 0 0 · · · 0
0 0 · · · 1 0
...

...
0 0 · · · 1 0




and

B =




1
0
...
0
1
0
...
0




, C =




1
0
...
0
0
0
...
0




Consider the vector difference equations (n ≥ p):

ϑn = Aϑn−1 + Bεn

ξn = C∗ϑn + υn

where ϑp−1 is a vector of initial conditions (θp−1
0 and εq−1

0 ). Clearly the first
component of the vector ϑn coincides with θn for any n ≥ p, i.e. ϑn(1) = θn.
Note that Eϑkεn = 0, k < n and hence the obtained model suits the Kalman filter
setting: let ϑ̂n = Ê(ϑn|ξn

0 ) and θ̂n = Ê(θn|ξn
0 ), then (n ≥ p):

ϑ̂n = Aϑ̂n−1 +
(APn−1A

∗ + BB∗σ2)C(ξn − C∗Aϑ̂n−1)
C∗APn−1A∗C + C∗BB∗Cσ2 + σ2

υ

Pn = APn−1A
∗ + σ2BB∗ −

− (APn−1A
∗ + BB∗σ2)CC∗(APn−1A

∗ + BB∗σ2)
C∗APn−1A∗C + C∗BB∗Cσ2 + σ2

υ

θ̂n = C∗ϑ̂n

subject to ϑ̂p−1 = 0 and 2 Pp−1 = Iσ2.
Note that the estimates of {θn−1, ..., θn−p+1} and also of the driving noise {εn,

..., εn−q+1} are obtained as a byproduct.

Advanced Solution3: In the previous solution version to generate θ̂n one has to
propagate (p + q)-dimensional vector recursion. More delicate arguments lead to a

2θp−1
0 and εq−1

0 are assumed to form a vector of i.i.d. components with zero mean and variance

σ2
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filter of lower dimensions. Consider a sequence

θn = −
p∑

k=1

akθn−k +
p−1∑

k=0

bkεn−k (3.11)

where (εn)n≥0 is standard white noise sequence. Note that the original model of
the problem (i.e. q ≤ p) is obtained by setting appropriate bk’s to zero.

Below we derive a state space model of order p, which generates the same se-
quence.

Lemma 3.1. Let ηn be a vector process generated by the recursion:

ηn = Aηn−1 + Bεn, n ≥ 0 (3.12)

where (εn)n≥0 is an i.i.d. scalar standard Gaussian sequence and

A =




0 1 0 ... 0
0 0 1 ... 0
... ...

...
0 0 ... 1
−an −an−1 ... −a1




, B =




β1

β2

...

βn




β1 = b0

βj = bj−1 −
j−1∑

`=1

aj−`β`, j = 2, ..., n

Then θn ≡ ηn(1).

Proof. Verify the equivalence between (3.11) and (3.12) as maps, i.e. show that
both generate the same output y(t), t = 0, 1, ... for the same input x(t), t = 0, 1, ....
Use the Z-transform system representation:

Starting from (3.12):

yi(t) = yi+1(t− 1) + βix(t), i = 1, ..., n− 1

yn(t) = −
n−1∑

k=0

an−kyk+1(t− 1) + βnx(t)

or

Yi(z) = z−1Yi+1(z) + βiX(z), i = 1, ..., n− 1

Yn(z) = −z−1
n−1∑

k=0

an−kYk+1(z) + βnX(z)

Then4 for i = 1, ..., n− 1

Yi+1(z) = z
[
Yi(z)− βiX(z)

]
= ... = ziY1(z)−

i∑

j=1

zi−j+1βjX(z) (3.13)

3This solution is for advanced reading.
4the convention

P0
1 = 0 is followed
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On the other hand:

Yn(z) = −z−1
n−1∑

k=0

an−kYk+1(z) + βnX(z) = (3.14)

= −z−1
n−1∑

k=0

an−kzkY1(z) + z−1
n−1∑

k=0

an−k

k∑

j=1

zk−j+1βjX(z) +

+βnX(z)

Equating the (3.13) with i = n− 1 and (3.14) we arrive at:

znY1(z) +
n−1∑

k=0

an−kzkY1(z) =
n−1∑

j=1

zn−j+1βjX(z) +

+
n−1∑

k=0

an−k

k∑

j=1

zk−j+1βjX(z) + zβnX(z)

or (a0 := 1)
n∑

k=0

an−kzkY1(z) =
n−1∑

j=1

zn−j+1βjX(z) +

+
n−1∑

k=0

an−k

k∑

j=1

zk−j+1βjX(z) + zβnX(z)

and

Y1(z)
n∑

k=0

akz−k =
n−1∑

j=1

z−j+1βjX(z) +

+
n−1∑

k=1

an−k

n∑

j=n−k+1

z−j+1βj−n+kX(z) + z−(n−1)βnX(z) (3.15)

Equating the right hand side of (3.15) to X(z)Pn−1(z) and comparing powers of
z we obtain the desired result:

z0 : β1 = b0

z−1 : β2 + a1β1 = b1

... :
...

z−(n−1) :
n−1∑

k=1

an−kβk + βn = bn−1

¤

Let us demonstrate the latter approach:

Example

Let ξn be a stationary random process with zero mean and the spectrum density:

f(λ) =
∣∣∣∣

1 + e−jλ

1 + 1/2e−jλ + 1/2e−2jλ

∣∣∣∣
2
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Find the optimal linear extrapolation estimate of ξt on the basis of {ξ0, ..., ξs},
m(t, s) = Ê(ξt|ξs

0).
Find the state space representation for ξn. Here b0 = 1, b1 = 1 and a0 = 1, a1 =

1/2, a2 = 1/2 and thus β1 = b0 = 1 and β2 = b1 − 1/2 · 1 = 1/2. Let (η1(t), η2(t))
be generated by

η1(t) = η2(t− 1) + ε(t)
η2(t) = −1/2η1(t− 1)− 1/2η2(t− 1) + 1/2ε(t)

where ε(t) is a standard i.i.d. Gaussian sequence.
Set ξt = η1(t) and θt = η2(t). Then ξt has the spectral density f(λ) and:

ξt = θt−1 + ε(t) (3.16)
θt = −1/2θt−1 − 1/2ξt−1 + 1/2ε(t)

And thus (t > s)

m(t, s) = µ(t− 1, s)
µ(t, s) = −1/2µ(t− 1, s)− 1/2m(t− 1, s)

subject to m(s, s) = ξs and µ(s, s) = µ(s) = Ê(θs|ξs
0).

The filtering estimate µ(s) satisfies (k ≤ s):

µk = −1/2µk−1 − 1/2ξk−1 +
1/2− 1/2Pk−1

Pk−1 + 1
(ξk − µk−1)

Pk = 1/4Pk−1 + 1/4− (1/2− 1/2Pk−1)2

Pk−1 + 1
=

Pk−1

Pk−1 + 1
(3.17)

The initial conditions for this filter can be recovered due to stationarity assump-
tions. Let d11 = Eθ2

t , d12 = Eξtθt and d22 = Eξ2
t . From (3.16):

d22 = d11 + 1
d11 = 1/4d11 + 1/4d22 + 1/4 + 1/2d12

d12 = −1/2d11 − 1/2d12 + 1/2

so that:
d11 = 1, d12 = 0, d22 = 2

and the initial condition for the filter (3.17):

µ0 = 0, P (0) = 1

Problem 3.6

The Riccati equation of the Kalman filter is transformed by Matrix Inversion
Lemma into:

Pn+1 = aPna∗ + bb∗ − aPnA∗(APnA∗ + BB∗)−1APna∗ =
= bb∗ + a

{
Pn − PnA∗(APnA∗ + BB∗)−1APn

}
a∗ =

= bb∗ + aΓ−1
n a∗

where
Γn = P−1

n + A∗(BB∗)−1A = Jn + A∗(BB∗)−1A
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Jn+1 := P−1
n+1 =

{
bb∗ +

(
a−∗Γna−1

)−1
}−1

=

= Fn − Fnb(I + b∗Fnb)−1b∗Fn

where Fn := a−∗Γna−1. Summarizing all the equations, Jn can be propogated by:

Jn+1 = Fn − Fnb(I + b∗Fnb)−1b∗Fn

Fn = = a−∗(Jn + A∗(BB∗)−1A)a−1

The validity of the Matrix Inversion Lemma is verified directly:

AA−1 = (B−1 + CD−1C∗)(B −BC(D + C∗BC)−1C∗B) =
= I + CD−1C∗B − C(D + C∗BC)−1C∗B −

−CD−1C∗BC(D + C∗BC)−1C∗B =
= I + CD−1C∗B − C

{
I + D−1C∗BC

}
(D + C∗BC)−1C∗B =

= I + CD−1C∗B − CD−1C∗B ≡ I

Problem 3.7

Clearly xt are the orthogonal projections of a standard random vector x on
{y1, ..., yt}, where

yt+1 = at+1x +
√

αεt+1

with εt being standard white noise, independent of x. So xk is the orthogonal
projection of x on y = Ax +

√
αε, where ε is a standard random vector.

Then

Q = E(xy∗)
(
E(yy∗)

)−1 = A∗
(
αI + AA∗

)−1 =
(
αI + A∗A

)−1
A∗

since
A∗(αI + AA∗) = (αI + A∗A)A∗

The second statement follows form the fact that γk = E(x− xk)(x− xk)∗

γk = E(xx∗)− E(xy∗)E−1(yy∗)E(yx∗) = I −A∗(αI + AA∗)−1A =
= (I + A∗A/α)−1 = (Iα + A∗A)−1α


