STOCHASTIC PROCESSES. SOLUTIONS TO HOME
ASSIGNMENTS

2. STATIONARY RANDOM PROCESSES

Problem 2.1

It is well known, that characteristic function of a random vector defines its
distribution. Introduce the vector

In this case N
T T
®(\) = Ee™ & = EE(e™ ¢7|a, B)
since v is independent of «, 3 we get

1 2 n ) )
d(N) = E% ; exp (Z iAgasin( Sty + ’Y)) dy

k=1
Denote by @5, () the characteristic function of the time shifted vector, namely

exp {2 > Mt + h)}
k=1

1 2w n
- ]E% ; exp{iZ)\kasin(ﬁtk+ﬁh+’Y)}d’Y

k=1

®,(\) = EE

o, 3

1 2n+Gh n
= For exp iy Masin(Bt +7') p dy =
T Jpn k=1

1 27 n
= E% . exp {’ Z Agasin(Bty, + 7/)} dy' +
k=1
1 2n+3h

+E— exp {z Z Apasin(Bty + 'y’)} dy =
k=1

2 o2

1 2m n
= E— exp {z Z Apasin(Bty + 7”)} dy" = d(N)

2T
0 k=1

Date: Summer, 2004.
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Problem 2.2
(a) R(k) is non negative definite if
> apR(k = m)aym, >0 (2.1)

k.m

for any sequence {ay}. Let S(X) be spectral density corresponding to

R(k), then
1 4
R(k — —— A)ed (F=m)A 1y
hmmy= 5o [ SO
and
1 _
—ma — o Jk—m)A yg
ZakR(k m)am, Zak%T /[MT] S(Ne A\,
k,m k,m >
1 : .
_ 1 SO S apeM eI IN =
2w [—m,7] k,zm
1 SA|AA 2d)\ 2.2
= 5] SO (2:2)

where A(\) is the Fourier transform of . Due to (2.1), (2.2) and arbitrari-
ness of ay, S(A\) > 0 follows. Starting from S(\) > 0, by (2.2), we deduce
(2.1), which proves the other direction.

(b) Assume that R(n) can be decomposed

R(n)= Y h(k)h(k—n)

k=—o0

S Rm)e ™ =373 h(k)(k — m)e T =
m m k

S h(k) Y A(0e 0 = [H)[
k 4

for any A. So, by virtue of (a), R(n) is a non negative definite sequence.

(c) Let X/ and X!/ be a pair of independent processes with zero mean and
correlation functions R/(k,m) and R”(k,m). Introduce Y,, = X/ X and
Zn =X, + X]. Then

EY,Y,, = EX, X}/ X! X! = EX, X! EX}X! = R'(k,m)R" (k,m)

m<*m m

=8
>

S~—"
I

>0

and

EZ Zm = B(X} + XY (X!, + X)) = R'(k,m) + R (k,m)

Problem 2.3

Any symmetric sequence R(n), which satisfies®
(i) R(0) = R(m), m # 0
(ii) R(n) is positive definite

INote that these conditions are not necessarily independent
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can be an autocorrelation function of some process.

(a) For R(n) = e’ (i) is obvious. Verify (ii) using the results of the previous
problem

S5 = ZR(”)eijn)\ Zefn ﬂn/\—l-i-?Ze n? cos(n\)
> 1—2§:e—”221—26—1—2e—4—2ze—"=
n=3

n=1
= 1-21'—2"*-273/(1—e 1) >0, VA
so that (ii) holds as well.
(b) No: S(A) =14 1.4cos()) is negative for A on some interval (e.g. around
A=)
(¢) Note that R(n) = h(n) * h(—n) where h(n) = I(0 < n < N), so by virtue
of (b) from the previous problem, R(n) is non negative definite.

Problem 2.4
(a) Note that

v Rpvg

Ao = (2.3)

VUL
where vy, is the eigenvector corresponding to Ag;. Denote by vy ¢ the ¢-th
component of the k-the eigenvector. Then

’UkRUk—ZZ’ngR (€, m)vg m = ZZU;MTJCE M) Vk,m

=1 m=1 =1 m=1

where 7, (£ —m) = EX(¢)X (m) is the autocorrelation sequence of the pro-
cess. Using the representation

1 .
re(0—m) = — / Sy (N)eME=m gy
27 [—m,7]
obtain
vpRyvp = o [mr] {Z’ngej)\ kame A }d)\—
1
= o[ SsmPa
n [_ﬂ"ﬂ']
Similarly

1
otk = / IVie(\) 2
271' [771,’7(}

Sy S VIV (V) PN
Sy VeV P

so that by (2.3)

Ak =

which in turn implies
m)%n Se(A) <A < max Sz(N)
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for all k.
Introduce

_ 2
_ E( fcvzol Xn—kai)
= Z 2

E( ZkN:()l gn—kak)

Define vectors X™ = [X,, ..., Xn—n+1]*, € = [&n, -, En—n+1]* and a =
[ag, ...,an—1]* so that

E(X™a)? a*Ra _,a*UAU*a

f f =0 e
7 E({™a)?2  o2a*a a*UU*a
where U is an orthogonal matrix with vy as columns and A is a diagonal
matrix with Aj; = A; . Set a = U*a, then

n

In

~—r A~ N—-1~9
__,a*Aa ,223':0 aj\;j < 2
V=0 = =0 TN T, S Amax/0
Zj:o aj;

where the equality holds when a = vnyax, the eigenvector corresponding to
)\max = maxXxy Aj.
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3. LINEAR ESTIMATION OF STATIONARY SEQUENCES

Problem 3.1
(a)
X, = > Wik = Y Ya_dx

k=—o k=—00

By orthogonality principle
E(X, — Xn)Yn_¢=0, £=..,-1,01,..
which implies:
Rey(0) =Y Ry({—k)ap =0, £=.,-1,0,1,..
k

This version of Wiener-Hopf equation can be solved in the domain of Fourier
transform:

Say(A) = ZRW(@@—JM — ZZRy(Z — R)age N =
¢ koL
= Y ae MY Ry (He N = A(N)S, ()
k V4

Assuming that Sy(A) > 0, we obtain the expression for the filter in terms
of spectral densities

The mean square error is:
E(X, — X,)? =EX? —EX, X, =
= Ry(0) = Y EX, Yo gy = Rp(0) = Y Ray(k)ay =

k k
= % : Sy (N)dX — % /: Suy(N) zk:akeﬂkau =
1 [T =
=5 | (80 = Sm A ) ar =
_ L[ _ Sy (WP
-5 [ (505

(b) By orthogonality property:

E(X, — ZYn_kakm =0, (<n

k=0
and
Rpy(n—0) = > Ry(n—L—k)ar =0, (<n
k=0
or

Ryy(m) — iRy(m —k)ar =0, m=>0 (3.1)
k=0
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Z-transform of the left hand side of (3.1) reads:
Say(2) — Sy(2)A(2)

but only non-positive powers of z of the latter expression obey (3.1), namely:

[Ses(2) = 8,(2)A(z) | =0

where [1(z)], denotes non-positive powers of the series expansion of 1(z).
Since Sy (z) can be factored:

[Szy(z) - ,Zx(z)B(z)f_t;(1/,z)J+ =0

where, say, B(z) is the transform of casual sequence (i.e. its Z transform
has only non-positive powers).

(35 o) -

Since B(1/z) is the transform of anti-casual sequence, the only way this
equation can be satisfied is when S, (2)/B(1/2)—A(z)B(z) is the transform
of anti-casual sequence as well, by other words:

[Se4(2)/B(1/2) = B)A()| =0

But A(z)B(z) corresponds to a casual sequence, that is
[A()B(2)| = A()B(2),
+
so the response of the optimal casual filter can be calculated from:

~ o1 Szy(2)
i61= 55 | 5 ), 32

The mean square error can be calculated as in the previous case.
Again orthogonality implies

p
Ryy(m) =Y Ry(m —k)ar =0, 0<m<p (3.3)
k=0
Define the vectors:
R4y (0) ao
Rwy(l) B a1
Pxy = a=

and the correlation matrix RY, so that:
RY(ij) = Ry(i—3), 0<i,j<p
Now (3.3) has the vector formulation:
RYa = pay
and assuming RY > 0, one can obtain the optimal filter:

a=[R] 71sz



STOCHASTIC PROCESSES. SOLUTIONS TO HOME ASSIGNMENTS 7

The mean square error can be also calculated using these vector notations.
Let Y™ denote the vector of (p + 1) last samples of Y,,, i.e.

Yo,
Ynfl
Y" = .
Yoop
E(X, —a*Y")? = Ry(0) - p},d—a"pey +a"RVa =

= Ro(0) = p3y [RY] oy

Problem 3.2

(a) Consider the sequence (Xp,)nez, given by:

k=—o00
These series are convergent (for any fixed n, in L?) since
n
=Y ate
k=—m
is a Cauchy sequence and IL? is a complete space. Indeed (for, say, m > /)

—4

—
E(§ f(n) ( Z a” ) = Z q2(n—k) < Z q2(n—k) _

k=—m k=—oc0

2nza2k 2(n+( (1 B (12) f—>—0<>) 0.

Clearly X satisfies X,, = aX,,_1 + &, n € Z and it is stationary. Indeed
EX, =0 for all n and

Rw(O) _ EX% _ E( zn: an_k€k>2 _ zn: a2(n—k) _ iGQk _
k=0

k=—00 k=—oc0

Vn.

Then
EX, X1 = EX,(aX, +ep41) = aR,(0)
and by induction EX, X, 41m = a!™ R, (0), that is the covariance function
depends only on the time shift.
(b) The pair (X,Y) is stationary as well. Clearly EY, = EX, = 0, and
Ry(k) :== EY,, Y1 = Re(k) 4+ 026(k) and R,y (k) := EX, Ytk = Ru(k).
(¢) Find the spectral density of X

le] , 1
Saj()\) == Z ¢ 6_j)‘é —_ ... =

and
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and using the formulas from the previous problem we obtain:

Sz 1 1

Sy +1 T 1+1—2acosAta2  2—2acosAta?

A =

The minimal mean square error is readily calculated:

E(X, — Xn)? = Ry(0) = Y Ryy(k)ay = % {sx(x) —~
k

T2 ) S:(M)+1 7 21 ) 2—2acosA+a2 T 4+ at

(d) Using the formula from the previous problem:

o1 Szy(2)
A=) = B LB(zl)L (34

where B(z) is the casual term in the factorization of

Sy(2) = B(2)B(z71)
In this case

o . _ 1 _a(l—v2 (1 —9z)
Sy(2) Solz) +1 (1-az)(1—az"1) 1 v (1 —az"1)(1-az)

2+a?—V4+at
v= D)
a
Note that |y| < 1 for |a| < 1. So B(z) is identified as:

1— -1
B(z) := \/EVZI
v1—az~
Substitute this into (3.4):

i) = y1l—az"! {M(l—az)/(l—wz)J _
e +

al—~yz71 (1 —-az)(l —az"1)
_ [yl—az7! | \/v/a 1 1 B
CVal—qzt|l—ay\l—az"! 1—n-1z71 . B
v 1 1—az! 1 % 1

al—ayl—7yz'1—az' a(l—ay)1—rz?
2+a?— 4+ at 1 _a?—2+V4+at 1
?(Vi+tat—a2) 11—zt 2a? 1—z1

The filtering error can be calculated directly, using the formulas similar to
the previous case. It also equals the steady state error of the Kalman filter
(why?).

(e) Recall that
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hence (@ now denotes a 2-by-1 vector)
 (RO)+1  R,(1) \ (R0 _
@ R,(1)  R,(0)+1 R,(1)) ~
a —1
— 1—1a2 +1 1—a? 1—1(12 — —_ 2 1
17aa2 ﬁ +1 lf/a2 a) 4 —a?

The corresponding error is:

~ 1 1 a
2 _ ko~ a
E(Xn_Xn> _Rw<0)_pxya_ 1 — g2 - (1a2’1a2>a
2
4 — q?

(f) The Kalman filter equations are

)?n = a)?n—l +Pn(Yn _a/)?n—l>
O,QPn_l +1

p, = Lt 5 3.5
a2Pn,1 +2 " ( )

subject to Xo = 0 and Py = 1/(1 — a?).
(g) First note that P, € [0,1], since by optimality P, < E(Y,, — X,,)? = E&2 =
1. Let P, be the unique nonnegative solution of
a?Py, + 1
a?Py +2’
which is (the other solution is always negative)

a?—2++V4+at

Py = (3.6)

Poo = 2a?
The sequence D,, := |P,, — P| satisfies
1 1 D,
Dp === + = = 1.2 Y ; <
a?P,_1+2 a?Py +2 (a?Py—1 4 2)(a?Ps + 2)
a2Dn_1 aan—l 1

<-D,_
2(a?(a®? =24+ V4+a*)/(2a®) +2)  a®+2+VA+at " 2 n

and thus lim,, .., D, = 0.
The "steady state” filter is then

S a? -2+ 4+ at

X’n = a)?n,l + 2@2 (Yn — a)/(\'nfl) =
a? —2++V4+at\ o a? -2+ 4+ at
=a|l-— anl + Yn =
2a? 2a2
a?+2—Vi+at 5 a?—2++V4+at
= 2a Xn_l + 2a2 )/n'

=7
Note that this recursion is exactly the one which was obtained via Kolmogorov-
Wiener approach in the appropriate setup.
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(h) The best estimate is obtained via optimal smoothing in (c); next is the
filter, based on all the observations till n in (d). The Kalman filter in (f) is
inferior to the latter filter for any fixed n, but is asymptotically equivalent
to it as n — oo. The worst is of course the filter in (e) that takes into
account only two observations. Note that for a = 0 (i.e. the signal X,
is an i.i.d. sequence (white noise), all the estimates attain the same error
P=1/2

(i) The error recursion for the Kalman filter becomes:

(CLZPn_l)Q - CLZPn_l

aZPn,l +1 o G,QPn,1 +1

This can be explicitly solved (define e.g. @, = 1/P, and obtain a linear

recursion for @,,) and verified that lim, .. P, = 0.

P, =a’P,_1 —

Problem 3.3

Recall that
X, = { Xn_1, W?th prob. p
—Xp—1, with prob. 1 —p
with P{X, = ¢} =P{Xo = —¢} = 1/2. Let (&,)n>1 be an i.i.d. binary sequence of
r.v. with
P{&n =1} =1-P{& =0} =p.
Clearly (X,,)n>1 can be generated by:
X, = (26, —1)X,_1, subjectto Xy
Rewrite this equation as:
Xn = (2En — 1) X1 +2X0-1(6 — E&) = (2p — D) Xoo1 +2X0-1(60 — p)
Define n,, = 2X,,_1(&, — p), then:
En, =2EX, 1E(& —p) =0
and (say n > m)
Enpim = 4EX 1 Xm—1(§m — P)E(En —p) =0
Erp, = 4EX;_E(¢, —p)® = 46(1 = p)p

Moreover for k < n, X} and 1, are uncorrelated.
Introduce an auxiliary pair of processes (X,Y’), generated by

Xn=02p—1)X,_1 + 7, subjectto Xo
}N/n = X'n +én.

where 7] is a white noise sequence with the same mean and variance as 7.
The orthogonal projection X,, = F(X,|Y7") is generated by the Kalman filter

~ ~ ~

Xo = 2p-DXo1+ PV —(2p—-1D)Xoo1), n>1 (3.8)
(2p —1)*Pp_1 + 40°p(1 — p)

(2p — 1)2P,_; +402p(1 —p) +1

subject to )A(o = 0 and Py = 2. If these equation are applied to the original

observations process Y, the obtained linear functional X, (Y7*) can be considered

(3.7)

P,
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as an estimate for X,. Does the obtained filter realizes the orthogonal projection
E(X,|Y{") for the original model?
Let L(Y7") denote any linear functional of {Y7,...,Y,}, then

B(Xn = L))" = B(X, - L) 2
E(X, - X,(Y")? = E(X, — X.(Y]))?, (3.9)
where the equalities hold, since (X,Y") and X, 57) have the same correlation struc-
ture by construction. The inequality (3.9) implies that X, (Y7") is optimal and
hence realizes the orthogonal projection.
Problem 3.4
Denote p = Eny,. Rewrite the eq. for Y,, as:
Vo= pXn1 4 &+ (M — 1) Xna
Set En =&, + (Nn — 1) Xp—1. Then:
E, =0, E&&p = 5n,k(a§ + O’%anl)
where V,, = EX? satisfies (n > 1)
V, =a*V,_1 + 0’3, subject to Vy =1

Moreover En is uncorrelated with X,,,, m < n. Consider the model:

X, = aXn_1+en (3.10)
Y, = pXp_1+&, st Xo
The optimal linear estimate is given by the Kalman filter
~ ~ a’upn_l ~
X, = aX,_ Y, —uX,_
aXy, 1+M2Pn71+0'§+0-%vn71( n— M 1)
P 2
P, = a*P,_1+02— [P 1]

sznfl + Jg + U%anl

subject to X’o =0, F =1

Problem 3.5

Simple Solution:
Define an augmented state vector ,, € R(PTa)x1

On
971—1

Wy = enprrl
En

En—q+1
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Introduce A € RPTOX(P+0) and B, C € RP+H*1;

[ —ay —a9 e —Cl,p b1 bq T
1 0 0 0
0 1 0 0
A=1 0 0 0
0 0 1 0
00 1 0 |
and

e S

0 0

0 0

B = 1|’ C= 0

0 0

_O_ _O_

Consider the vector difference equations (n > p):

Y, = AV,_1+ Be,
gn = C*’ﬁn"_vn

where 9, ; is a vector of initial conditions (5~ and el'). Clearly the first
component of the vector ¥,, coincides with 6,, for any n > p, i.e. 9,(1) = 0,.
Note that Edie,, = 0, £ < n and hence the obtained model suits the Kalman filter
setting: let ?/9\” = E(ﬁn\%‘) and gn = IAE(0n|§6‘), then (n > p):

~

3. = AD,_,+ (AP,_1A* + BB*o*)C (&, — C* AV, —1)

C*AP,_1A*C + C*BB*Co? + o2
P, = AP, A*+40?’BB* —
(AP,_1A* + BB*02)CC*(AP,_1 A* + BB*o?)
C*AP,_1A*C + C*BB*Co? + 02

0, = C*I,
subject to @p,l =0 and ? P, = Io2.

Note that the estimates of {6,,—1, ..., 0n—p+1} and also of the driving noise {e,,
<y En—q+1} are obtained as a byproduct.
Advanced Solution®: In the previous solution version to generate é\n one has to
propagate (p + ¢)-dimensional vector recursion. More delicate arguments lead to a

29371

o2

1 .. . .
and sg are assumed to form a vector of i.i.d. components with zero mean and variance
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filter of lower dimensions. Consider a sequence

p p—1
0, = — Zaken,k + Zbksnfk (3.11)
k=1 k=0

where (g,,)n>0 is standard white noise sequence. Note that the original model of
the problem (i.e. ¢ < p) is obtained by setting appropriate by’s to zero.

Below we derive a state space model of order p, which generates the same se-
quence.

Lemma 3.1. Let 7, be a vector process generated by the recursion:
Nn = Anp_1+ Be,, n>0 (3.12)

where (ep)n>0 @5 an i.i.d. scalar standard Gaussian sequence and

0 1 0 .. 0 4
0 0 1 .. 0 Bs
A= . |oB=|:
0 0 1
—Qy  —Qp_1 . —aq On
B = bo

7j—1
6] = bj—l _Zaj—fﬁfv .] :2a"'an
(=1

Then 0, = 1, (1).

Proof. Verify the equivalence between (3.11) and (3.12) as maps, i.e. show that
both generate the same output y(t),t = 0, 1,... for the same input z(t),t = 0,1, ....
Use the Z-transform system representation:

Starting from (3.12):

yit) = Yyt —1)+Ba(t), i=1,.,n—1
y(t) = — Samkykﬂ(t — 1) + Bnz(t)
N k=0
Yi(z2) = 27%Win(2) +3iX(2), i=1,..,n-1
Yo(z) = —z7! :Zlankykﬂ(z) + 3. X(2)
i

Then* for i =1,...,n — 1

Yipr(2) = 2[Yi(z) = BiX(2)] = .. = 2'Yi(2) = D _ 2773, X (2) (3.13)
j=1

3This solution is for advanced reading.
4the convention Z(IJ = 0 is followed
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On the other hand:

Yalz) = 12% WYinr(2) + BuX (2) = (3.14)

= 1Zan k2"Y1 (2 1Zan kzzk X (2) +

+68, X (z)
Equating the (3.13) with ¢ = n — 1 and (3.14) we arrive at:
n—1
2"Y1(z) + Z an—k2"Y1(z Z 2B X (2) +
k=0 j=1

n—1 k
+ Dtk TN (2) + 28X (2)
k= j=1

or (ag :=1)
n n—1 )
D an w2 Vi(z) =Y IME X (2) +
k=0 j=1
n—1 k )
3k 30 AT X () + 260X (2)
k=0 j=1
and

n n—1
93 aut =3+
k=0 j=1

n—1
—&—Zan,k Z Z_j+1ﬁj,n+kX(Z) +Z_(n_1)ﬁnX(Z) (315)
k

Jj=n—k+1

Equating the right hand side of (3.15) to X (z)P,—1(z) and comparing powers of
z we obtain the desired result:

220 Bi=bo
2 Batalf=by

n—1

Z_(n_l) : Z anfkﬁk + 671 = bnfl

k=1

Let us demonstrate the latter approach:
Example

Let &, be a stationary random process with zero mean and the spectrum density:

14 e 92 2

1+ 1/2e=9> + 1/2¢-2r

f) =
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Find the optimal linear extrapolation estimate of & on the basis of {&,...,&s},

m(t, s) = E(&£5)-

Find the state space representation for &,. Here by = 1,b; =1 and ap = 1,a; =
1/2,(12 = 1/2 and thus ,81 = bo =1 and ﬂg = b1 — 1/2 -1 = 1/2 Let (Th(t),’f]g(t))
be generated by

m(t) = m(t—1)+e)
m(t) = —1/2m(t — 1) — 1/2na(t — 1) + 1/2¢(2)

where ¢(t) is a standard i.i.d. Gaussian sequence.
Set & = n1(t) and 6, = n2(t). Then & has the spectral density f()) and:

& = 01 +e(t) (3.16)
et = *1/29t—1 — 1/2§f—1+1/2€(t)
And thus (t > s)
m(t,s) = pt—1,s)
u(t,s) = =1/2u(t—1,8)—1/2m(t—1,s)

subject to m(s,s) = & and u(s, s) = p(s) = E(6,]€3).
The filtering estimate p(s) satisfies (k < s):

1/2 —1/2P,_1
= —1/2up_1—1/26_ 1+ —-—"-"—-—"—"- — g
Lk (201 — 1/2€p 1 P11 (& — pr—1)
(1/2=1/2Ps 1) Pes
P, = 1/4P._1+1/4 — = 3.17
" [4Pi1 +1/ P, 1 +1 P, +1 (3.17)

The initial conditions for this filter can be recovered due to stationarity assump-
tions. Let dy; = E0?, dis = E&6; and dgy = E£2. From (3.16):

dyy = dii+1
dy = 1/4dyy +1/4das +1/4 +1/2d1
dio = —1/2d11 —1/2dys +1/2

so that:
diy =1, di2=0, da=2
and the initial condition for the filter (3.17):

Problem 3.6

The Riccati equation of the Kalman filter is transformed by Matrix Inversion
Lemma into:

Pn+1 = (J,Pna* “l‘bb* —aPnA*(APnA*—l—BB*)_lAPna* =
= bb*+a{P, — P,A*(AP,A* + BB*)'AP,}a" =
= bb* +aF;1a*

where
I, =P, '+ A (BB")'A=J,+A"(BB*)"'A
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-1
ot = Py = {4 (@ T )T =
= F, - F,b(I+b"F,b)"*F,

where F}, := a~*I',,a”!. Summarizing all the equations, .J,, can be propogated by:

Jog1 = Fn— E.b(I+0b*"F,b)"'b*F,
Fo= = a*(Ju+A*(BB*)'A)a!
The validity of the Matrix Inversion Lemma is verified directly:
AA™Y = (B7'+CD'C*)(B - BC(D +C*BC) 'C*B) =

= I+CD'C*B-C(D+C*BC)"'C*B -
~CD™'C*BC(D + C*BC)™'C*B =

= I+CD'C*B-C{I+D'C*BC}(D+C*BC)"'C*B =

= I+CD'C*B-CD'Cc*B=1

Problem 3.7

Clearly z; are the orthogonal projections of a standard random vector z on
{y1, .-, Yyt }, where
Yer1 = Ge41@ + Ve
with €; being standard white noise, independent of z. So xj is the orthogonal
projection of z on y = Az + \/ag, where ¢ is a standard random vector.
Then
Q = E(zy") (Elyy")) ™ = A*(al + AA*) " = (ol + A*A) 7' A*
since
A*(al + AA™) = (ad + ATA)A*
The second statement follows form the fact that v, = E(z — %) (z — zx)*
e = E(a") — Bay"JE~ gy JBlya*) = T — A"(al + AA") 1A =
=(I+A*AJa) ' = (Ta+ A*A) " a



