STOCHASTIC PROCESSES. SOLUTIONS

4. CONDITIONAL EXPECTATION
Problem 4.1

Let g : R — R be a bounded measurable function. Then
E(9(&n)|&1, s én2) = ( (&)L 1) |1 oo 2)
lﬁn—l)\§1,...,§n_2> _
5n-1)\51,...,5n_2) _
1) \57,,,2) _
1517-‘.7&1—1)\5”_2) -

!
)
o
— = ~ =~

and by induction for any m < n,

E(g(gn”fla ) fm) = E(g(gn”fm)? P —a.s. (4'1)

Letn>m>/¢

B(g(&n)lge) = B(B(9(&n)I€1, s m) |1, &) =
E(E(9(6)l6m) |61, &) = B(B(g(80)l6m) )

In terms of densities the latter reads

/ 9(u) fe, e, (u, &)du = // ) fe e (Us ) S 16, (7, E0)dr

and the required equality follows from arbitrariness of g.

Problem 4.2

a) Given Xy has unifrom distribution on [0, X;], conditioned on X;

|

s €[0,¢]

fX2|X1(S7t> - {

0 otherwise.
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Similarly
s €[0,¢]

|

Ixs1x,(8,1) =
0 otherwise.

By the Chapman-Kolmogorov equation

Ixa1x,(551) :/RfXngz(Svu)fX2|X1 (u,t)du =

otherwise

I(Ogsét)/tldu: {élog(t/s), s€0,4]

b) Following (a) we can write:

%log (é) s € [0,t]

I X ol X (851) =
0 otherwise

Proceed by induction: assume (guess by iterating for k = 3,4, etc.) that the
formula

t(kil)! log" ! (£) seo,]
Ix X0 (85) = (4.2)

0 otherwise

holds for some k& > 1. By the Chapman-Kolmogorov equation:

an+k+1|Xn (87 t) = /]R an+k+1|Xn+k (87 u)an+k|Xn (U, t)du =

1 1 o [t
— <s<u)—— — <u< =
/RUI(O_s_u)t(k_l)!log ( >I(O_u_t)du

which verifies (4.2).
c¢) Rewrite equation (4.2) for n > 2 as follows:
t(n£2)! log" % (£) selo0,1
Ixax,(s,t) =
0 otherwise
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Now

Fx.(s /an|X1 s,u) fx, (u)du
/Rt(’l’Ll—Q)!logn2 <t> I0<s<H)I(0<u<1)du=
I0<s< 1)/1u(nl2)!log”2 (g) du =

{(n_lmlognl (%) , s€l0,1]

0, otherwise

d) Intuitively X, converges to zero. Let’s look at the distribution of X,

t t(_1\n—1
Falt) = PO <) = [ fra(du= [ D g

= ((;1_)711_; {tlog”l(t) —(n—1) /Ot log”Q(az)dm} =

n—1
1 k 1 n—00 .
tY oylog (t) 12 texp{—log(t)} =1, Vt>0.
k=0
Thus
lim P(X,, >¢)= lim (1 - P(X, < 5)) =0, Ve>0.
n—oo n—o0

i.e. X, converges in probability. Since X, < 1, the sequence converges in
LP for any p > 1.

Problem 4.3

Clearly
{Sns Snt1y -} = {Sn, §nt1, Envas o}
So
E(&1]Sn, Sn+1,--) = E(&|Sn: &nt1, ) = E(&1|Sn)

Since &; are i.i.d. r.v. we have (why?)
E(&k|Sn) = E(§mlSn) ¥V k,m <n, P —a.s.
so that

E(&1Sn) ZE il Sn) Z&rs E (Sn|Sn) =

that is )
E(§1|Sn) = *Sn
n
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Problem 4.4

Let £ be the distance from the center of the needle to the left boundary
and 0 be the angle, formed by the needle and the horizontal axis.

Since the needle is dropped at random it is natural to assume that & and
6 are distributed uniformly on [0,1] and —[7/2,7/2].

Introduce a set:

1 1
B = {(0,5) (0] < g,f € [0,20059] U [1 - 50089, 1]}
Obviously the needle crosses one of the boundaries if and only if B hap-
pens. Then the desired probability is:

/2
p= Elp(w) = EE(Ig@)6) =—= = [ E(I(w)|f = a) da

T J—n/2

The inner conditional probability is

E(Ip(w)|f =a) :P{w S {0,1cosa] U [1 - écosa, 1]} = cosa

2
and so
1 [7/? 2
p:/ cosada = —.
T _ﬂ./2 ™
Problem 4.5
By definition
E(X1n) = g(n)

such that

Efm(X —g(n) =0
for any bounded function f(z). Then

1/2 1
Ef(m)[X —g(n)] = ; (s)[s — g(s)lds + /1/2 f(1/2)[s —g(1/2)]ds = 0
By uniqueness of cond. expectation we conclude:
- s 0<s<1/2
9(5)_{ 3/4 s>1/2
Note that there exist many versions of conditional expectation, e.g.
| s 0<s<1/2
g(s)—{ 3s s>1/2

Clearly g(n) = g(n) P-a.s.

Problem 4.6
a) If A does not depend on A:
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P(ANA) = P*(A)
But on the other hand AN A= Aso P(ANA) = P(A)
and thus
2 _ P(A)=0
P (A)—P(A):>{ P(A) =1

b) Consider the case P(A) = 0. Clearly
P(ANB)<P(A)=0
P(ANB)>0
But also P(A)P(B) =0, so P(ANB) = P(A)P(B) i.e. the result holds.
Now consider the other case P(A) =1 Since
P(AUB)>P(A)=1
P(AuB) <1

}:> P(ANB)=0

} — P(AUB)=1
we have
P(ANnB)=P(A)+ P(B) - P(AUB) = P(B)
But P(A) =1, and hence P(AN B) = P(B)P(A)
¢) Assume &(w) = C. Define a set (event)
Afz) ={w: {(w) < =}
Obviously

rm={}y 422

Then by virtue of (b) A(z) is independent of any other event and in
particular of itself. This implies that {(w) doesn’t depend on itself. Now
assume that {(w) does not depend on itself. i.e.

P{{<zinNé<aa) =P <x1)P(€ < 22) V xy, w0

in particular for 1 = z9 = = the event {¢ < x} is independent of itself. By
(a) P{{ <z} =1or P{¢{ <z} =0 this implies that {(w) = const P-a.s.

Problem 4.7

First note that for any i

M) =1} = Mw € 0,1) ¢ i~ th bit of wis 1} = 5

This holds since there is a one-to-one correspondence between any number
x with i-th bit equal to 1, to exactly one other number y with the same bit

equal to 0, i.e.
1\

Now let us consider a binary vector [ay, ..., a,] with a; € {0, 1}, then:
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i a; " a; 1
Mé = a1, = 0} = A{wﬁzziﬁwzzﬁzn}:
=1

=1
1 n
= o =]IPle=a}
=1

which together with the fact that A{¢ = a;} = & proves the independency

Problem 4.8

Since f(x|y) is an even function of x we find that

B(XIY) = [ f(aly)dz =0
R
and thus

EE(X|Y)=0
Let us find EX. The density of X is given by

oo

1 2 1/7
— - —y/2(z*+1) g,
f@ = [ fosa/ay =5 [ e ay= "
Ry 0
that is X has Cauchy distribution and thus EX is not well defined and
EE(X|Y) # EX. In fact it is consistent with the definition of E(X|Y),

which requires ! E | X| < oco.

Problem 4.9

First let us check that X and Z are indeed independent: this is verified
by straight forward calculations:

MX =inZ=j}=MX =i} \{Z =4},

e.g. MX=1,Z=0}=){[0,1/4]} %
MX =1} =X{[0,1/2]} = ?
MZ =0} =X{[0,1/4U[3/4,1]} =5
Find the conditional expectation:
E(X]Y) =g(Y)
so that

Lor at least min(EX~, EXT) < oo, where X* = max(0, X) and X~ = — min(0, X)
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E(X—-9g(Y)e(Y)=0 ¥ ¢ bounded (4.3)
The left hand side is found explicitly

1

1/2 3/4
/ [1— g(1)] p(1)ds + / 10— g(1)] o(1)ds + / 10— 9(0)] p(0)ds
0 1

/2 3/4

If we choose g(z) so that g(1) = 2 and g(0) = 0, the eq. (4.3) will hold for

any bounded . So one of the versions of the required cond. expectation is

BE(X]Y) = { 28 w0 sy w) = 1)
Similarly
0 w € [3/4,1]
B(X|Y, Z) = { 12 well/43/4)
1 w e [0,1/4)

Clearly E(X|Z,Y) # E(X|Y) in spite of X and Z are independent.

Problem 4.10

Assume E[f(&1)|€2,&3] = E[f(&1)]€3] with probability one. This means
that for any bounded v (z,y)

E[f(&) — E[f(&1)[&3]]1(&2,83) =0 (4.4)
Take special ¥(z,y) = ¢(x)p(y), then:
Ef(&)¢(&2)p(&3) = EE[f(&)[E3]0(&2)p(Es)

or

Ef(&)0(&2)p(&3) = EE[f(&)|E]E[6(€2)[€5]p(€3)
that is:

E[f(&)¢(&) — E[f(&1)I€] Ep(&2)[€3]] p(€3) = 0 (4.5)
which by definition gives:
Elf(&)9(&)[6] = E[f (&)|&]E[¢(&2) €3]

Now assume that £; and & are independent, conditioned on £3, i.e. assume
that (4.5) holds for any bounded f(z), ¢(x) and p(x). In fact, it is sufficient
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to verify 2 (4.4) for any ¢ (z,y) = ¢(z)p(y):
E[f(&) - E[f(&)&]]o(&)r(&) = E[B[f(&)16]Elo(&)|&]1n(E)] -
—E[E[f(&)|&]E[p(&2)]€3]p(€3)] =0

Problem 4.11

Since Y is independent of X5, E(Y|X3) = EY = EX; + aFEX,; = 0. But
X1 =Y - OéXQ, SO E(X1|X2) == E(Y|X2) — OLX2 == —O(XQ.

Problem 4.12
Show that (i) implies (ii).
E(ZY|X,) = E(E(ZY|X()|Xn) = E(YE(Z|X§)| Xn) =
— B(YE(ZIX,)|X,) = E(Z|X,)E(Y]X,)
To show that (ii) implies (i), let 7 be an arbitrary random variable, generated
by {X(), ...,Xk}, k <n then
EnB(Z]Xy) = EE(X,)E(ZX,) - EB(Z|X,) = EnZ

where the equality T is due to (ii). By the choice of 7, the latter equation is
nothing but definition of E(Z|X}).

2since any bounded two dimensional function can be approximated uniformly by series

of one dimensional functions



