STOCHASTIC PROCESSES. SOLUTIONS

4. Conditional Expectation

Problem 4.1

Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a bounded measurable function. Then

$$
\begin{aligned}
E\left(g\left(\xi_{n}\right) \mid \xi_{1}, \ldots, \xi_{n-2}\right)= & E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{1}, \ldots, \xi_{n-1}\right) \mid \xi_{1}, \ldots, \xi_{n-2}\right)= \\
& E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{n-1}\right) \mid \xi_{1}, \ldots, \xi_{n-2}\right)= \\
& E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{n-1}\right) \mid \xi_{1}, \ldots, \xi_{n-2}\right)= \\
& E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{n-1}\right) \mid \xi_{n-2}\right)= \\
& E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{1}, \ldots, \xi_{n-1}\right) \mid \xi_{n-2}\right)= \\
& E\left(g\left(\xi_{n}\right) \mid \xi_{n-2}\right)
\end{aligned}
$$

and by induction for any $m<n$,

$$
\begin{equation*}
E\left(g\left(\xi_{n}\right) \mid \xi_{1}, \ldots, \xi_{m}\right)=E\left(g\left(\xi_{n}\right) \mid \xi_{m}\right), \quad P-\text { a.s. } \tag{4.1}
\end{equation*}
$$

Let $n>m>\ell$

$$
\begin{aligned}
& E\left(g\left(\xi_{n}\right) \mid \xi_{\ell}\right)=E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{1}, \ldots, \xi_{m}\right) \mid \xi_{1}, \ldots, \xi_{\ell}\right)= \\
& E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{m}\right) \mid \xi_{1}, \ldots, \xi_{\ell}\right)=E\left(E\left(g\left(\xi_{n}\right) \mid \xi_{m}\right) \mid \xi_{\ell}\right)
\end{aligned}
$$

In terms of densities the latter reads

$$
\int_{\mathbb{R}} g(u) f_{\xi_{n} \mid \xi_{\ell}}\left(u, \xi_{\ell}\right) d u=\int_{\mathbb{R}} \int_{\mathbb{R}} g(u) f_{\xi_{n} \mid \xi_{m}}(u, r) f_{\xi_{m} \mid \xi_{\ell}}\left(r, \xi_{\ell}\right) d r
$$

and the required equality follows from arbitrariness of g.

Problem 4.2

a) Given X_{2} has unifrom distribution on $\left[0, X_{1}\right]$, conditioned on X_{1}

$$
f_{X_{2} \mid X_{1}}(s, t)=\left\{\begin{array}{cc}
\frac{1}{t} & s \in[0, t] \\
0 & \text { otherwise }
\end{array}\right.
$$

Similarly

$$
f_{X_{3} \mid X_{2}}(s, t)=\left\{\begin{array}{cc}
\frac{1}{t} & s \in[0, t] \\
0 & \text { otherwise }
\end{array}\right.
$$

By the Chapman-Kolmogorov equation

$$
\begin{aligned}
f_{X_{3} \mid X_{1}}(s, t)= & \int_{\mathbb{R}} f_{X_{3} \mid X_{2}}(s, u) f_{X_{2} \mid X_{1}}(u, t) d u= \\
& \int_{\mathbb{R}} \frac{1}{u} I(0 \leq s \leq u) \frac{1}{t} I(0 \leq u \leq t) d u= \\
& I(0 \leq s \leq t) \int_{s}^{t} \frac{1}{u t} d u= \begin{cases}\frac{1}{t} \log (t / s), & s \in[0, t] \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

b) Following (a) we can write:

$$
f_{X_{n+2} \mid X_{n}}(s, t)=\left\{\begin{array}{cl}
\frac{1}{t} \log \left(\frac{t}{s}\right) & s \in[0, t] \\
0 & \text { otherwise }
\end{array}\right.
$$

Proceed by induction: assume (guess by iterating for $k=3,4$, etc.) that the formula

$$
f_{X_{n+k} \mid X_{n}}(s, t)=\left\{\begin{array}{cl}
\frac{1}{t(k-1)!} \log ^{k-1}\left(\frac{t}{s}\right) & s \in[0, t] \tag{4.2}\\
0 & \text { otherwise }
\end{array}\right.
$$

holds for some $k \geq 1$. By the Chapman-Kolmogorov equation:

$$
\begin{aligned}
f_{X_{n+k+1} \mid X_{n}}(s, t)= & \int_{\mathbb{R}} f_{X_{n+k+1} \mid X_{n+k}}(s, u) f_{X_{n+k} \mid X_{n}}(u, t) d u= \\
& \int_{\mathbb{R}} \frac{1}{u} I(0 \leq s \leq u) \frac{1}{t(k-1)!} \log ^{k-1}\left(\frac{t}{u}\right) I(0 \leq u \leq t) d u= \\
& I(0 \leq s \leq t) \int_{s}^{t} \frac{1}{u} \frac{1}{t(k-1)!} \log ^{k-1}\left(\frac{t}{u}\right) d u= \\
& \frac{1}{t k!} \log ^{k}\left(\frac{t}{s}\right) I(0 \leq s \leq t)
\end{aligned}
$$

which verifies (4.2).
c) Rewrite equation (4.2) for $n \geq 2$ as follows:

$$
f_{X_{n} \mid X_{1}}(s, t)=\left\{\begin{array}{cl}
\frac{1}{t(n-2)!} \log ^{n-2}\left(\frac{t}{s}\right) & s \in[0, t] \\
0 & \text { otherwise }
\end{array}\right.
$$

Now

$$
\begin{aligned}
f_{X_{n}}(s)= & \int_{\mathbb{R}} f_{X_{n} \mid X_{1}}(s, u) f_{X_{1}}(u) d u= \\
& \int_{\mathbb{R}} \frac{1}{t(n-2)!} \log ^{n-2}\left(\frac{t}{s}\right) I(0 \leq s \leq t) I(0 \leq u \leq 1) d u= \\
& I(0 \leq s \leq 1) \int_{s}^{1} \frac{1}{u(n-2)!} \log ^{n-2}\left(\frac{u}{s}\right) d u= \\
& \begin{cases}\frac{1}{(n-1)!} \log ^{n-1}\left(\frac{1}{s}\right), & s \in[0,1] \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

d) Intuitively X_{n} converges to zero. Let's look at the distribution of X_{n}

$$
\begin{aligned}
& F_{n}(t)=P\left(X_{n} \leq t\right)=\int_{0}^{t} f_{X_{n}}(u) d u=\int_{0}^{t} \frac{(-1)^{n-1}}{(n-1)!} \log ^{n-1}(u) d u \\
&=\frac{(-1)^{n-1}}{(n-1)!}\left\{t \log ^{n-1}(t)-(n-1) \int_{0}^{t} \log ^{n-2}(x) d x\right\}= \\
& t \sum_{k=0}^{n-1} \frac{1}{k!} \log ^{k}\left(\frac{1}{t}\right) \xrightarrow{n \rightarrow \infty} t \exp \{-\log (t)\}=1, \quad \forall t>0 .
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty} P\left(X_{n}>\varepsilon\right)=\lim _{n \rightarrow \infty}\left(1-P\left(X_{n} \leq \varepsilon\right)\right)=0, \quad \forall \varepsilon>0 .
$$

i.e. X_{n} converges in probability. Since $X_{n} \leq 1$, the sequence converges in \mathbb{L}^{p} for any $p \geq 1$.

Problem 4.3

Clearly

$$
\left\{S_{n}, S_{n+1}, \ldots\right\}=\left\{S_{n}, \xi_{n+1}, \xi_{n+2}, \ldots\right\}
$$

So

$$
E\left(\xi_{1} \mid S_{n}, S_{n+1}, \ldots\right)=E\left(\xi_{1} \mid S_{n}, \xi_{n+1}, \ldots\right)=E\left(\xi_{1} \mid S_{n}\right)
$$

Since ξ_{i} are i.i.d. r.v. we have (why?)

$$
E\left(\xi_{k} \mid S_{n}\right)=E\left(\xi_{m} \mid S_{n}\right) \quad \forall k, m \leq n, \quad P-a . s
$$

so that

$$
n E\left(\xi_{1} \mid S_{n}\right)=\sum_{i=1}^{n} E\left(\xi_{i} \mid S_{n}\right)=E\left(\sum_{i=1}^{n} \xi_{i} \mid S_{n}\right)=E\left(S_{n} \mid S_{n}\right)=S_{n}
$$

that is

$$
E\left(\xi_{1} \mid S_{n}\right)=\frac{1}{n} S_{n}
$$

Problem 4.4

Let ξ be the distance from the center of the needle to the left boundary and θ be the angle, formed by the needle and the horizontal axis.

Since the needle is dropped at random it is natural to assume that ξ and θ are distributed uniformly on $[0,1]$ and $-[\pi / 2, \pi / 2]$.

Introduce a set:

$$
B=\left\{(\theta, \xi):|\theta| \leq \frac{\pi}{2}, \xi \in\left[0, \frac{1}{2} \cos \theta\right] \cup\left[1-\frac{1}{2} \cos \theta, 1\right]\right\}
$$

Obviously the needle crosses one of the boundaries if and only if B happens. Then the desired probability is:

$$
p=E I_{B}(\omega)=E E\left(I_{B}(\omega) \mid \theta\right)==\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} E\left(I_{B}(\omega) \mid \theta=a\right) d a
$$

The inner conditional probability is

$$
E\left(I_{B}(\omega) \mid \theta=a\right)=P\left\{\omega: \xi \in\left[0, \frac{1}{2} \cos a\right] \cup\left[1-\frac{1}{2} \cos a, 1\right]\right\}=\cos a
$$

and so

$$
p=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos a d a=\frac{2}{\pi}
$$

Problem 4.5

By definition

$$
E(X \mid \eta)=g(\eta)
$$

such that

$$
E f(\eta)(X-g(\eta))=0
$$

for any bounded function $f(x)$. Then

$$
E f(\eta)[X-g(\eta)]=\int_{0}^{1 / 2} f(s)[s-g(s)] d s+\int_{1 / 2}^{1} f(1 / 2)[s-g(1 / 2)] d s=0
$$

By uniqueness of cond. expectation we conclude:

$$
g(s)=\left\{\begin{array}{cl}
s & 0 \leq s<1 / 2 \\
3 / 4 & s \geq 1 / 2
\end{array}\right.
$$

Note that there exist many versions of conditional expectation, e.g.

$$
\widetilde{g}(s)=\left\{\begin{array}{cl}
s & 0 \leq s<1 / 2 \\
\frac{3}{2} s & s \geq 1 / 2
\end{array}\right.
$$

Clearly $g(\eta)=\widetilde{g}(\eta) P$-a.s.

Problem 4.6

a) If A does not depend on A :

$$
P(A \cap A)=P^{2}(A)
$$

But on the other hand $A \cap A=A$ so $P(A \cap A)=P(A)$ and thus

$$
P^{2}(A)=P(A) \Longrightarrow\left\{\begin{array}{l}
P(A)=0 \\
P(A)=1
\end{array}\right.
$$

b) Consider the case $P(A)=0$. Clearly

$$
\left.\begin{array}{l}
P(A \cap B) \leq P(A)=0 \\
P(A \cap B) \geq 0
\end{array}\right\} \Longrightarrow P(A \cap B)=0
$$

But also $P(A) P(B)=0$, so $P(A \cap B)=P(A) P(B)$ i.e. the result holds.
Now consider the other case $P(A)=1$ Since

$$
\left.\begin{array}{l}
P(A \cup B) \geq P(A)=1 \\
P(A \cup B) \leq 1
\end{array}\right\} \Longrightarrow P(A \cup B)=1
$$

we have

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)=P(B)
$$

But $P(A)=1$, and hence $P(A \cap B)=P(B) P(A)$
c) Assume $\xi(\omega) \equiv C$. Define a set (event)

$$
A(x)=\{\omega: \xi(\omega) \leq x\}
$$

Obviously

$$
P(A(x))= \begin{cases}1 & \text { if } x \geq C \\ 0 & \text { if } x<C\end{cases}
$$

Then by virtue of (b) $A(x)$ is independent of any other event and in particular of itself. This implies that $\xi(\omega)$ doesn't depend on itself. Now assume that $\xi(\omega)$ does not depend on itself. i.e.

$$
P\left\{\xi \leq x_{1} \cap \xi \leq x_{2}\right\}=P\left(\xi \leq x_{1}\right) P\left(\xi \leq x_{2}\right) \quad \forall x_{1}, x_{2}
$$

in particular for $x_{1}=x_{2}=x$ the event $\{\xi \leq x\}$ is independent of itself. By (a) $P\{\xi \leq x\}=1$ or $P\{\xi \leq x\}=0$ this implies that $\xi(\omega) \equiv$ const P-a.s.

Problem 4.7

First note that for any i

$$
\lambda\left\{\xi_{i}(\omega)=1\right\}=\lambda\{\omega \in[0,1): i-t h \text { bit of } \omega \text { is } 1\}=\frac{1}{2}
$$

This holds since there is a one-to-one correspondence between any number x with i-th bit equal to 1 , to exactly one other number y with the same bit equal to 0, i.e.

$$
x-y=\left(\frac{1}{2}\right)^{i}
$$

Now let us consider a binary vector $\left[a_{1}, \ldots, a_{n}\right]$ with $a_{i} \in\{0,1\}$, then:

$$
\begin{aligned}
\lambda\left\{\xi_{1}=a_{1}, \ldots, \xi_{n}=a_{n}\right\} & =\lambda\left\{\omega: \sum_{i=1}^{n} \frac{a_{i}}{2^{i}} \leq \omega<\sum_{i=1}^{n} \frac{a_{i}}{2^{i}}+\frac{1}{2^{n}}\right\}= \\
& =\frac{1}{2^{n}}=\prod_{i=1}^{n} P\left\{\xi_{i}=a_{i}\right\}
\end{aligned}
$$

which together with the fact that $\lambda\left\{\xi_{i}=a_{i}\right\}=\frac{1}{2}$ proves the independency of $\left\{\xi_{i}\right\}$.

Problem 4.8

Since $f(x \mid y)$ is an even function of x we find that

$$
E(X \mid Y)=\int_{R} x f(x \mid y) d x=0
$$

and thus

$$
E E(X \mid Y)=0
$$

Let us find $E X$. The density of X is given by

$$
f(x)=\int_{R_{+}} f(y) f(x / y) d y=\frac{1}{2 \pi} \int_{0}^{\infty} e^{-y / 2\left(x^{2}+1\right)} d y=\frac{1 / \pi}{x^{2}+1}
$$

that is X has Cauchy distribution and thus $E X$ is not well defined and $E E(X \mid Y) \neq E X$. In fact it is consistent with the definition of $E(X \mid Y)$, which requires ${ }^{1} E|X|<\infty$.

Problem 4.9

First let us check that X and Z are indeed independent: this is verified by straight forward calculations:

$$
\begin{array}{r}
\left.\lambda\{X=i \cap Z=j\}=\lambda\{X=i\} \lambda\{Z=j\}, \quad \begin{array}{r}
i=0,1 \\
\\
j=0,1 \\
\left(\begin{array}{r}
\text { e.g. } \quad \lambda\{X=1, Z=0\}=\lambda\{[0,1 / 4]\}=
\end{array}\right. \\
\lambda\{X=1\}=\lambda\{[0,1 / 2]\}=\frac{1}{2} \\
\lambda\{Z=0\}=\lambda\{[0,1 / 4] \cup[3 / 4,1]\}=\frac{1}{2}
\end{array}\right)
\end{array}
$$

Find the conditional expectation:

$$
E(X \mid Y) \equiv g(Y)
$$

so that

[^0]\[

$$
\begin{equation*}
E(X-g(Y)) \varphi(Y)=0 \quad \forall \varphi \text { bounded } \tag{4.3}
\end{equation*}
$$

\]

The left hand side is found explicitly

$$
\begin{aligned}
& \int_{0}^{1 / 2}[1-g(1)] \varphi(1) d s+\int_{1 / 2}^{3 / 4}[0-g(1)] \varphi(1) d s+\int_{3 / 4}^{1}[0-g(0)] \varphi(0) d s \\
& =\frac{1}{2} \varphi(1)(1-g(1))+\frac{1}{4} \varphi(1)(-g(1))-\frac{1}{4} \varphi(0) g(0)= \\
& =\varphi(1)\left(\frac{1}{2}-\frac{3}{4} g(1)\right)-\frac{1}{4} g(0) \varphi(0)
\end{aligned}
$$

If we choose $g(x)$ so that $g(1)=\frac{2}{3}$ and $g(0)=0$, the eq. (4.3) will hold for any bounded φ. So one of the versions of the required cond. expectation is

$$
E(X \mid Y)=\left\{\begin{array}{ll}
2 / 3 & \omega \in[0,3 / 4] \\
0 & \text { otherwise }
\end{array} \equiv 2 / 3 I(Y(\omega)=1)\right.
$$

Similarly

$$
E(X \mid Y, Z)= \begin{cases}0 & \omega \in[3 / 4,1] \\ 1 / 2 & \omega \in[1 / 4,3 / 4) \\ 1 & \omega \in[0,1 / 4)\end{cases}
$$

Clearly $E(X \mid Z, Y) \neq E(X \mid Y)$ in spite of X and Z are independent.

Problem 4.10

Assume $E\left[f\left(\xi_{1}\right) \mid \xi_{2}, \xi_{3}\right]=E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right]$ with probability one. This means that for any bounded $\psi(x, y)$

$$
\begin{equation*}
E\left[f\left(\xi_{1}\right)-E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right]\right] \psi\left(\xi_{2}, \xi_{3}\right)=0 \tag{4.4}
\end{equation*}
$$

Take special $\psi(x, y)=\phi(x) \rho(y)$, then:

$$
E f\left(\xi_{1}\right) \phi\left(\xi_{2}\right) \rho\left(\xi_{3}\right)=E E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right] \phi\left(\xi_{2}\right) \rho\left(\xi_{3}\right)
$$

or

$$
E f\left(\xi_{1}\right) \phi\left(\xi_{2}\right) \rho\left(\xi_{3}\right)=E E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right] E\left[\phi\left(\xi_{2}\right) \mid \xi_{3}\right] \rho\left(\xi_{3}\right)
$$

that is:

$$
\begin{equation*}
E\left[f\left(\xi_{1}\right) \phi\left(\xi_{2}\right)-E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right] E\left[\phi\left(\xi_{2}\right) \mid \xi_{3}\right]\right] \rho\left(\xi_{3}\right)=0 \tag{4.5}
\end{equation*}
$$

which by definition gives:

$$
E\left[f\left(\xi_{1}\right) \phi\left(\xi_{2}\right) \mid \xi_{3}\right]=E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right] E\left[\phi\left(\xi_{2}\right) \mid \xi_{3}\right]
$$

Now assume that ξ_{1} and ξ_{2} are independent, conditioned on ξ_{3}, i.e. assume that (4.5) holds for any bounded $f(x), \phi(x)$ and $\rho(x)$. In fact, it is sufficient
to verify ${ }^{2}$ (4.4) for any $\psi(x, y)=\phi(x) \rho(y)$:

$$
\begin{aligned}
E\left[f\left(\xi_{1}\right)-E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right]\right] \phi\left(\xi_{2}\right) \rho\left(\xi_{3}\right)= & E\left[E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right] E\left[\phi\left(\xi_{2}\right) \mid \xi_{3}\right] \rho\left(\xi_{3}\right)\right]- \\
& -E\left[E\left[f\left(\xi_{1}\right) \mid \xi_{3}\right] E\left[\phi\left(\xi_{2}\right) \mid \xi_{3}\right] \rho\left(\xi_{3}\right)\right]=0
\end{aligned}
$$

Problem 4.11

Since Y is independent of $X_{2}, E\left(Y \mid X_{2}\right)=E Y=E X_{1}+\alpha E X_{2}=0$. But $X_{1}=Y-\alpha X_{2}$, so $E\left(X_{1} \mid X_{2}\right)=E\left(Y \mid X_{2}\right)-\alpha X_{2}=-\alpha X_{2}$.

Problem 4.12

Show that (i) implies (ii).

$$
\begin{aligned}
& E\left(Z Y \mid X_{n}\right)=E\left(E\left(Z Y \mid X_{0}^{n}\right) \mid X_{n}\right)=E\left(Y E\left(Z \mid X_{0}^{n}\right) \mid X_{n}\right)= \\
& =E\left(Y E\left(Z \mid X_{n}\right) \mid X_{n}\right)=E\left(Z \mid X_{n}\right) E\left(Y \mid X_{n}\right)
\end{aligned}
$$

To show that (ii) implies (i), let η be an arbitrary random variable, generated by $\left\{X_{0}, \ldots, X_{k}\right\}, k \leq n$ then

$$
E \eta E\left(Z \mid X_{k}\right)=E E\left(\eta \mid X_{k}\right) E\left(Z \mid X_{k}\right) \stackrel{\dagger}{=} E E\left(\eta Z \mid X_{k}\right)=E \eta Z
$$

where the equality \dagger is due to (ii). By the choice of η, the latter equation is nothing but definition of $E\left(Z \mid X_{0}^{k}\right)$.

[^1]
[^0]:

[^1]: 2 since any bounded two dimensional function can be approximated uniformly by series of one dimensional functions

