
STOCHASTIC PROCESSES. SOLUTIONS

4. Conditional Expectation

Problem 4.1

Let g : R 7→ R be a bounded measurable function. Then

E
(
g(ξn)|ξ1, ..., ξn−2

)
=E

(
E

(
g(ξn)|ξ1, ..., ξn−1

)∣∣ξ1, ..., ξn−2

)
=

E
(
E

(
g(ξn)|ξn−1

)∣∣ξ1, ..., ξn−2

)
=

E
(
E

(
g(ξn)|ξn−1

)∣∣ξ1, ..., ξn−2

)
=

E
(
E

(
g(ξn)|ξn−1

)∣∣ξn−2

)
=

E
(
E

(
g(ξn)|ξ1, ..., ξn−1

)∣∣ξn−2

)
=

E
(
g(ξn)|ξn−2

)

and by induction for any m < n,

E
(
g(ξn)|ξ1, ..., ξm

)
= E

(
g(ξn)|ξm

)
, P − a.s. (4.1)

Let n > m > `

E
(
g(ξn)|ξ`

)
= E

(
E

(
g(ξn)|ξ1, ..., ξm

)∣∣ξ1, ..., ξ`

)
=

E
(
E

(
g(ξn)|ξm

)∣∣ξ1, ..., ξ`

)
= E

(
E

(
g(ξn)|ξm

)∣∣ξ`

)

In terms of densities the latter reads∫

R
g(u)fξn|ξ`

(u, ξ`)du =
∫

R

∫

R
g(u)fξn|ξm

(u, r)fξm|ξ`
(r, ξ`)dr,

and the required equality follows from arbitrariness of g.

Problem 4.2

a) Given X2 has unifrom distribution on [0, X1], conditioned on X1

fX2|X1
(s, t) =





1
t s ∈ [0, t]

0 otherwise.
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Similarly

fX3|X2
(s, t) =





1
t s ∈ [0, t]

0 otherwise.

By the Chapman-Kolmogorov equation

fX3|X1
(s, t) =

∫

R
fX3|X2

(s, u)fX2|X1
(u, t)du =

∫

R
1
u

I(0 ≤ s ≤ u)
1
t
I(0 ≤ u ≤ t)du =

I(0 ≤ s ≤ t)
∫ t

s

1
ut

du =

{
1
t log(t/s), s ∈ [0, t]
0 otherwise

b) Following (a) we can write:

fXn+2|Xn
(s, t) =





1
t log

(
t
s

)
s ∈ [0, t]

0 otherwise

Proceed by induction: assume (guess by iterating for k = 3, 4, etc.) that the
formula

fXn+k|Xn
(s, t) =





1
t(k−1)! logk−1

(
t
s

)
s ∈ [0, t]

0 otherwise
(4.2)

holds for some k ≥ 1. By the Chapman-Kolmogorov equation:

fXn+k+1|Xn
(s, t) =

∫

R
fXn+k+1|Xn+k

(s, u)fXn+k|Xn
(u, t)du =

∫

R
1
u

I(0 ≤ s ≤ u)
1

t(k − 1)!
logk−1

(
t

u

)
I(0 ≤ u ≤ t)du =

I(0 ≤ s ≤ t)
∫ t

s

1
u

1
t(k − 1)!

logk−1

(
t

u

)
du =

1
tk!

logk

(
t

s

)
I(0 ≤ s ≤ t)

which verifies (4.2).
c) Rewrite equation (4.2) for n ≥ 2 as follows:

fXn|X1
(s, t) =





1
t(n−2)! logn−2

(
t
s

)
s ∈ [0, t]

0 otherwise
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Now

fXn(s) =
∫

R
fXn|X1

(s, u)fX1(u)du =
∫

R
1

t(n− 2)!
logn−2

(
t

s

)
I(0 ≤ s ≤ t)I(0 ≤ u ≤ 1)du =

I(0 ≤ s ≤ 1)
∫ 1

s

1
u(n− 2)!

logn−2
(u

s

)
du =

{
1

(n−1)! logn−1
(

1
s

)
, s ∈ [0, 1]

0, otherwise

d) Intuitively Xn converges to zero. Let’s look at the distribution of Xn

Fn(t) = P (Xn ≤ t) =
∫ t

0
fXn(u)du =

∫ t

0

(−1)n−1

(n− 1)!
logn−1(u)du

=
(−1)n−1

(n− 1)!

{
t logn−1(t)− (n− 1)

∫ t

0
logn−2(x)dx

}
=

t
n−1∑

k=0

1
k!

logk

(
1
t

)
n→∞−−−→ t exp{− log(t)} = 1, ∀t > 0.

Thus
lim

n→∞P (Xn > ε) = lim
n→∞

(
1− P (Xn ≤ ε)

)
= 0, ∀ε > 0.

i.e. Xn converges in probability. Since Xn ≤ 1, the sequence converges in
Lp for any p ≥ 1.

Problem 4.3

Clearly
{Sn, Sn+1, ...} = {Sn, ξn+1, ξn+2, ...}

So
E(ξ1|Sn, Sn+1, ...) = E(ξ1|Sn, ξn+1, ...) = E(ξ1|Sn)

Since ξi are i.i.d. r.v. we have (why?)

E(ξk|Sn) = E(ξm|Sn) ∀ k, m ≤ n, P − a.s.

so that

nE(ξ1|Sn) =
n∑

i=1

E(ξi|Sn) = E(
n∑

i=1

ξi|Sn) = E (Sn|Sn) = Sn

that is
E(ξ1|Sn) =

1
n

Sn
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Problem 4.4

Let ξ be the distance from the center of the needle to the left boundary
and θ be the angle, formed by the needle and the horizontal axis.

Since the needle is dropped at random it is natural to assume that ξ and
θ are distributed uniformly on [0, 1] and −[π/2, π/2].

Introduce a set:

B =
{

(θ, ξ) : |θ| ≤ π

2
, ξ ∈

[
0,

1
2

cos θ

]
∪

[
1− 1

2
cos θ, 1

]}

Obviously the needle crosses one of the boundaries if and only if B hap-
pens. Then the desired probability is:

p = EIB(ω) = EE (IB(ω)|θ) ==
1
π

∫ π/2

−π/2
E (IB(ω)|θ = a) da

The inner conditional probability is

E (IB(ω)|θ = a) = P

{
ω : ξ ∈

[
0,

1
2

cos a

]
∪

[
1− 1

2
cos a, 1

]}
= cos a

and so

p =
1
π

∫ π/2

−π/2
cos ada =

2
π

.

Problem 4.5

By definition
E(X|η) = g(η)

such that
Ef(η)(X − g(η)) = 0

for any bounded function f(x). Then

Ef(η)[X − g(η)] =
∫ 1/2

0
f(s)[s− g(s)]ds +

∫ 1

1/2
f(1/2)[s− g(1/2)]ds = 0

By uniqueness of cond. expectation we conclude:

g(s) =
{

s 0 ≤ s < 1/2
3/4 s ≥ 1/2

Note that there exist many versions of conditional expectation, e.g.

g̃(s) =
{

s 0 ≤ s < 1/2
3
2s s ≥ 1/2

Clearly g(η) = g̃(η) P -a.s.

Problem 4.6

a) If A does not depend on A:
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P (A ∩A) = P 2(A)

But on the other hand A ∩A = A so P (A ∩A) = P (A)
and thus

P 2(A) = P (A) =⇒
{

P (A) = 0
P (A) = 1

b) Consider the case P (A) = 0. Clearly

P (A ∩B) ≤ P (A) = 0
P (A ∩B) ≥ 0

}
=⇒ P (A ∩B) = 0

But also P (A)P (B) = 0, so P (A ∩B) = P (A)P (B) i.e. the result holds.
Now consider the other case P (A) = 1 Since

P (A ∪B) ≥ P (A) = 1
P (A ∪B) ≤ 1

}
=⇒ P (A ∪B) = 1

we have
P (A ∩B) = P (A) + P (B)− P (A ∪B) = P (B)

But P (A) = 1, and hence P (A ∩B) = P (B)P (A)
c) Assume ξ(ω) ≡ C. Define a set (event)

A(x) = {ω : ξ(ω) ≤ x}
Obviously

P (A(x)) =
{

1 if x ≥ C
0 if x < C

Then by virtue of (b) A(x) is independent of any other event and in
particular of itself. This implies that ξ(ω) doesn’t depend on itself. Now
assume that ξ(ω) does not depend on itself. i.e.

P{ξ ≤ x1 ∩ ξ ≤ x2} = P (ξ ≤ x1)P (ξ ≤ x2) ∀ x1, x2

in particular for x1 = x2 = x the event {ξ ≤ x} is independent of itself. By
(a) P{ξ ≤ x} = 1 or P{ξ ≤ x} = 0 this implies that ξ(ω) ≡ const P -a.s.

Problem 4.7

First note that for any i

λ{ξi(ω) = 1} = λ{ω ∈ [0, 1) : i− th bit of ω is 1} =
1
2

This holds since there is a one-to-one correspondence between any number
x with i-th bit equal to 1, to exactly one other number y with the same bit
equal to 0, i.e.

x− y =
(

1
2

)i

.

Now let us consider a binary vector [a1, ..., an] with ai ∈ {0, 1}, then:
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λ{ξ1 = a1, ..., ξn = an} = λ

{
ω :

n∑

i=1

ai

2i
≤ ω <

n∑

i=1

ai

2i
+

1
2n

}
=

=
1
2n

=
n∏

i=1

P{ξi = ai}

which together with the fact that λ{ξi = ai} = 1
2 proves the independency

of {ξi}.

Problem 4.8

Since f(x|y) is an even function of x we find that

E(X|Y ) =
∫

R

xf(x|y)dx = 0

and thus

EE(X|Y ) = 0
Let us find EX. The density of X is given by

f(x) =
∫

R+

f(y)f(x/y)dy =
1
2π

∞∫

0

e−y/2(x2+1)dy =
1/π

x2 + 1

that is X has Cauchy distribution and thus EX is not well defined and
EE(X|Y ) 6= EX. In fact it is consistent with the definition of E(X|Y ),
which requires 1 E |X| < ∞.

Problem 4.9

First let us check that X and Z are indeed independent: this is verified
by straight forward calculations:

λ {X = i ∩ Z = j} = λ {X = i}λ {Z = j} , i = 0, 1
j = 0, 1




e.g. λ {X = 1, Z = 0} = λ {[0, 1/4]} = 1
4

λ {X = 1} = λ {[0, 1/2]} = 1
2

λ {Z = 0} = λ {[0, 1/4] ∪ [3/4, 1]} = 1
2




Find the conditional expectation:

E(X|Y ) ≡ g(Y )

so that

1or at least min(EX−, EX+) < ∞, where X+ = max(0, X) and X− = −min(0, X)
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E (X − g(Y ))ϕ(Y ) = 0 ∀ ϕ bounded (4.3)

The left hand side is found explicitly

∫ 1/2

0
[1− g(1)] ϕ(1)ds +

∫ 3/4

1/2
[0− g(1)]ϕ(1)ds +

∫ 1

3/4
[0− g(0)]ϕ(0)ds

=
1
2
ϕ(1) (1− g(1)) +

1
4
ϕ(1) (−g(1))− 1

4
ϕ(0)g(0) =

= ϕ(1)
(

1
2
− 3

4
g(1)

)
− 1

4
g(0)ϕ(0)

If we choose g(x) so that g(1) = 2
3 and g(0) = 0, the eq. (4.3) will hold for

any bounded ϕ. So one of the versions of the required cond. expectation is

E(X|Y ) =
{

2/3 ω ∈ [0, 3/4]
0 otherwise ≡ 2/3I(Y (ω) = 1)

Similarly

E(X|Y,Z) =





0 ω ∈ [3/4, 1]
1/2 ω ∈ [1/4, 3/4)
1 ω ∈ [0, 1/4)

Clearly E(X|Z, Y ) 6= E(X|Y ) in spite of X and Z are independent.

Problem 4.10

Assume E[f(ξ1)|ξ2, ξ3] = E[f(ξ1)|ξ3] with probability one. This means
that for any bounded ψ(x, y)

E
[
f(ξ1)−E[f(ξ1)|ξ3]

]
ψ(ξ2, ξ3) = 0 (4.4)

Take special ψ(x, y) = φ(x)ρ(y), then:

Ef(ξ1)φ(ξ2)ρ(ξ3) = EE[f(ξ1)|ξ3]φ(ξ2)ρ(ξ3)

or

Ef(ξ1)φ(ξ2)ρ(ξ3) = EE[f(ξ1)|ξ3]E[φ(ξ2)|ξ3]ρ(ξ3)

that is:

E
[
f(ξ1)φ(ξ2)− E[f(ξ1)|ξ3]E[φ(ξ2)|ξ3]

]
ρ(ξ3) = 0 (4.5)

which by definition gives:

E[f(ξ1)φ(ξ2)|ξ3] = E[f(ξ1)|ξ3]E[φ(ξ2)|ξ3]

Now assume that ξ1 and ξ2 are independent, conditioned on ξ3, i.e. assume
that (4.5) holds for any bounded f(x), φ(x) and ρ(x). In fact, it is sufficient
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to verify 2 (4.4) for any ψ(x, y) = φ(x)ρ(y):

E
[
f(ξ1)−E[f(ξ1)|ξ3]

]
φ(ξ2)ρ(ξ3) = E

[
E[f(ξ1)|ξ3]E[φ(ξ2)|ξ3]ρ(ξ3)

]−
−E

[
E[f(ξ1)|ξ3]E[φ(ξ2)|ξ3]ρ(ξ3)

]
= 0

Problem 4.11

Since Y is independent of X2, E(Y |X2) = EY = EX1 + αEX2 = 0. But
X1 = Y − αX2, so E(X1|X2) = E(Y |X2)− αX2 = −αX2.

Problem 4.12

Show that (i) implies (ii).

E(ZY |Xn) = E
(
E(ZY |Xn

0 )
∣∣Xn

)
= E

(
Y E(Z|Xn

0 )
∣∣Xn

)
=

= E
(
Y E(Z|Xn)

∣∣Xn

)
= E(Z|Xn)E(Y |Xn)

To show that (ii) implies (i), let η be an arbitrary random variable, generated
by {X0, ..., Xk}, k ≤ n then

EηE
(
Z|Xk

)
= EE(η|Xk)E(Z|Xk)

†
= EE(ηZ|Xk) = EηZ

where the equality † is due to (ii). By the choice of η, the latter equation is
nothing but definition of E(Z|Xk

0 ).

2since any bounded two dimensional function can be approximated uniformly by series
of one dimensional functions


