STOCHASTIC PROCESSES. SOLUTIONS TO HOME
ASSIGNMENTS

7. WIENER PROCESS AND STOCHASTIC INTEGRAL
Problem 7.1

Verify the axiomatic definition of Wiener process.

(1) Zy = \/eW,).. For any € > 0, Zy = 0, the paths of Z; are almost
surely continuous (like ;) and any vector

[Ztly ceey Ztk] - \/g[th/sv ceey Wtk/s]

is Gaussian. Moreover:
EZ; =0, EZZs=cEW,, W,/ = emin(t/e, s/e) = min(t, s)

(2) Z = Wiys — W; for any fixed s > 0. Clearly Z) = Wy — W = 0.
The continuity of Zj is directly implied by continuity of W;. Any
vector

20 Z4) = Wiy s — Wiy oo, Wiy s s — W]
is clearly Gaussian. Also EZ] = 0 and
EZ,Z), = E(Wips — Ws)(Wyps — Ws) = min(t + s,u + s) — min(s, u + )
min(t + s, s) + min(s, s) = min(t,u) + s — s — s + s = min(¢, u)
(3) Z{' =tW, . Let us verify that Lim., .o Z} =0
E(Z)? =t*/t=t—0, t—0

So that if Z = 0 is defined, the process Z;' has continuous trajec-
tories almost surely. Further:

EZ{Z] = EtW, ;ysW, /s = tsmin(1/t,1/s) = ts/ max(t, s) = min(t, s)

Problem 7.2
Verify the reflection principle:

Proposition 7.1. Let W; be a Wiener process and 1, = inf{t : W; > a}.
Then:

P{W; < z|r, <t} =P{W; > 2a — z|1, < t} (7.1)
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FIGURE 1. Geometrical interpretation of the reflection principle

Proof. Let Wg* be the events generated by {W,,u < 7,}.

P{W; < z|Wj*} = P{W,—-W,, <z —a|Wj*} = (7.2)
LW, —W,, > a—2[WJe} = P{W, > 2a — 2|W*}

where the equality t is due to the fact that Wy — a is distributed symmetri-

cally around 0, conditioned on Wj* (e.g. E(W; —a|Wy*) = 0).

Taking conditional expectation with respect to {7, < ¢} from both sides
of (6.2), the desired result is obtained. O

By virtue of the reflection principle we have
P{W; > a|r, <t} =P{W; <alr, <t} =1/2
since P{W; > a|r, < t} + P{W; < a|r, <t} =1, P-a.s.
Then:
P{7y <t|Wi > a}P{W; > a} P{W; >a}

1/2=P{W, > alr, <t} = Plra < 1} - Br<t

which implies
P{Ta < t} = 2P{Wt > a}.
So

P{r, <t} = 2P{W;>a}= \/% / a2/ gy _ \E / s Y
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and finally:

d a 2
(ta)= —P{r, <tl=..= ——e @/
p ( 7a) dt {T —_ } 27Tt3€

Since for large t, p,(t;a) o< O(t3/2), the first hitting time 7, has infinite
mean:

o
Er, = / tpr(t; a)dt = oo
0
Problem 7.3
Assume Xy = 0 for brevity, so that m; = 0. Note that for ¢ > s
t t
X; = Xs+/ auXudu—i—/ by, dW,,
S S
Multiply both sides by X and take expectation

t
K(t,s) =EX; Xs; =V +/ ay K (u, s)du

t
K(t,s) = Vsexp {/ audu} )
where V, = EX2.

To find V;, apply the Ito formula to X?:
d(X;)* = +2X,dX; + bidt =
2X2adt 4 2X by dW; + bdt

which leads to

and take expectation:
Vi = 2a:V; + b7
For X to be stationary one may require that a; = a < 0 and b; = b and
that Xo = 0 and EXZ = —b?/(2a). Indeed in this case V; = V = —b%/(2a)
and
K(t,s) = Vel

Since X is Gaussian, stationarity in the wide sense implies stationarity. The
spectral density is then

S(\) = /H{K(v)ei)‘”dv x !

A2 4 a2
Problem 7.4

Consider the following estimate

t
~ asdYy
Jo aZds
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and let Ay = é\t — 6. Then
0 [y a2ds + [, asdW, o I asdWy

A =
' fg a2ds fg a2ds

which suggests that

2
¢
E (fy adwvs) R
2 ot 2
(fg agds) Jo a3ds
under assumptions of the problem. So é\t converges to 0 at the rate indepen-

dent of 6. By the way, this is nothing but the Maximum likelihood estimate
of 4.

Problem 7.5
(1) Apply Ito formula to & = cos(W;) and to ¢; = sin(Wy):
dép = —sin(Wy)dW; — 1/2 cos(Wy)dt = —GdWy — 1/2€,dt
d¢; = cos(Wy)dWy — 1/2sin(Wy)dt = &dWy — 1/2¢,dt
which implies
Cy = —1/2C,
Sy = —1/28;
So
Cr=e'? 8,=0
Let P,(t) = W}, then
dP,(t) = nW YdW, +1/2n(n — 1)W*2dt
Taking expectation we find
M, (t) = 1/2n(n — 1) My, _5(t)
Now M;(t) = EW; = 0 - this implies that My(t) = 0 for k = 1,3,5, ... and
t > 0. On the other hand, My (t) = t, so that My(t) = 1/2-4 - 3f0t sds =
1/2-4-3t?/2 = 3t2. Other moments are calculated similarly.

Note that in both cases application of Ito formula is easier than integration
vs. Gaussian density.

Problem 7.6

(1) Heuristically, for 6 > 0 small enough,
Xivs = Xo + r X0 + UXt(Wt+6 — Wt)

i.e. at time t+ 0 the change in asset price is built up by deterministic growth
rate r (the positive term rX;0) and stochastic risky part ¢ X;§, where ¢ is
Gaussian random variable with variance §. Of course, strictly speaking this
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is nonsense, since e.g. & can be negative enough to make X; negative, which
cannot be.

(2) Guess the answer
Zy = Xoexp {oW, + (r — 1/20%)t}
and verify it with Ito formula
dZ, = 7, (ath F(r—1 /202)dt> V1/2Z,0%dt = rZudt + 0 Z,dW,

and Zy = Xg. Clearly Z; > 0 with probability one.
Note: This model stands behind the famous Black-Scholes formulae for
option pricing.

Problem 7.7
(1) Note that
Zy =W} + VP = (Wa = Wy + W3)? + (Vi — V3 + V3)?

where (Wy — W3, W3, Vy — V3, V3) is a Gaussian vector with independent
entries. So

E(ZulWs, Vs) = By (€ Wa)? + (04 V)2 (73)

where expectation E is with respect to the vectorl(g, g), a pair of auxil-
iary Gaussian random variables, independent and with zero means and unit
variances. Now use Jensen inequality to obtain the upper bound

E(Z4|W3,V3) < \/INE(6~+ Ws)2 + E(0 + V5)2 =

\/IEEZ +4E2 + W2 4+ VE = \/2+ W2+ V2
The lower bound can be obtained by means of Ito formula. Let R(z,y) =

V22 + y? Clearly

0 x
%R(iﬁ,y) = Ry(x,y) = 7
and
Y 1 z? 1 y?
=g M= TwTR R

Ihere V5 and W3 are hold fixed and the equality in (6.3) is of course P-a.s. Make sure
you understand this point
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and Ito formula gives

|i% Vi 1/1 W} 1/1 V2
dZt:;th+ Lav, + < t>dt+<—t>dt:
t

Z 2\ 2z, 7} 2\2z Z3

1 1V2 + WE W, Vi

= —dt — L — Lt + LW 4+ —dV, =
Z, 2 3 T T g
11 Wi Vi

= ——dt+ —='d —Ld
57, + Z, Wt-FZt Vi

and hence

4 4
! W, v,
4= 7 d —dWs + —dVj
! 3*/3 27, ”/3 (Zs "7 )

Taking conditional expectation from both sides gives the lower bound

1
27

4
E(Z4|V3,W3) = Z3 + E </ dS\Vs,Ws) > 73
3

Problem 7.8

a. Let P(z,t;y,s) denote the transition distribution of (X3)¢>o, i.e.
P(z,t;y,s) =P(X; < :c|XS)|

X =y
Any Markov process obeys Chapman-Kolmogorov equation:
Pz, ty, ) = / P(z,t; 2, 5)dP(z, 5;y,7) (7.4)
z€R

Since (X¢)i>0 is a Gaussian process (assuming R(t,t) > 0):

_ R(t,7)
E(Xt‘XT)‘XT Y Roro)? (7.5)

On the other hand

BOGIG) = / adP(atiyT) = (7.6)
=y z€

R(t,s)
= x dP(z,t;z,8)dP(z, s;y, T :/ zdP(z,s;y,T) =
/zER /zER ( JaP( ) zer R(s,5) ( )
R(t,s) R(s,7)

" R(s,s) R(r.7)"
Comparing (6.5) and (6.6), we conclude that for any ¢t > s > 7
R(t,s)R(s, 7)

R(s,s)
b. Let R(t,7) be a solution of eq. (6.7). Since R(t,T) satisfies (6.7) for
any s € [r,t], fix some s € [r,t] and define e.g. f(t) := R(t,s') and
g(t) :== R(s',7)/R(s',s'). Now set R°(u,v) := f(max(u,v))g(min(u,v)).

R(t,T) = (7.7)
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It is straightforward to check that for any ¢ > 7, R°(u,v) satisfies (6.7) and
also R(t,7) = R°(t, 7).

c. The objective is to construct a Gaussian Markov process (Z;);>0, with
covariance function R(¢,7) = f(max(t,7))g(min(¢, 7)), where f(t) and g(t)
are some specified functions. Define v(t) = g(t)/f(t). We claim that v(t) is
a positive (R(t,t) = f(t)g(t) > 0, so g(t)/f(t) > 0 as well) nondecreasing
function. Indeed by virtue of Cauchy-Schwarz inequality

R(t,7) < \/R(t,t)R(T,T)

ie.eg. t>T

Fg(r) < Vg f(T)g(r) = 1< Vuv()V/1/v(r) = v(r) <v(t)
Let W; be the Wiener process. Define Z; = f(t)W, . Since f(t) and g(t)
are some deterministic functions, Z; is Gaussian and for ¢t > 7

R.(t,7) =EZZ- = f(t) f(7) min(v(t), v(7)) = f()f(T)v(T) = f(t)g(7)
by the same arguments, flipping ¢t and 7, one arrives at the desired form of
the correlation function:

R.(t,T) = f( max(t, T))g( min(¢, T))

Since v(t) is non decreasing, Z; is Markov, for any bounded function ¢(z) :
R — R and for any 7 <t

E(0(Zi)|Zs,s < 1) =E(o(f ()W) f(8)Wy(s)s < 7) =
=E(o(f(O)Woi)If ($)Wy(r)) = E(@(Z:)| Z7)
d. Note that

e—\t—s\ — max(¢,s) ,min(t,s)

e

Following the results of the previous questions,
X = eitWe%
where (W})¢>0 is the Wiener process.
e. Any Gaussian Markov process satisfies (6.7). Since X; is stationary,
R(t,s) = R(t — s). Set p(t —s) = R(t — s)/R(0), then
R(t—s)R(s—T)
R(0)

or by appropriate change of variables

plu+ ) = p(u)p(v)

The solution of this equation in the class of continuous functions is well
know to be

R(t—7) = — plt—7) = plt — )p(s — 7)

p(t) = e M
where A > 0 is some constant, which is proved as follows. Fix integers m
and n, then

p(m/n) =p(l/n+...+1/n)=p"(1/n) (7.8)
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In particular

p(1) = p"(1/n) (7.9)
Combine (6.8) and (6.9) to obtain:
p(m/n) = p(1y"/" (7.10)

Since m and n have been chosen arbitrary and since p(t) is continuous (6.10)
holds for any ¢t > 0, i.e.

p(t) = p(1)" = p(t) =
where A = log(p(1)). Note that p(1) = R(1)/R(0) < 1, so that A < 0. By
symmetry we obtain the desired result.
Problem 7.9
a) Apply the Ito formula to r? = X? + Y,
dr? =2XdX; + 2Y;dY; + X7dt + Y2dt =
— X2dt — 2X,Y,dBy — Y2dt + 2X,Y,dt + XPdt + Yidt = 0,
that is 72 = r3 = 22 + ¢°.
b) Analogously applying the Ito formula to 6; = arctan(X;/Y;) one gets
db; = dBy
subject to 0y = arctan(z/y). That is the process (X¢, Y;) may be regarded
as a Brownian motion on a circle, i.e. e*B.

Problem 7.10

Immediate implication of the Ito formula.



