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Abstract. The purpose of this article is to survey some intrinsic methods for
studying the stability of the nonlinear filter. By ‘intrinsic’ we mean methods
which directly exploit the fundamental representation of the filter as a con-
ditional expectation through classical probabilistic techniques such as change
of measure, martingale convergence, coupling, etc. Beside their conceptual
appeal and the additional insight gained into the filter stability problem, these
methods allow one to establish stability of the filter under weaker conditions
compared to other methods, e.g., to go beyond strong mixing signals, to reveal
connections between filter stability and classical notions of observability, and
to discover links to martingale convergence and information theory.

1. Inroduction

Consider a pair of random sequences (X, Y ) = (Xn, Yn)n∈Z+ , where the signal
component Xn takes values in a Polish space1 S and the observation component Yn

takes values in Rp for some p ≥ 1. The classical filtering problem is to compute the
conditional distribution

πn(·) = P(Xn ∈ · |FY
0,n), (1.1)

where FY
k,n stands for the σ-algebra of events generated by Ym, k ≤ m ≤ n (sim-

ilarly, we will use below the σ-algebra FX
k,n generated by Xm, k ≤ m ≤ n). Once

πn is found, the optimal mean square estimate of f(Xn) can be calculated as

E(f(Xn)|FY
0,n) =

∫
f(x) πn(dx)

for any function f with E|f(Xn)|2 < ∞. If both X and (X, Y ) are Markov processes,
πn satisfies a recursive filtering equation. Specifically, let Λ and ν denote the
transition probability and the initial distribution of X, i.e., for A ∈ B(S)

ν(A) = P(X0 ∈ A),

Λ(Xn−1, A) = P(Xn ∈ A|FX
0,n−1) P-a.s.,

(1.2)

and assume that Y is a sequence of conditionally independent random variables
given FX

0,∞ :=
∨

n≥0 FX
0,n with

P(Y0 = 0) = 1,

P(Yn ∈ A|FX
0,∞) =

∫

A

g(Xn, y)ψ(dy), n ≥ 1
(1.3)

where g(x, y) is a probability density with respect to the σ-finite measure ψ (the
deterministic choice of Y0 is only a matter of convenience; it means that all the

1Typical choices are a finite or countable set, a subset of Rq for some q ≥ 1, or Rq itself.
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information about X0 is contained in its a priori distribution ν). For such a model
πn satisfies the recursive equation (see, e.g., Proposition 3.2.5 in [7])

πn(dx) =
g(x, Yn)

∫
Λ(u, dx)πn−1(du)∫

g(x, Yn)
∫

Λ(u, dx)πn−1(du)
, (1.4)

subject to π0 = ν. Suppose (1.4) can be solved starting from a probability dis-
tribution ν̄ different from ν and denote by π̄n the resulting sequence of random
measures. A typical question of stability is under which conditions (in terms of the
model ingredients Λ, g, etc.), the distance between πn and π̄n vanishes as n →∞:

lim
n→∞

E‖πn − π̄n‖ = 0, (1.5)

where ‖ · ‖ denotes the total variation norm.2 If the filter (1.4) is started from
two initial conditions ν̄ and ν̃, both different from ν, the distance between the
corresponding solutions satisfies ‖π̄n− π̃n‖ ≤ ‖π̄n−πn‖+‖πn− π̃n‖ and it therefore
suffices to consider the case where ν̃ = ν is the true initial distribution.

Depending on the way the filtering equation is thought of, different tools can be
used to solve this problem. For example, (1.4) can be seen as the iteration of a
positive random operator acting on nonnegative measures and consequently filter
stability can be treated using the appropriate tools from the theory of positive
operators, namely the Birkhoff contraction inequality for the Hilbert projective
metric (see, e.g., [2], [5], [22, 23], [20]). Equation (1.4) can also be considered as a
random dynamical system with a special projective structure, so that the stability
problem can be related to the Lyapunov exponents of the bilinear Zakai equation
for the unnormalized conditional law ([1], [6], [11, 10]). In the continuous time case,
when both signal and the observation processes are sufficiently regular diffusions,
the filtering equation corresponds to certain stochastic PDE and can be analyzed
using PDE tools ([30, 31]). These approaches are reviewed elsewhere in this volume.

In contrast to the above techniques, which essentially study the filtering re-
cursion (1.4), this article aims to survey results which rely fundamentally on the
probabilistic representation (1.1) of the filtering process πn as a conditional ex-
pectation. As will shortly become evident, this ‘intrinsic’ approach is particularly
transparent when we impose the following condition:

ν ¿ ν̄. (A)

Though this assumption can be weakened in certain cases, we will generally restrict
ourselves to this setting in the following for sake of simplicity (further details on
the relevance of this assumption can be found in section 5).

To give the reader an idea about the methods we have in mind, let us begin
our investigation of the filter stability problem assuming only (A). Remarkably,
significant insight can be gained already at this level of generality. Let P̄ be the
probability measure on F , such that under P̄ the process (X, Y ) has the same
transition law as under P, but X0 ∼ ν̄. Then (A) implies that P¿ P̄ with

dP
dP̄

(X,Y ) =
dν

dν̄
(X0) P̄-a.s. (1.6)

The random measures πn(·) and π̄n(·) obtained by the recursion (1.4) are regular
versions of the conditional probabilities P

(
Xn ∈ · |FY

0,n

)
and P̄

(
Xn ∈ · |FY

0,n

)
,

respectively. Since P ¿ P̄, π̄n(·) is well defined on a set of full P-probability,

2We will denote the Euclidean norm on Rp as | · |.
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which means that (1.4) can be solved subject to ν̄ when the actual observations are
drawn from P. Using (1.6) and the Bayes formula, we find that there is a set of full
P-probability on which for any bounded measurable f

∫

S
f(x) dπn(x) = E

(
f(Xn)

∣∣FY
0,n

)
=
Ē

(
f(Xn)dν

dν̄ (X0)
∣∣FY

0,n

)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n

)

= Ē

(
f(Xn)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n ∨ σ{Xn}

)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n

)
∣∣∣∣∣F

Y
0,n

)

=
∫

S
f(x)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n, Xn = x

)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n

) dπ̄n(x)

(note that the denominator is strictly positive P-a.s.) Thus evidently πn ¿ π̄n

P-a.s. and the corresponding Radon-Nikodym derivative is given by ([13])

dπn

dπ̄n
(x) =

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n, Xn = x

)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n

) P-a.s. (1.7)

Therefore, we obtain P-a.s.

‖πn − π̄n‖ =
∫

S

∣∣∣dπn

dπ̄n
(x)− 1

∣∣∣dπ̄n(x)

=
Ē

(∣∣Ē(
dν
dν̄ (X0)

∣∣FY
0,n ∨ σ{Xn}

)− Ē(
dν
dν̄ (X0)

∣∣FY
0,n

)∣∣
∣∣∣FY

0,n

)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n

) .

(1.8)

By the Markov property of (X,Y ), FY
0,n−1 ∨ FX

0,n−1 and FY
n+1,∞ ∨ FX

n+1,∞ are
conditionally independent given σ{Xn, Yn}, which implies that

Ē
(dν

dν̄
(X0)

∣∣∣FY
0,n ∨ σ{Xn}

)
= Ē

(dν

dν̄
(X0)

∣∣∣FY
0,∞ ∨ FX

n,∞
)
.

Combined with (1.8), this implies that

E‖πn − π̄n‖ = Ē
(
Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n

)
‖πn − π̄n‖

)
=

Ē
∣∣∣Ē

(dν

dν̄
(X0)

∣∣∣FY
0,∞ ∨ FX

n,∞
)
− Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n

)∣∣∣. (1.9)

The conditional expectations in the latter expression are nonnegative uniformly
integrable martingales with respect to the decreasing and increasing filtrations
FY

0,∞ ∨ FX
n,∞ and FY

0,n, respectively. Hence both converge in L1(P̄), and thus

lim
n→∞

E‖πn − π̄n‖ = Ē
∣∣∣Ē

(dν

dν̄
(X0)

∣∣∣
⋂

n≥0

FY
0,∞ ∨ FX

n,∞
)
− Ē

(dν

dν̄
(X0)

∣∣∣FY
0,∞

)∣∣∣.

This suggests that the filter is stable if

Ē
(dν

dν̄
(X0)

∣∣∣
⋂

n≥0

FY
0,∞ ∨ FX

n,∞
)

= Ē
(dν

dν̄
(X0)

∣∣∣FY
0,∞

)
P̄-a.s. (1.10)

In particular, under assumption (A), (1.5) holds if and only if (1.10) holds.
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It is tempting to interchange the supremum and the intersection operations on
the σ-algebras in the left hand side of (1.10)

⋂

n≥0

FY
0,∞ ∨ FX

n,∞
?= FY

0,∞ ∨
⋂

n≥0

FX
n,∞, (1.11)

as this would imply stability for a large class of signals, namely those with a.s. empty
tail field

⋂
n≥0 FX

n,∞. Unfortunately, the exchange of intersection and supremum
need not be permitted if no further constraints on the model are imposed, as the
illuminating example below shows (see [19], [16], [3, 8] for related discussions). This
subtle problem was not recognized in the pioneering work of H. Kunita [21], where
the relation (1.11) was taken for granted, and was subsequently inherited by a
number of contributions that are based on [21]. The insight gained in [3] from the
‘intrinsic’ perspective on the filter stability problem revealed this as a serious gap
in [21], which to date has not yet been completely resolved. The validity of (1.11)
was recently verified in [36] under slightly stronger assumptions than imposed in
[21]; see a sketch of the ideas in Section 3 below.

Example 1.1. Let X be a Markov chain on S = {1, 2, 3, 4} with transition matrix

Λ =




1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2


 .

Let Yn = 1{Xn∈{1,3}}, n ≥ 1. If one observes Y and Xk for some k ≥ 1, then the
whole trajectory of X is revealed. Indeed, Y reveals exactly when the transitions
of X occur, and the knowledge of a single value of Xk then pins down which one of
the two possible trajectories of X occurs given the known transition times. Hence
FY

0,∞ ∨ σ{Xk} = FY
0,∞ ∨ FX

0,∞ = FY
0,∞ ∨ FX

n,∞ for any n ≥ 1 and therefore
⋂

n≥0

FY
0,∞ ∨ FX

n,∞ = FY
0,∞ ∨ FX

0,∞. (1.12)

Recall that a finite state Markov chain is ergodic, i.e., irreducible and aperiodic,
if and only if its transition matrix is primitive of order m (the entries of Λm are
positive for some integer m ≥ 1). An ergodic chain has almost surely trivial tail
σ-algebra. The transition matrix defined above is primitive of order 3 and hence⋂

n≥0 FX
n,∞ is empty P̄-a.s. Therefore FY

0,∞ ∨⋂
n≥0 FX

n,∞ = FY
0,∞ P̄-a.s.

However, observing Y alone does not eliminate the uncertainty about X0 (and
thus about the whole trajectory of X):

P̄(Xn = 1|FY
0,∞) =

ν̄(1)
ν̄(1) + ν̄(3)

1{Yn=1} 6= 1{Xn=1},

which means that FY
0,∞ is strictly smaller than FY

0,∞ ∨ FX
0,∞ and by (1.12) than⋂

n≥0 FY
0,∞ ∨ FX

n,∞. Therefore, both (1.10) and (1.11) fail. In this case, equation
(1.4) shows that ‖π̄n − πn‖ ≥ C for all n ≥ 0, where C is a positive constant
depending only on ν and ν̄. Thus the filter is not stable.

Evidently, contrary to intuition, ergodicity of the signal (i.e., triviality of the
tail σ-field) alone may not be enough to guarantee filter stability. What additional
ingredient is needed? We will consider several possibilities below, including:
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• In section 2, we will show that the filter is stable regardless of the ob-
servation structure if the signal possesses a strong mixing property. This
assumption is stronger than ergodicity and holds, for example, if the signal
has a uniformly positive transition density.

• In section 3, we will show that ergodicity of the signal is already sufficient
for filter stability if the observations are nondegenerate, i.e., g(x, y) > 0.

• In section 4, we will show that the filter may be stable even when the signal
is not ergodic provided that the observations are ‘good enough’.

These results indicate that stability of the filter emerges as an interaction between
the ergodic properties of the signal and the structure of the observations, a complete
understanding of which is still lacking. For example, necessary and sufficient con-
ditions for stability are unknown in the general setting, and the existing sufficient
conditions are often difficult to verify in terms of the filtering model. Moreover,
the difficult quantitative question of how the rate of stability of the filter is affected
by the ergodic properties of the signal and the quality of the observations remains
largely open. Despite the abundance of open questions, however, the various re-
sults reviewed in this paper indicate that significant insight can be obtained by
employing an intrinsic analysis of the filter stability problem.

The remainder of the paper consists of four sections: sections 2, 3 and 4 each de-
scribes a particular intrinsic argument for (1.5) (and sometimes its stronger/weaker
forms) to hold, while section 5 explores when (1.5) cannot hold.

In Section 2, inspired by (1.9), we explore the connection between the stability
of the filter and smoothing conditional expectations of X0 given FY

0,∞∨FX
n,∞ under

P̄. The main outcome is that the so called mixing condition, which is often imposed
on the signal transition law by other methods, can be relaxed regardless of the
observation noise density ([3], [8]).

Section 3 studies the (filtering) conditional distribution of Xn given FY
0,n as the

marginal of the law induced on the space of signal trajectories by conditioning on
FY

0,n. The latter is well known to correspond to a time inhomogeneous Markov
process on the signal state space, whose transition probability is controlled by the
observation path. This fact places at our disposal a number of tools from the
theory of Markov processes, including coupling ([18], [35]). If we condition on FY

0,∞
instead, the ‘conditioned signal’ approach can be used ([36]) to verify (1.11).

Section 4 deals with the stabilizing role of the observations. It turns out that
estimates of particular functions are stable, in the sense that

lim
n→∞

E|πn(f)− π̄n(f)| = 0 (1.13)

for certain f , even in cases where (1.5) may fail. This is possible when f is observable
in an appropriate sense [13], [9], [32, 33, 34]. When every function is observable, it
follows that the filter is stable in the sense that (1.13) holds for all f . Remarkably,
these results do not rely on any ergodic property of the signal as in the earlier
sections, but emerge instead when the observations are ‘sufficiently informative’.

Finally, we will show in section 5 that there are some inherent limitations to
when (1.5) can hold. In particular, we will discuss how far the assumption (A) can
be weakened, and we will argue that some form of absolute continuity is in fact
necessary for the filter to forget its initial condition in the sense of (1.5).

A notable omission from this article is the pioneering approach to the filter
stability problem, due to Ocone and Pardoux [27], who deduce stability of the
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nonlinear filter from the results of Kunita [21] by weak convergence arguments.
Though this is very much an ‘intrinsic’ approach, it unfortunately appeals directly
to the argument in [21] where (1.11) is taken for granted, and this gap is therefore
inherited. Nonetheless this approach remains of significant interest, particularly as
some of the machinery is of use in applications to Monte Carlo approximations of
nonlinear filters (see [14]). The approach of Ocone and Pardoux, and its relation
with the work of Kunita and the gap therein, is discussed elsewhere in this volume.

In order to keep the presentation as transparent as possible, we do not formulate
the results in the most general form possible and only sketch the proofs, emphasizing
the key ideas. We refer the reader to the original articles for the details of the proofs
and for the (important!) technicalities.

2. Stability via smoothing

The formula (1.8) suggests that the filter is stable only if the conditional expec-
tation of X0 given FY

0,n∨σ{Xn} ceases to depend on Xn as n →∞. The smoothing
problem of computing the conditional distribution of X0 given FY

0,n ∨ σ{Xn} leads
to a linear equation, whose long time behavior can be efficiently studied for strongly
mixing signals.

Consider the signal/observation model (1.2) and (1.3), where the signal transition
probability Λ(u, dy) is assumed to have a density λ(x, y) with respect to some σ-
finite measure ϕ(dy), i.e.,

Λ(x, dy) = λ(x, y)ϕ(dy) ∀x ∈ S. (2.1)

Suppose ν̄ has a density with respect to ϕ. Then the regular conditional probability
P̄(X0 ∈ · |FY

0,n ∨ σ{Xn}) also has a density qn(u; x):

P̄(X0 ∈ A|FY
0,n ∨ σ{Xn}) =

∫

A

qn(u;Xn) ϕ(du) ∀A ∈ B(S) P̄-a.s.

A simple calculation shows that qn satisfies the recursion (see Lemma 3.1 in [8])

q1(u;x) =
λ(u, x) dν̄

dϕ (u)∫
S λ(v, x) ν̄(dv)

,

qn(u; x) =

∫
S λ(z, x) qn−1(u; z) π̄n−1(dz)∫

S λ(v, x) π̄n−1(dv)
, n ≥ 2.

(2.2)

Define
q̂n(u) = sup

x∈S
qn(u;x), q̌n(u) = inf

x∈S
qn(u; x).

Our goal is to show that ∆n(u) := q̂n(u)− q̌n(u) converges to zero as n →∞, i.e.,
that qn(u; x) ceases to depend on its second argument. Let

αn−1(u; z) :=
q̂n−1(u)− qn−1(u; z)
q̂n−1(u)− q̌n−1(u)

(with the convention 0/0 = 0). Then by (2.2), for any x, x′ ∈ S and n ≥ 2,

qn(u; x)− qn(u;x′) = ∆n−1(u)
(

1−
∫

S

{
λ(z, x)∫

S λ(v, x)π̄n−1(dv)
αn−1(u; z)

+
λ(z, x′)∫

S λ(v, x′)π̄n−1(dv)
(
1− αn−1(u; z)

)}
π̄n−1(dz)

)
.
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Assume that the transition density is uniformly bounded, i.e. λ(x, u) ≤ λ∗ < ∞
for some constant λ∗. Since αn ∈ [0, 1],

qn(u; x)− qn(u; x′) ≤ ∆n−1(u)
(

1− 1
λ∗

∫

S

{
λ(z, x) ∧ λ(z, x′)

}
π̄n−1(dz)

)
,

and by the arbitrariness of x and x′,

∆n(u) ≤ ∆n−1(u)
(

1− 1
λ∗

∫

S
inf
x∈S

λ(z, x) π̄n−1(dz)
)

. (2.3)

Notice that

Ē
(dν

dν̄
(X0)

∣∣∣FY
0,n ∨ σ{Xn}

)
=

∫

S

dν

dν̄
(u) qn(u; Xn) ϕ(du)

Ē
(dν

dν̄
(X0)

∣∣∣FY
0,n

)
=

∫

S

∫

S

dν

dν̄
(u) qn(u; x)ϕ(du) π̄n(dx)

and assume dν
dν̄ (u) ≥ ε > 0 for a constant ε > 0. Then by (1.8)

‖πn − π̄n‖ =

∫
S

∣∣∣
∫
S
∫
S

dν
dν̄ (u)

(
qn(u; x′)− qn(u; x)

)
ϕ(du)π̄n(dx)

∣∣∣ π̄n(dx′)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n

)

≤ 1
ε

∫

S

∫

S

∫

S

dν

dν̄
(u)

∣∣qn(u;x′)− qn(u;x)
∣∣ ϕ(du) π̄n(dx) π̄n(dx′)

≤ 1
ε

∫

S

dν

dν̄
(u)∆n(u)ϕ(du),

(2.4)

and

E‖πn − π̄n‖ ≤
∫

S

dν

dν̄
(u) Ē∆n(u)ϕ(du). (2.5)

Now, if a constant λ∗ > 0 can be found such that λ(x, u) ≥ λ∗ for all x, u ∈ S, then
by the first equation in (2.2)

∫

S

dν

dν̄
(u) ∆1(u)ϕ(du) ≤

∫

S

dν

dν̄
(u) sup

x∈S
q1(u;x)ϕ(du)

≤
∫

S

dν

dν̄
(u) sup

x∈S

λ(u, x) dν̄
dϕ (u)∫

S λ(v, x) ν̄(dv)
ϕ(du) ≤ λ∗/λ∗.

The latter and (2.3)-(2.5) give the the following bounds

Theorem 2.1. Assume

0 < λ∗ < λ(x, u) ≤ λ∗ < ∞, (2.6)

and ν ¿ ν̄, then

E‖πn − π̄n‖ ≤ λ∗

λ∗

(
1− λ∗

λ∗

)n−1

. (2.7)

If in addition, dν
dν̄ (x) ≥ ε > 0 with a constant ε > 0, then

‖πn − π̄n‖ ≤ 1
ε

λ∗

λ∗

(
1− λ∗

λ∗

)n−1

P-a.s. (2.8)
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The condition (2.6) forces the transition density of the signal to be bounded
away from zero uniformly over S. This can be somewhat relaxed, at the expense
of giving up the time uniformity of the bound (2.8). Suppose X is an aperiodic
irreducible Markov chain with the unique invariant measure µ and that

λ¦ :=
∫

S
inf
x∈S

λ(u, x)µ(du) > 0. (2.9)

In this case µ(dx) has a density m(x) with respect to ϕ, satisfying λ¦ ≤ m(u) ≤ λ∗.
If we assume that dν̄

dϕ (x) ≥ ε > 0, then by (2.2)

∫

S

dν

dν̄
(u) ∆1(u)ϕ(du) ≤

∫

S

dν

dν̄
(u) sup

x∈S
q1(u;x)ϕ(du)

≤ (λ∗)2

ε

∫

S

dν

dν̄
(u)

(∫

S
inf
x∈S

λ(v, x)m(v)ϕ(dv)
)−1

ν̄(du) ≤ (λ∗)2

ελ¦
.

This, combined with (2.3) and (2.4), gives

‖πn − π̄n‖ ≤ (λ∗)2

ε2λ¦

n−1∏
m=1

(
1− 1

λ∗

∫

S
inf
x∈S

λ(z, x) π̄m(dz)
)

. (2.10)

Finally, (2.9) implies (Theorem 2.1 in [8]) that the chain X is geometrically ergodic
(i.e., its marginal distribution converges to µ in total variation geometrically fast),
and that π̄n satisfies the law of large numbers under P̄ (Theorem 2.2 in [8]):

lim
n→∞

1
n

n−1∑
m=1

∫

S
inf
x∈S

λ(u, x) π̄m(du) =
∫

S
inf
x∈S

λ(u, x)µ(du) P̄-a.s.

Since P¿ P̄ the latter convergence holds P-a.s. as well and (2.10) gives the following
asymptotic bound.

Theorem 2.2 (essentially Theorem 1.1 in [8]). Assume that dν
dϕ and dν̄

dϕ are bounded
away from zero and infinity uniformly over S. Suppose that X is irreducible and
aperiodic with the unique invariant measure µ, satisfying the following conditions

λ(x, u) ≤ λ∗ < ∞

λ¦ :=
∫

S
inf
x∈S

λ(u, x)µ(du) > 0.
(2.11)

Then

lim
n→∞

1
n

log ‖πn − π̄n‖ ≤ −λ¦
λ∗

P-a.s.

Remark 2.3. The statement of Theorem 2.2 remains true under weaker assumptions
on dν

dν̄ (see [8]) since only an asymptotic bound is obtained.

The condition (2.11) is significantly weaker than (2.6): for example, in the case
of an ergodic chain X which takes a finite number of values, (2.6) requires that all
the entries of the transition matrix are positive, while (2.11) holds when there is at
least one row with strictly positive entries. For instance, (2.11) holds true and the
filter becomes stable, if the transition matrix of the signal chain from Example 1.1
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is perturbed with an ε ∈ (0, 1) in a single row:

Λ =




1/2(1− ε) 1/2(1− ε) ε/2 ε/2
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2


 . (2.12)

However, both condition (2.6) and condition (2.11) imply that X has a strong
mixing property with geometric rate.

The more serious drawback of both types of mixing, (2.6) and (2.11), is that they
are not well suited to noncompact S. For instance, the condition (2.6) is equivalent
to requiring that for any x1, x2 ∈ S, Λ(x1, ·) has a density with respect to Λ(x2, ·),
which is uniformly bounded from zero and infinity over the pairs (x1, x2). Indeed,
if the latter is true, one can just take ϕ(·) = Λ(x, ·) for an x ∈ S. Conversely, (2.6)
means that there exists a σ-finite measure ϕ such that

λ∗ϕ(A) ≤ Λ(x,A) ≤ λ∗ϕ(A)

for all measurable A and all x ∈ S. If such measure exists then for any x1, x2 ∈ S
(λ∗/λ∗) Λ(x2, A) ≤ Λ(x1, A) ≤ (λ∗/λ∗) Λ(x2, A),

and hence

λ∗/λ∗ ≤ dΛ(x1, ·)
dΛ(x2, ·) ≤ λ∗/λ∗ ∀x1, x2 ∈ S

The latter property is relatively easy to check when S is compact. For noncompact
S, such a choice of ϕ is sometimes impossible.

Example 2.4 (taken from [23]). Let S = R. Suppose X is generated by the recursion
Xn = h(Xn−1) + Zn, where h is a bounded function and Z is a sequence of i.i.d.
random variables independent of X. Assume Z1 has a Laplacian distribution, i.e.,

P(Z1 ≤ x) =
∫ x

−∞

1
2
e−|u|du, x ∈ R.

The Lebesgue measure is obviously not the right choice for ϕ, since the correspond-
ing transition density λ(x, u) = 1

2e−|u−h(x)| violates the lower bound. However if
one chooses ϕ(du) = 1

2e−|u|du, the density

λ(x, u) = e−|u−h(x)|+|u|

is bounded between λ∗ := e−‖h‖∞ and λ∗ := e‖h‖∞ and (2.6) becomes applicable.
If, however, Z1 has standard Gaussian distribution, there is no ϕ which would
guarantee (2.6), since

dΛ(x1, ·)
dΛ(x2, ·) (u) =

e−(u−h(x1))
2/2

e−(u−h(x2))2/2
= e(h(x1)−h(x2))u− 1

2 (h2(x1)−h2(x2))

is not bounded for h(x1) 6= h(x2).

Theorem 2.1 can be proved using different methods, including those based on
the Birkhoff (as in [2]) or Dobrushin (as in [15]) contraction inequalities. However,
we are not aware of an alternative proof of the result stated in Theorem 2.2 and
to the best of our knowledge, the condition (2.11) is the weakest known ergodic
property of the signal which implies filter stability without further constraints on
the observation model (note, in particular, that no assumptions are needed on the
observation density g(x, y) in order for Theorems 2.1 and 2.2 to hold).
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2.1. Continuous time. Equation (1.8) remains valid when the time parameter is
continuous, and thus the approach based on analysis of the smoothing equation is
applicable to continuous time models as well.

Let X = (Xt)t∈R+ be a Markov chain with values in S = {a1, . . . , ad}, transition
rates λij and initial distribution ν. The real-valued observation process is given by

Yt =
∫ t

0

h(Xs)ds + σBt, t ∈ R+, (2.13)

with h : S 7→ R, σ > 0 is a constant (noise intensity), and B is a Brownian motion
independent of X. The nonlinear filter in this case is finite dimensional and the
vector of the conditional probabilities πt(i) = P(Xt = ai|FY

t ) solves the Shiryaev-
Wonham stochastic differential equation (see Chapter 9 in [24])

dπt = Λ>πtdt + σ−2
(
diag(πt)− πtπ

>
t

)
h(dYt − h>πtdt), π0 = ν, (2.14)

where diag(x), x ∈ Rd stands for the diagonal matrix with entries xi, Λ is the matrix
of transition rates, and h is a vector3 with entries h(ai), i = 1, . . . , d. Denote by π̄t

the strong solution of (2.14) subject to ν̄ ∈ P(S) = Sd−1.
Recall that X is ergodic, i.e., irreducible and aperiodic, if and only if the ma-

trix exponential exp(Λ) has strictly positive entries, or, equivalently, if all the en-
tries of Λ communicate. An ergodic chain has a unique invariant measure µ and
limt→∞ P(Xt = ai) = µi > 0, i = 1, . . . , d.

Theorem 2.5. Assume that X is ergodic and σ > 0. Then for any ν, ν̄ ∈ Sd−1

the following stability properties hold:

γ := lim
t→∞

1
t

log ‖πt − π̄t‖ < 0 P-a.s., (2.15)

lim
t→∞

1
t

log ‖πt − π̄t‖ ≤ −
d∑

i=1

µi min
j 6=i

λij P-a.s., (2.16)

and
‖πt − π̄t‖ ≤ C exp

{− 2t min
i 6=j

√
λijλji

}
, (2.17)

where C := 2 ∧maxk

(
1
νk
∨ 1

ν̄k

)
‖ν − ν̄‖.

The inequality (2.15) appeared in Theorem 4.1 [3] and its proof uses the Birkhoff
contraction inequality following [1]. It says that the filter is actually exponentially
stable if the observation noise is nondegenerate and the signal is ergodic. If σ = 0,
then the filtering equation looks different from (2.14) and can be unstable as in the
Example 1.1 (see Section 3 in [3]). The existence of the limit in (2.15) and (2.16)
follows from Oseledec’s Multiplicative Ergodic Theorem (see [1]). Both (2.16) and
the time uniform bound (2.17) were derived in [3] (Theorems 4.2 and 4.3) by the
same arguments used in the proof of Theorem (2.2) above (the asymptotic version
of (2.17) appeared before in [1]). Notice that (2.16) remains nontrivial as long as
Λ has at least one row with nonzero entries, unlike (2.17) which requires that none
of the transition rates vanish. The particular value of the constant in (2.17), taken
from Proposition 3.5 [12] and Corollary 2.3.2 in [35], makes precise the dependence

3Functions and measures on finite S are identified with vectors in Rd and Sd−1 = {x ∈ Rd :∑d
i=1 xi = 1, xi ≥ 0}, respectively.



INTRINSIC METHODS IN FILTER STABILITY 11

on the initial conditions. Other bounds, which shed light on the dependence of γ
on the noise intensity σ, etc., can be found in [16], [1], [10], [11].

3. Conditioned signal

3.1. Finite horizon conditioning. The ideas outlined in this section are based
on the following simple consequence of the Markov property of (X, Y ):

P
(
Xm ∈ A|FX

0,m−1 ∨ FY
0,n

)
= P

(
Xm ∈ A|σ{Xm−1} ∨ FY

0,n

)
P-a.s. (3.1)

For simplicity of notation, we shall consider hereafter the coordinate processes
(X, Y ) on the canonical space (Ω,F) (i.e., Ω is the space of semi-infinite sequences
of points in S×Rp). Denote by PY

n the regular conditional probability measure, in-
duced on the restriction of the signal paths to the time interval [0, n] by conditioning
on FY

0,n:
PY

n (Γ) = P
(
(X0, . . . , Xn) ∈ Γ

∣∣FY
0,n

)
, Γ ∈ B(Sn+1).

Then πn is nothing but the law of Xn under PY
n :

πn(f) = E
(
f(Xn)

∣∣FY
0,n

)
= EY

n f(Xn),

where EY
n stands for the expectation with respect to PY

n .
The property (3.1) means that the coordinate process X under PY

n , referred to
hereafter as the conditioned signal, is Markov:

PY
n (Xm ∈ A|FX

0,m−1) = PY
n (Xm ∈ A|σ{Xm−1}) PY

n -a.s.

and a simple calculation should convince the reader that for the model (1.2) with
(2.1) and (1.3), the transition probability of X under PY

n

ΛY
m|n(Xm−1, A) := PY

n

(
Xm ∈ A|σ{Xm−1}

)
, A ∈ B(S),

has a density λY
m|n(u, x) with respect to ϕ(dx) satisfying the following backward

recursion (see, e.g., Proposition 3.3.2 in [7]):

λY
m|n(u, x) =

λ(u, x) g(x, Ym)Qm(x)∫
S λ(u, v) g(v, Ym) Qm(v)ϕ(dv)

, m = 1, . . . , n

Qm(x) =
∫

S
λ(x, z) g(z, Ym+1)Qm+1(z)ϕ(dz)

Qn(x) ≡ 1.

(3.2)

The conditioned signal X is a time inhomogeneous Markov process whose transition
density at time m depends on FY

m,n, i.e., on the future of the observed path. Notice
that λY

m|n(u, x) is independent of the initial distribution ν of X0, while the law of
X0 under PY

n depends on all the ingredients of the model, including ν (and the
whole observation path). Let us also stress that PY

n is not the restriction of PY
n+1 to

the first n coordinates, or in other words, increasing the time horizon changes the
conditional measure completely. This should not come as a surprise, since when
Yn+1 is observed the conditional law of the whole X0, . . . , Xn changes.

As before we shall rely on the auxiliary probability measure P̄, under which
(X, Y ) has the same law as under P but X0 ∼ ν̄. Conditioning on FY

0,n under P̄
induces a regular probability measure on the signal paths restricted to [0, n] which
will be denoted as P̄Y

n :

P̄Y
n (Γ) = P̄

(
(X0, . . . , Xn) ∈ Γ

∣∣FY
0,n

)
, Γ ∈ B(Sn+1).
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Clearly, the conditioned signal has the same transition law under PY
n and P̄Y

n , but
different initial distributions.

As was mentioned above, the filtering conditional distribution is nothing but the
restriction of PY

n to the last coordinate and hence

‖πn − π̄n‖ = ‖PY
n (Xn ∈ · )− P̄Y

n (Xn ∈ · )‖. (3.3)

This interpretation relates the filter stability problem to the mixing properties of
the conditioned signal, which in turn places the ergodic theory of Markov processes
at our disposal. In particular, the following fact is well known (see, e.g., [25]).

Proposition 3.1. Suppose that ξ = (ξn)n≥0 is an inhomogeneous Markov chain
with values in a Polish space S and transition probabilities Kn(x, ·) under the prob-
ability measures P and P̄, such that ξ0 has distribution ν under P and ν̄ under P̄.
Assume that there exists a sequence of σ-finite measures µn such that

εµn(A) ≤ Kn(x,A) ≤ 1
ε
µn(A) ∀A ∈ B(S), (3.4)

for some fixed ε > 0. Then

‖P(ξn ∈ ·)− P̄(ξn ∈ ·)‖ ≤ 2(1− ε)n, n ≥ 0. (3.5)

If the mixing condition (2.6) is satisfied, (3.2) implies

ΛY
m|n(u,A) ≥ λ∗

λ∗

∫
A

g(x, Ym)Qm(x)ϕ(dx)∫
S g(v, Ym)Qm(v)ϕ(dv)

=:
λ∗
λ∗

µn(A),

and, similarly, ΛY
m|n(u,A) ≤ (λ∗/λ∗)µn(A) for any A ∈ B(S). Thus (3.4) holds

with ε := λ∗/λ∗ and (3.3) recovers the statement of Theorem 2.1 (even without the
assumption ν ¿ ν̄, as long as π̄n is well defined).

Proposition 3.1 can be verified, e.g., by constructing an appropriate coupling
using Nummelin’s splitting technique ([26]). In the filtering context under consid-
eration, this coupling method can be pushed further to get finer results which go
beyond signals with compact state space (see [18]). In particular, the filter can
be shown to be stable for linear models which are driven by noises with unimodal
probability densities (see Section 5.2 [18]). However, the essential limitation of this
approach stems from the time inhomogeneity of the conditioned signal. Unfortu-
nately, the ergodic theory of inhomogeneous Markov processes is not as rich as in
the homogeneous case (however, this drawback can be mitigated by conditioning
on the infinite time horizon as in the following section).

The property (3.1) remains valid when the time parameter is continuous and,
with some caution, the conditioned signal measure can be explicitly constructed.
For example, for finite state signals, the conditioned measure corresponds to a
finite state Markov chain with time-varying rates which depend on the observation
trajectory. Consequently, the bound (2.17) can be derived via coupling of the
conditioned chain (see Section 2.3.2 in [35]).

Another variation on the same theme, which combines both the formula (1.8) and
the conditioned signal representation, is to look at the conditioned signal backwards
in time, i.e., to consider the process X̃m := Xn−m, m = 0, . . . , n. Note that as Xn

is a Markov process, X̃m is also Markov. Now suppose that for every x ∈ S,
we can construct a stochastic process X̃n(x) on the same probability space such
that the law of (X̃m(x))m≤n under ĒY

n coincides with the law of (X̃m)m≤n under
ĒY

n ( · |X̃0 = x). This point of view is particularly fruitful when the signal process
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is obtained from a stochastic differential equation, so that X̃m(x) can be obtained
from the stochastic flow generated by this equation. In this setting

Ē
(dν

dν̄
(X0)

∣∣∣FY
0,n, Xn = x

)
= ĒY

n

(dν

dν̄

(
X̃n

)∣∣∣X̃0 = x
)

= ĒY
n

{
dν

dν̄

(
X̃n(x)

)}
,

In these terms (1.8) reads:

‖πn − π̄n‖ =

∫
S

∣∣∣ĒY
n

{
dν
dν̄

(
X̃n(y)

)}− ∫
S Ē

Y
n

{
dν
dν̄

(
X̃n(x)

)}
π̄n(dx)

∣∣∣ π̄n(dy)
∫
S ĒY

n

{
dν
dν̄

(
X̃n(x)

)}
π̄n(dx)

≤
∫
S
∫
S Ē

Y
n

∣∣∣dν
dν̄

(
X̃n(y)

)− dν
dν̄

(
X̃n(x)

)∣∣∣ π̄n(dy) π̄n(dx)
∫
S ĒY

n

{
dν
dν̄

(
X̃n(x)

)}
π̄n(dx)

.

If S = Rq and one assumes that dν
dν̄ (x) is a Lipschitz function which is bounded

away from zero by ε > 0, then the latter implies

‖πn − π̄n‖ ≤ 1
ε

∥∥∥dν

dν̄

∥∥∥
Lip

∫∫

S×S
ĒY

n

∣∣X̃n(y)− X̃n(x)
∣∣ π̄n(dy) π̄n(dx).

This translates the filter stability problem to the contraction analysis of the sto-
chastic flow generated by the backward conditioned signal.

For example, for the particular type of continuous time models studied by W.
Stannat in the papers [30, 31], one can verify the bounds (see Chapter 4, [35]):

ĒY
t |X̃t(y)− X̃t(x)| ≤ e−κt|x− y|,

with a constant κ > 0, expressed explicitly in terms of the model ingredients, and∫∫

S×S
|x− y| π̄t(dy) π̄t(dx) ≤ const.

This proves the uniform exponential stability of the filter with the rate κ > 0,
thus establishing by probabilistic techniques the stability results obtained by W.
Stannat using PDE techniques [30, 31]. It should be stressed that this is one of
the few cases where time uniform exponential pathwise filter stability is known for
(possibly non-ergodic) signals on noncompact domains.

3.2. Infinite horizon conditioning. The relation (3.1) still holds if conditioning
on the observations is done on the infinite horizon, namely:

P
(
Xm ∈ A

∣∣FX
0,m−1 ∨ FY

0,∞
)

= P
(
Xm ∈ A

∣∣σ{Xm−1} ∨ FY
0,∞

)
P-a.s. (3.6)

This means that the measure PY
∞, induced on the signal path space by conditioning

on FY
0,∞

PY
∞(Γ) := P(X ∈ Γ|FY

0,∞), Γ ∈ B(S∞)
is Markov, i.e.

PY
∞(Xm ∈ A|FX

0,m−1) = PY
∞(Xm ∈ A|σ{Xm−1}) PY

∞-a.s.

As before we refer the coordinate process on S∞ under PY
∞ as conditioned signal.

Though the transition probability in this case can no longer be expressed in a con-
venient closed form such as (3.2), an advantage of such infinite horizon conditioning
is that a single conditioned signal process is obtained, rather than a family of pro-
cesses whose transition law changes when the horizon increases. More importantly,
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if the signal process is stationary then a form of stationarity (in the sense of Markov
chains in random environments) is inherited by the conditioned signal on the infi-
nite time horizon, which is not the case if one conditions on a finite time horizon.
This stationarity property brings into relevance the ergodic theory of Markov chains
in random environments, which bears much resemblance to the homogeneous case
but is not applicable to general time inhomogeneous Markov chains (see [36]).

Unlike in the previous subsection, the filtering distributions πn and π̄n cannot be
obtained as marginals of the conditional measure PY

∞, and we must therefore make
a different connection with the filter stability problem. Somewhat surprisingly, the
mysterious relation (1.11) can be restated in terms of the conditioned process, so
that we can attempt to establish stability of the filter directly through (1.9). The
connection with (1.11) is established using the following general fact (see Lemma
4.II.1 in [37]). Let G1 and G2 be sub σ-algebras of F and let PG1(·) be a regular
version of the conditional probability given G1. If G2 is countably generated, then

P(·|G1 ∨ G2) = PG1(·|G2) P-a.s. (3.7)

Since Xn takes values in a Polish space, FX
n,∞ is countably generated. In the context

of the filtering problem (3.7), this means that for any A ∈ B(S∞)

P̄(A|FY
0,∞ ∨ FX

n,∞) = P̄Y
∞(A|FX

n,∞) P̄-a.s.

Applying the martingale convergence theorem twice, we obtain

P̄
(
A

∣∣⋂
n≥0FY

0,∞ ∨ FX
n,∞

)
= lim

n→∞
P̄(A|FY

0,∞ ∨ FX
n,∞) =

= lim
n→∞

P̄Y
∞(A|FX

n,∞) = P̄Y
∞(A|⋂n≥0FX

n,∞) P̄-a.s. (3.8)

One might be tempted to conclude from (3.7) that

P̄(A|FY
0,∞ ∨⋂

n≥0FX
n,∞) ?= P̄Y

∞(A|⋂n≥0FX
n,∞),

so that (1.11) would follow from (3.8). However, it is well known that the tail
σ-algebra

⋂
n≥0 FX

n,∞ is not countably generated, so this argument is not correct.4

Nonetheless this general approach can be rescued due to the following observa-
tion: it already suffices to show that the tail σ-algebra

⋂
n≥0 FX

n,∞ is P̄Y
∞-trivial for

P̄-a.e. observation path. Indeed, in this case

P̄Y
∞(A|⋂n≥0FX

n,∞) = P̄Y
∞(A) = P̄(A|FY

0,∞) P̄-a.s.,

so that we can conclude directly from (3.8) and (1.9) that the filter is stable.
Of course, the problem remains to establish that

⋂
n≥0 FX

n,∞ is indeed P̄Y
∞-trivial.

This can be done in the framework of ergodic theory of Markov chains in random
environments, which leads to the following result.

Theorem 3.2 (Corollary 5.5, [36]). Suppose that the observation density g(x, y) in
(1.3) is strictly positive and that the signal is positive Harris recurrent and aperiodic.
Then (1.5) holds for every ν, ν̄.

Note that the nondegeneracy assumption rules out the problem in Example 1.1.

4The countable generation requirement can be weakened somewhat, see Lemma 4.II.1 in [37];
in general, however, verifying the weaker requirement appears to be a very hard problem.
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Remark 3.3. It is tempting to assume that the triviality of
⋂

n≥0 FX
n,∞ P̄-a.s. already

implies its triviality P̄Y
∞-a.s. regardless of any other ingredients of the model (e.g.,

the observation structure). After all, it is elementary that P̄(A) = 0 or P̄(A) = 1 im-
plies P̄(A|FY

0,∞) = P̄(A) P̄-a.s. However, as
⋂

n≥0 FX
n,∞ is not countably generated,

it may be impossible to choose a regular conditional probability P̄Y
∞(·) such that

P̄Y
∞(A) = P̄(A) for all A ∈ ⋂

n≥0 FX
n,∞ simultaneously on a set of full P̄-probability

(i.e., as the number of sets A is uncountable one may not be able to eliminate the
dependence of the P̄-null sets {ω : P̄(A|FY

0,∞)(ω) 6= P̄(A)} on A). Example 1.1
shows that this is a real problem in models which are by no means pathological.

4. Observability

In the previous sections, the stability of the filter was essentially inherited from
the ergodic properties of the signal. On the other hand, it is evident that the
observations may also have a stabilizing effect on the filter: a trivial example is the
case where Yn = Xn, so that πn = π̄n, n ≥ 1 for any ν, ν̄ regardless of the properties
of the signal. The aim of this section is to outline two approaches which provide a
link between the quality of the observations and the stability of the filter.

4.1. An information theoretic bound. The first result of this kind appeared in
[13] and is based on the connection with the information theoretic notion of rela-
tive entropy. Recall the definition of the relative entropy between two probability
measures P and Q:

D
(
P ||Q)

=





∫
log

dP
dQ

dP, P¿ Q,

∞, P 6¿ Q.

The relative entropy is a pseudo-distance in the sense that it is nonnegative and
vanishes if and only if the measures are identical. Note that as

dP|G
dQ|G

= EQ
(

dP
dQ

∣∣∣∣G
)

,

where P|G and Q|G stand for the restrictions of P and Q to the σ-algebra G, it
follows easily from Jensen’s inequality that

D
(
P|G ||Q|G

) ≤ D
(
P ||Q)

. (4.1)

To develop the result of [13], we work in the following continuous time setting.
Suppose that X = (Xt)t∈R+ is a Markov process and

Yt =
∫ t

0

h(Xs) ds + Bt, (4.2)

where B is a p-dimensional Brownian motion independent of X and h : S→ Rp is
a function such that

E

(∫ T

0

|h(Xs)|2ds

)
< ∞, Ē

(∫ T

0

|h(Xs)|2ds

)
< ∞ ∀T > 0.

Classical filtering theory tells us (see [24]) that dYt = πt(h) dt + dVt, where Vt is
the innovation Brownian motion under P. Similarly dYt = π̄t(h) dt + dV̄t, where V̄t
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is the innovation Brownian motion under P̄. Hence, the Girsanov theorem shows
that the laws of Y under P and P̄ are equivalent with

dP|FY
0,t

dP̄|FY
0,t

= exp
{∫ t

0

(
πs(h)− π̄s(h)

) · dYs − 1
2

∫ t

0

(|πs(h)|2 − |π̄s(h)|2)ds

}

= exp
{∫ t

0

(
πs(h)− π̄s(h)

) · dVs +
1
2

∫ t

0

|πs(h)− π̄s(h)|2ds

}
,

and thus

D
(
P|FY

0,t
|| P̄|FY

0,t

)
=

1
2
E

(∫ t

0

|πs(h)− π̄s(h)|2ds

)
.

Since dP
dP̄ = dν

dν̄ (X0), the inequality (4.1) gives

Theorem 4.1 (Theorem 3.1, [13]). Suppose that D(ν||ν̄) < ∞. Then

1
2
E

(∫ ∞

0

|πt(h)− π̄t(h)|2 ds

)
≤ D(ν||ν̄) < ∞. (4.3)

Remark 4.2. There is in fact a deeper connection between the relative entropy and
the filter stability problem in the general setting, which is developed in [13] also.
Let us briefly sketch an alternative proof of this result. It is easily established using
(1.7) and the Markov property of (X,Y ) that

D(πn||π̄n) = E
(

log Ē
(dν

dν̄
(X0)

∣∣∣FY
0,∞ ∨ FX

n,∞
)∣∣∣∣FY

0,n

)
− log Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n

)
.

Applying Jensen’s inequality and the Bayes formula to this expression, it is not
difficult to establish explicitly that

E
(
D(πn||π̄n)

∣∣FY
0,m

) ≤ D(πm||π̄m) P-a.s. for all m ≤ n,

i.e., D(πn||π̄n) is an FY
0,n-supermartingale under P. Thus the relative entropy is a

type of ‘Lyapunov function’ for the filter stability problem, and in particular the
quantity E[D(πn||π̄n)] is nonincreasing. Unfortunately, showing that the relative
entropy actually decreases to zero as n → ∞ appears to be not much easier than
verifying filter stability in the total variation distance (see, e.g., Theorem 4.2 in
[29]).

4.2. Observability. The information theoretic bound in theorem 4.1 establishes
that the filtered estimate of the observation function h is stable in a weak sense
virtually without any assumptions on the signal: in particular, neither compactness
of the signal state space nor ergodicity of the signal was assumed! Note, however,
that (4.3) does not guarantee the convergence of ‖πt−π̄t‖, and this may in fact very
well fail. This raises an interesting possibility: perhaps there are other functions
f for which |πt(f) − π̄t(f)| converges to zero as t → ∞ regardless of whether the
filter is stable? It turns out that this question has a nice affirmative answer which
naturally leads to the notion of observability for nonlinear filtering models.

The basic idea is particularly transparent in discrete time for a model whose
observations are defined in a slightly different manner from (1.3): we assume that
Yn is a noisy observation of Xn−1, rather than of Xn. In other words, the signal
is observed with one time step delay. To be precise, Y still forms a sequence of
independent random variables when conditioned on X, where (cf. (1.3))

P(Yn ∈ A|FX
0,∞) =

∫

A

g(Xn−1, y)ψ(dy). (4.4)



INTRINSIC METHODS IN FILTER STABILITY 17

The filtering equation in this case is the recursion (cf. (1.4))

πn(dx) =

∫
S Λ(u, dx) g(u, Yn)πn−1(du)∫

S g(u, Yn) πn−1(du)
, n ≥ 1, (4.5)

whose solution is denoted by πn when the equation is initialized by ν and by π̄n

when it is started from ν̄.

Remark 4.3. Though the following results are more naturally formulated in the
modified setting (4.4), some additional work allows one to consider the setting of
(1.3) as well; see, e.g., [34]. Moreover, as will be discussed briefly below, these ideas
can also be developed in the continuous time setting where the difference between
(4.4) and (1.3) disappears. For simplicity, however, we will operate in modified
setting (4.4) throughout the remainder of this section.

To develop stability results in this setting, we first make a brief detour. Instead
of considering the filters πn and π̄n, let us turn our attention for the moment to
the one step predictors of the observation process:

ηn|n−1(f) := E
(
f(Yn)|FY

0,n−1

)
=

∫

Rp

∫

S
f(y) g(u, y) πn−1(du)ψ(dy),

η̄n|n−1(f) := Ē
(
f(Yn)|FY

0,n−1

)
=

∫

Rp

∫

S
f(y) g(u, y) π̄n−1(du)ψ(dy).

It turns out that these predictors are always stable in the following sense.

Proposition 4.4 (Theorem 2.1, [9]). If ν ¿ ν̄, then for any bounded function f

lim
n→∞

E|ηn|n−1(f)− η̄n|n−1(f)| = 0. (4.6)

The proof uses the ideas similar to those presented in the Introduction. By the
Bayes formula

ηn|n−1(f) = E
(
f(Yn)

∣∣FY
0,n−1

)
=
Ē

(
dν
dν̄ (X0)f(Yn)

∣∣FY
0,n−1

)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n−1

) P-a.s.

and hence under P

ηn|n−1(f)− η̄n|n−1(f) =

Ē
(

dν
dν̄ (X0)f(Yn)

∣∣FY
0,n−1

)− Ē (
f(Yn)

∣∣FY
0,n−1

)
Ē

(
dν
dν̄ (X0)

∣∣FY
0,n−1

)

Ē
(

dν
dν̄ (X0)

∣∣FY
0,n−1

) .

Simple manipulations with conditional expectations give

E|ηn|n−1(f)− η̄n|n−1(f)| = Ē
[
Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n−1

)
|ηn|n−1(f)− η̄n|n−1(f)|

]
=

Ē
[
Ē

(dν

dν̄
(X0)f(Yn)

∣∣∣FY
0,n−1

)
− Ē (

f(Yn)
∣∣FY

0,n−1

)
Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n−1

)]
=

Ē
({
Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n

)
− Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n−1

)}
f(Yn)

)
.

But as f is bounded (by a constant C, say), we find that

E|ηn|n−1(f)− η̄n|n−1(f)| ≤ C Ē
∣∣∣∣Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n

)
− Ē

(dν

dν̄
(X0)

∣∣∣FY
0,n−1

)∣∣∣∣ ,

which converges to zero as n →∞ by the martingale convergence theorem.
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Proposition 4.4 shows that the one step predictive estimates of the observation
process are stable, but we are ultimately interested in the stability of the filter. To
make the connection with the latter problem, let us now consider (in analogy with
(4.2)) the additive noise observation scenario, i.e., we assume that

Yn = h(Xn−1) + ξn, n ≥ 1,

where ξ = (ξn)n≥1 is an i.i.d. sequence of Rp-valued random variables independent
of X and h : S → Rp is a given observation function. In this case Proposition 4.4
can be used to prove the following result:

Theorem 4.5 (Variant of Proposition 3.3, [9]). Suppose that
(a1) h is bounded.
(a2) |Eeik·ξ| > 0 for all k ∈ Rp.

Then for any continuous function f and ν ¿ ν̄

lim
n→∞

E|πn(f ◦ h)− π̄n(f ◦ h)| = 0. (4.7)

Indeed, in this case

ηn|n−1

(
eik·) = E

(
eik·Yn |FY

0,n−1

)
= πn−1

(
eik·h(·))Eeik·ξ1 ,

η̄n|n−1

(
eik·) = Ē

(
eik·Yn |FY

0,n−1

)
= π̄n−1

(
eik·h(·))Eeik·ξ1 ,

and as ν ¿ ν̄, we obtain by Proposition 4.4 and assumption (a2)

E
∣∣∣πn−1

(
eik·h(·))− π̄n−1

(
eik·h(·))∣∣∣ =

E
∣∣ηn|n−1

(
eik·)− η̄n|n−1

(
eik·)∣∣

|Eeik·ξ1 |
n→∞−−−−→ 0.

We therefore find that for any finite order trigonometric polynomial T

lim
n→∞

E|πn(T ◦ h)− π̄n(T ◦ h)| = 0. (4.8)

Now note that as a consequence of the Weierstrass approximation theorem, any
continuous function can be approximated uniformly on compact sets by trigono-
metric polynomials. As h is bounded it takes values in a compact set. Therefore,
given a continuous function f , there is a sequence of trigonometric polynomials T`

such that ‖f ◦ h− T` ◦ h‖∞ ≤ `−1. But then

E|πn(f ◦ h)− π̄n(f ◦ h)| ≤ E|πn(T` ◦ h)− π̄n(T` ◦ h)|+ 2`−1

for all n, so lim supn→∞ E|πn(f ◦ h) − π̄n(f ◦ h)| ≤ 2`−1. But ` was arbitrary, so
letting ` →∞ completes the proof.

It follows immediately from Theorem 4.5 that the stability of πn(h)

lim
n→∞

E|πn(h)− π̄n(h)| = 0 (4.9)

is recovered by choosing f(x) = x. This resembles the result (4.3). Moreover,
as in the case of Theorem 4.1, ergodicity of the signal process is not assumed.
However, there are essential differences between the two results. On the one hand,
(4.3) places minimal assumptions on the observations, whereas (4.9) relies on the
restrictive assumption that the observation function h is bounded. On the other
hand, (4.3) only provides stability of the observation function h itself, while (4.7)
provides stability also for functions of h. The latter class of functions can be quite
large: for example, when h is invertible as in the following corollary, we can even
conclude stability of the filter in a weak (as opposed to total variation) sense.
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Corollary 4.6. Let S ⊂ Rp and let h : S → Rp be bounded. Suppose there is a
continuous function h−1 : Rp → Rp such that h−1(h(x)) = x for all x ∈ S. Then

lim
n→∞

E|πn(g)− π̄n(g)| = 0

for every continuous function g and ν ¿ ν̄, provided |Eeik·ξ| > 0 for all k ∈ Rp.

The proof is immediate from Theorem 4.5.

Remark 4.7. The assumptions of the previous corollary require that S is a bounded
subset of Rp; indeed, as h(S) is bounded and h−1 is continuous, S = h−1(h(S))
must be bounded. The result is therefore the most natural when S is compact,
in which case the boundedness of h is not restrictive. When S is not compact, it
may still be the case that the signal is outside a compact set with uniformly small
probability, i.e., that the sequence (Xk)k≥0 is tight or uniformly integrable. In this
case, it is straightforward to localize the proof by truncating to a compact set, see
[9], and one can relax the boundedness of h. Though this is perhaps not surprising,
it should be noted that localization is often not so straightfoward in other methods.
For example, we showed that the assumption of Theorem 2.1 is most natural when
S is compact; however, the localization of that result is highly nontrivial [20].

When h is not invertible, Theorem 4.5 yields only ‘partial’ stability, i.e., stability
of the estimates of particular functions. However, with a little more work we can
establish the stability of a much larger class of functions than we have investigated
so far, which opens the possibility of proving stability of the filter (in the spirit of
the previous corollary) even when h is not invertible. To this end, let us begin by
noting that the arguments for (4.6) apply to predictors of a more general form (for
an even more general statement, see the classic paper [4]):

Proposition 4.8. For an integer m ≥ 1, let f1, . . . , fm be continuous bounded
functions and k1, . . . , km distinct positive integers. Then if ν ¿ ν̄

lim
n→∞

E
∣∣E(

f1(Yn+k1) · · fm(Yn+km)
∣∣FY

0,n

)− Ē(
f1(Yn+k1) · · fm(Yn+km)

∣∣FY
0,n

)∣∣ = 0.

(4.10)

Now note that by time homogeneity and the Markov property of (X, Y )

E
(
f1(Yn+k1) · · · fm(Yn+km)

∣∣FY
0,n

)
= πn(f)

with
f(x) := E

(
f1(Yk1) · · · fm(Ykm)

∣∣X0 = x
)
, (4.11)

and thus (4.10) states that the filtered estimates of such f are always stable. As the
number of times m and the functions f1, . . . , fm are arbitrary, this suggests that
the class of functions with stable estimates can be quite large. We are interested
in characterizing this class of functions in terms of the filtering model.

Such a characterization is indeed possible and can be formulated in terms of ob-
servability ([32]). Consider the following equivalence relation for probability mea-
sures on S: we say that two probability measures ν1, ν2 are equivalent ν1 v ν2 if
they induce the same law of the observation process, i.e.,

ν1 v ν2 iff Pν1 |FY
0,∞

= Pν2 |FY
0,∞

,

where Pν1 and Pν2 denote the law of (X, Y ) when X0 ∼ ν1 and X0 ∼ ν2, re-
spectively. As probability measures on B((Rp)∞) are determined by their finite
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dimensional distributions, ν1 v ν2 if and only if for any m ≥ 1, any bounded and
continuous functions f1, . . . , fm and time indices k1, . . . , km∫

S
E

(
f1(Yk1) · ·fm(Ykm

)
∣∣X0 = x

)
ν1(dx) =

∫

S
E

(
f1(Yk1) · ·fm(Ykm

)
∣∣X0 = x

)
ν2(dx).

In other words, ν1 v ν2 whenever the signed measure ν1 − ν2 is orthogonal to the
linear subspace Oo spanned by the functions of the form (4.11).

Let us now suppose that the Markov process (X, Y ) is Feller, so that all functions
of the form (4.11) are continuous. Moreover, let us suppose that the signal state
space S is compact. Then an elementary functional analytic argument (Proposition
3.3, [32]) shows that Oo ⊆ Cb(S) is dense in the subspace

O =
{

f ∈ Cb(S) :
∫

f dν1 =
∫

f dν2 whenever ν1 v ν2

}

in the topology of uniform convergence (Cb(S) is the space of bounded continuous
functions on S). In other words, for any f ∈ O there is a sequence of functions fn of
the form (4.11) such that fn → f uniformly (this argument replaces the application
of the Weierstrass theorem in the proof of Theorem 4.5). Since the filtered estimates
of functions of the form (4.11) are stable, we obtain

Theorem 4.9 (Variant of Theorem 4.4, [32]). Assume that S is compact, (X, Y )
is Feller, and ν ¿ ν̄. Then for any f ∈ O

lim
n→∞

E|πn(f)− π̄n(f)| = 0. (4.12)

By definition, the space O consists of those functions whose expectation is
uniquely determined by the law of the observations. In this sense it is natural to
call O the observable space of the filtering model and f ∈ O observable functions.
If O = Cb(S), the model is referred to as (fully) observable, and

Corollary 4.10. Assume that S is compact and (X,Y ) is Feller. Then the model
is (fully) observable if and only if ν1 v ν2 implies ν1 = ν2, i.e., if the law of the
observations uniquely determines the initial law of the signal. When this is the case

lim
n→∞

E|πn(f)− π̄n(f)| = 0 for all f ∈ Cb, ν ¿ ν̄.

This is a generalization of Corollary 4.6 in the present setting. Note that ob-
servability does not require h to be invertible; on the other hand, it is not difficult
to establish that a sufficient condition for observability is that h is invertible and
|Eeik·ξ| > 0 for all k ∈ Rp, reproducing essentially the result of Corollary 4.6.

Example 4.11. Let X be a Markov chain on S = {1, 2, 3, 4} with transition matrix

Λ =




1/2 + ε 1/2− ε 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2


 ,

where 0 < ε ≤ 1/2, and let Yn = 1{Xn−1∈{1,3}}, n ≥ 1. This differs from the model
of Example 1.1 in that we have perturbed one of the transition probabilities, and
that we have introduced one time step delay in the observation model in keeping
with the setting of this section. It is easily verified, however, that when ε = 0 the
corresponding filter is unstable exactly as in Example 1.1. In contrast, we now
show that when ε 6= 0 the model is observable and hence the filter is stable.
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To prove observability, note that for k ≥ 1


E(Yk|X0 = 1)
E(Yk|X0 = 2)
E(Yk|X0 = 3)
E(Yk|X0 = 4)


 = Λk−1




1
0
1
0


 := fk.

Computing explicitly, we find that

f1 =




1
0
1
0


 , f2 =

1
2




2ε + 1
1
1
1


 , f3 =

1
2




2ε2 + ε + 1
1
1

ε + 1


 .

But the vectors f1, f2, f3 and f0 = (1 1 1 1)> span R4, provided ε 6= 0. Therefore
every function f : S → R can be written as a function of the form f(x) = E(α0 +
α1Y1 + α2Y2 + α3Y3|X0 = x) for some α0, . . . , α3 ∈ R, so that observability, and
consequently stability of the filter, follow.

The same theory works out in continuous time, where the nuance of the obser-
vation delay disappears ((4.4) vs. (1.3)). For the additive white noise model of
Theorem 4.1, one can show that ν1 v ν2 if and only if (h(Xt))t≥0 has the same
law under Pν1 and Pν2 (see Proposition 5.2 in [32]). Therefore, if ν1 v ν2, then in
particular Eν1(f(h(X0))) = Eν2(f(h(X0))) for every measurable function f so that

ν1 v ν2 =⇒
∫

S
f ◦ h dν1 =

∫

S
f ◦ h dν2.

Thus evidently f ◦ h ∈ O for any f such that f ◦ h ∈ Cb(S) (Lemma 5.6, [32]). The
continuous time counterparts of Theorem 4.5 and of Corollary 4.6 follow directly.

In the general case where h is not invertible, characterizing the observable space
O in terms of the model ingredients remains a nontrivial task. However, in the
special case of finite state space signals this can be done explicitly (Section 6, [32]).
Consider the model from subsection 2.1 and let H = h(S) := {h1, ..., hr}, r ≤ d
be the set of the distinct observations values. Define d× d diagonal matrices Hhk

,
k = 1, ..., r such that Hhk

(i, j) = 1 whenever i = j and h(ai) = hk and such that
the remaining entries are zero. Then again identifying functions on S with vectors
in Rd, writing 1 for the d× 1 vector with unit entries and, as before, denoting the
transition matrix of the chain by Λ, one can easily prove the following result along
the same lines as the computation in Example 4.11.

Proposition 4.12 (Lemma 6.4 in [32]).

O = span {Hn0ΛHn1Λ · · ·ΛHnm1 : m ≥ 0, ni ∈ H} .

In particular, if dim(O) = d, the filter is stable in the sense of (1.5).
In this finite state setting, one can in fact go one step further and give the

complete characterization of filter stability. For this purpose the following notion
of detectability is introduced: the model is called detectable if limt→∞ eΛ>tµ = 0
whenever µ ⊥ O (thus every observable model is detectable, but not vice versa).
Let us note that detectability, like observability, can be verified algebraically in
terms of the model parameters Λ and h.

Theorem 4.13 (Theorem 6.12 in [32]). Assume that the observations are nonde-
generate σ > 0. Then the Shiryaev-Wonham filter (2.14) is stable in the sense of
(1.5) whenever ν ¿ ν̄ if and only if the model is detectable.
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The proof of this result is obtained by combining Theorem 2.5 and the contin-
uous time counterpart of Theorem 4.9. This suggests that at least in the finite
state setting, the two main structural assumptions that we have imposed in this
article—ergodicity of the signal process and observability—are indeed the funda-
mental mechanisms that conspire to give stability of the filter.

4.3. Uniform observability. A drawback of the observability results above is
that they rely on compactness of the state space (or uniform integrability of the
signal, as in Remark 4.7, which allows truncation to a compact set). This rules out
the interesting possibility that the filter may be stable even in models where the
signal itself is unstable (i.e., when the signal diverges to infinity), which is known
to hold, e.g., in the linear Gaussian case when the Kalman filter is observable [27].
It turns out the the approach of the previous section can be extended to cover also
the unstable case, though the analysis is more subtle in this setting.

The reason that compactness was required above is that both Theorem 4.5 and
Theorem 4.9 are proved by showing that a class of continuous functions, obtained
from the predictor, is dense in the uniform topology. Uniform approximation of
continuous functions is a natural problem for functions on a compact state space,
and can be tackled using elementary functional analytic arguments. However, when
the state space is not compact one obtains approximation uniformly on compact
sets, which is insufficient for our purposes when the signal is unstable. Nonetheless
a more refined argument, using a uniform approximation property of convolution
operators, allows one to resolve this problem in the case of additive observations
[33, 34]. This gives, for example, the following counterpart of Corollary 4.6. Here

‖ν1 − ν2‖BL := sup
f∈BL

∣∣∣∣
∫

f dν1 −
∫

f dν2

∣∣∣∣ ,

where BL denotes the class of functions f such that ‖f‖∞ ≤ 1 and |f(x)− f(z)| ≤
d(x, z) for all x, z (the unit ball in the space of bounded Lipschitz functions).

Proposition 4.14 (Proposition 3.11 in [33]). Suppose that Yn = h(Xn−1)+ξn with
(a1) h : S→ Rp is invertible.
(a2) h−1 is uniformly continuous.
(a3) |Eeik·ξ| > 0 for all k ∈ Rp.

Then
lim

n→∞
E‖πn − π̄n‖BL = 0

whenever ν ¿ ν̄.

A remarkable property of this result is that only assumptions on the observation
structure are made, while the signal transition kernel can be completely arbitrary.
This is opposite in spirit to the conditions given in section 2: there it was shown that
the filter is stable regardless of the observation structure if the signal is sufficiently
mixing, while we see here that the filter is stable regardless of the signal structure
of the observations are sufficiently informative.

A noncompact counterpart to Corollary 4.10 can be obtained if the notion of
observability is replaced by the stronger notion of uniform observability. Recall
that the filtering model is called observable if

Pν1 |FY
0,∞

= Pν2 |FY
0,∞

implies ν1 = ν2.
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Uniform observability is, in a sense, a quantitative counterpart of observability: the
model is said to be uniformly observable if for every ε > 0, there exists a δ > 0
(which depends only on ε) such that

‖Pν1 |FY
0,∞

− Pν2 |FY
0,∞
‖ < δ implies ‖ν1 − ν2‖BL < ε.

Using this definition, one obtains the following counterpart of Corollary 4.10.

Theorem 4.15 (Variant of Theorem 3.3, [33]). Suppose that the filtering model is
uniformly observable. Then

lim
n→∞

E‖πn − π̄n‖BL = 0 for all ν ¿ ν̄.

It can be shown that a known result about the stability of the Kalman filter is
a special case of this general result, while in the compact case it turns out that
observability and uniform observability are equivalent [33]. In general, however,
uniform observability remains difficult to verify for specific filtering models.

Finally, we remark that the results in this section do not provide rates of con-
vergence, while many filter stability results give rise to exponential rates. The key
to the stability proofs in this section is the martingale convergence theorem, which
does not guarantee a rate of convergence. As the following example shows, expo-
nential stability cannot always be expected to hold without further assumptions.

Example 4.16. For real-valued signal and observations, consider the model Yn =
Xn−1 + ξn, where ξn are i.i.d. N(0, 1) and Xn = X0 for all n. Let ν = N(α, σ2)
and ν̄ = N(β, σ2) for some α, β, σ ∈ R (so ν ¿ ν̄). Linear filtering theory shows
that πn is a random Gaussian measure with mean Zn and variance Vn given by

Zn =
α

1 + σ2n
+

σ2n

1 + σ2n
· 1
n

n∑

`=1

Y`, Vn =
σ2

1 + σ2n
,

and similarly for π̄n, Z̄n, V̄n where α is replaced by β. Evidently the conditional
mean of the filter is stable with rate Ω(n−1), which is not exponential. (The con-
ditional mean is an unbounded function of the signal; however, it is not difficult to
show that E‖πn − π̄n‖BL = Ω(n−1) also, see Remark 2.8 in [34].)

5. Necessary conditions for stability

Almost all the above results (the exception being the approach of section 3.1)
appeal directly to the absolute continuity assumption (A), either through (1.9)
or through Proposition 4.4. Indeed, in a sense this assumption lies at the heart
of the ‘intrinsic’ approach to filter stability, as it allows to relate the conditional
expectations (1.1) for different initial measures ν, ν̄ using the Bayes formula.

Assumption (A) was introduced without fanfare in the Introduction. However,
the assumption is not as innocent as it may seem: for example, it implies that
ν̄ has an atom at every point ν does, i.e., a suitable choice of ν̄ requires some
information about the possibly unknown true distribution ν. Moreover, many filter
stability results obtained by other methods hold for arbitrary ν, ν̄. One might
therefore wonder whether the assumption (A) is a restriction of the intrinsic method,
or whether it has a deeper relevance. In this section, we will outline how the
assumption (A) can be weakened in the context of the intrinsic approach, and we
will show that the weakened assumption is in fact a necessary condition for stability
in the total variation distance. This indicates that some form of absolute continuity
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is a fundamental ingredient of the filter stability problem. Though this discussion is
not of direct practical interest, it sheds some light on the (often hidden) assumptions
that are common to all methods of proving filter stability.

5.1. Well posedness. The first question one needs to confront in weakening as-
sumption (A) is whether the recursion (1.4) is even well posed. The problem,
which was glossed over in the Introduction, is that the denominator in (1.4) may
be zero for some observation sequences. This is typically resolved by noting that
the denominator of (1.4) is nonzero for P-a.e. observation sequence (this holds by
construction as the recursion (1.4) is obtained from the Bayes formula; see, e.g.,
Remark 3.1.5 in [7]). However, this need no longer hold if the initial distribution ν
is replaced by ν̄, as the following example shows.

Example 5.1. Consider the signal Xn on S = {2, 1,−1} with the transition matrix

Λ =




1/2 1/2 0
0 0 1

1/2 0 1/2


 ,

and initial distribution ν({1}) = 1. Suppose that the observation sequence is

Yn = XnUn,

where U = (Un)n≥1 are i.i.d. random variables with uniform distribution over [0, 1].
If the filter is started with ν̄({2}) = 1, the formula (1.4) yields

π̄1({2}) =
1
21{Y1∈[0,2]}

1
21{Y1∈[0,2]} + 1{Y1∈[0,1]}

π̄1({1}) =
1{Y1∈[0,1]}

1
21{Y1∈[0,2]} + 1{Y1∈[0,1]}

π̄1({−1}) = 0.

But Y1 = X1U1 = −U1 < 0 a.s. and hence the right hand side is ill-posed (0/0).

When is the filtering recursion P-a.s. well posed? We can give a general answer to
this question. Note that, by definition, the conditional probability P(Xn ∈ ·|FY

0,n)
is defined uniquely up to P|FY

0,n
-a.s. equivalence. Therefore πn is well defined for

P|FY
0,n

-a.e. observation path, while π̄n is well defined for P̄|FY
0,n

-a.e. observation path.
In order for π̄n, n ≥ 0 to be well defined for P-a.e. observation path, we must require

P|FY
0,n
¿ P̄|FY

0,n
, n ≥ 0. (B)

This is obviously satisfied under assumption (A), a fact that we have implicitly used
throughout the paper. However, assumption (A) is not necessary for the filtering
recursion to be well posed; for example, (B) holds regardless of the choice of ν̄ in
the nondegenerate case where g(x, y) > 0 for all x, y. Indeed, it is immediately
evident from (1.4) that the filtering recursion is always well posed in this case.

5.2. Absolute continuity. In the previous sections, we have proved various suffi-
cient conditions for filter stability under assumption (A). However, in most cases,
it is enough to impose the weaker assumption

P|FY
0,∞

¿ P̄|FY
0,∞

. (C)
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Let us briefly outline one way to do this. Suppose that we have proved that (1.5)
holds under assumption (A). Now suppose that ν, ν̄ are such that only (C) holds.
Defining ν̃ := (ν + ν̄)/2, we have ν ¿ ν̃ and ν̄ ¿ ν̃. Therefore, using (A), we have

lim
n→∞

E‖πn − π̃n‖ = lim
n→∞

Ē‖π̄n − π̃n‖ = 0,

where π̃n is defined in the obvious fashion. In particular, ‖π̄n − π̃n‖ → 0 in P̄-
probability. But then (C) implies that ‖π̄n − π̃n‖ → 0 in P-probability, and by
dominated convergence E‖π̄n − π̃n‖ → 0. Therefore

lim
n→∞

E‖πn − π̄n‖ ≤ lim
n→∞

E‖πn − π̃n‖+ lim
n→∞

E‖π̄n − π̃n‖ = 0

by the triangle inequality, and we find that indeed the result is automatically ex-
tended to the weaker setting of assumption (C). Similar considerations apply to
the weaker notions of convergence considered in section 4.

Assumption (C), however, is still stronger than the minimal assumption (B)
needed for the filtering recursion (and hence the filter stability problem) to be well
posed. As we will argue in the next section, assumption (C) cannot be weakened in
general any further if the filter is to be stable, at least if we are interested in proving
stability in the total variation distance. Indeed, we will prove that assumption (C)
is necessary for filter stability in total variation. Evidently absolute continuity on
the infinite time horizon is, in a sense, fundamental to the filter stability problem.
Though assumption (C) is not commonly stated in the literature on filter stability,
it is typically an implicit consequence of the model assumptions. This insight sheds
some light on the minimal requirements needed by any method for proving stability.
It also reassures us that little is lost by imposing the convenient assumption (A),
which was not entirely obvious at the outset.

Let us note that assumption (C) holds in the following special cases:
(c1) When ν ¿ ν̄ (assumption (A));
(c2) When g(x, y) > 0 for all x, y and P(Xn ∈ ·) ¿ P̄(Xn ∈ ·) for some n ≥ 0;
(c3) When g(x, y) > 0 for all x, y and ‖P(Xn ∈ ·)− P̄(Xn ∈ ·)‖ → 0 as n →∞.

The case (c1) is immediate from (1.6). The case (c2) is not difficult to prove, e.g., as
in the proof of Proposition 2.5 in [34]. This is the case, for example, when the signal
transition kernel has a strictly positive transition density, or in the linear Gaussian
filtering model the signal is controllable—a typical assumption in stability results
for the Kalman filter. The case (c3) is proved as Lemma 3.7 in [36]. This is typically
the case when the signal process is ergodic.

5.3. Necessity. We will finally argue that assumption (C) is necessary for filter
stability, at least in the sense of total variation.

Proposition 5.2. Suppose that assumption (B) holds, i.e., that the filter stability
problem is well posed, but that (C) does not hold. Then lim infn→∞ E‖πn−π̄n‖ > 0.

To prove the result, assume that (C) does not hold. Then there is set A ∈ FY
0,∞

such that P̄(A) = 0 and P(A) > 0. But note that P̄(A|FY
0,n) = 0 P̄-a.s., and by

assumption (B) we also have P̄(A|FY
0,n) = 0 P-a.s. In particular,

|P(A|FY
0,n)− P̄(A|FY

0,n)| = P(A|FY
0,n) n→∞−−−−→ IA P-a.s.

Using ‖µ− µ′‖ := 2 supB |µ(B)− µ′(B)|, we obtain

‖P((Yk)k>n ∈ ·|FY
0,n)− P̄((Yk)k>n ∈ ·|FY

0,n)‖ ≥ 2|P(A|FY
0,n)− P̄(A|FY

0,n)|,
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so using Fatou’s lemma

lim inf
n→∞

E‖P((Yk)k>n ∈ ·|FY
0,n)− P̄((Yk)k>n ∈ ·|FY

0,n)‖ ≥ 2P(A) > 0.

Finally, note that for any B ∈ FY
n+1,∞

P(B|FY
0,n) = πn(fB), P̄(B|FY

0,n) = π̄n(fB),

where fB(x) = P(B|Xn = x). Therefore

‖P((Yk)k>n ∈ ·|FY
0,n)− P̄((Yk)k>n ∈ ·|FY

0,n)‖ ≤ ‖πn − π̄n‖,
and the proof is easily completed.

Remark 5.3. The above proof applies only to stability in the total variation norm.
In general, it may be the case that (C) can be weakened if one is interested in weaker
notions of stability; this is related to the consistency problem in Bayesian statistics
[17]. Nonetheless, the necessity of (C) for total variation stability reassures us that
our absolute continuity assumptions are not particularly restrictive. In particular,
most of the literature to date has been concerned with total variation stability, and
we have shown that no approach to the filter stability problem can circumvent the
absolute continuity assumption (C) in this setting.
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Ch. in Laboratório Nacional de Computacão Cientifica, Petropolis, Brazil in Au-
gust 2006 upon the invitation of Prof. Jack Baczynski, whose hospitality is greatly
appreciated. The authors also thank a referee for several suggestions that have
helped improve the presentation.

References

[1] Atar, Rami; Zeitouni, Ofer Lyapunov exponents for finite state nonlinear filtering. SIAM J.
Control Optim. 35 (1997), no. 1, 36–55.

[2] Atar, Rami; Zeitouni, Ofer Exponential stability for nonlinear filtering. Ann. Inst. H. Poincare’
Probab. Statist. 33 (1997), no. 6, 697–725.

[3] Baxendale, Peter; Chigansky, Pavel; Liptser, Robert Asymptotic stability of the Wonham
filter: ergodic and nonergodic signals. SIAM J. Control Optim. 43 (2004), no. 2, 643–669

[4] Blackwell, D.; Dubins, L. Merging of opinions with increasing information. Ann. Math. Statist.
33 (1962), 882–886.

[5] Budhiraja, A.; Ocone, D. Exponential stability of discrete-time filters for bounded observation
noise. Systems Control Lett. 30 (1997), no. 4, 185–193

[6] Budhiraja, A.; Ocone, D. Exponential stability in discrete-time filtering for non-ergodic signals.
Stochastic Process. Appl. 82 (1999), no. 2, 245–257.
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