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Abstract

We study the welfare maximizing assignment of several heterogenous, commonly

ranked objects to impatient agents with privately known characteristics who arrive

sequentially according to a Poisson or renewal process. We focus on two cases: 1.

There is a deadline after which no more objects can be allocated; 2. The horizon

is potentially in�nite and there is time discounting. We �rst characterize all im-

plementable allocation schemes and show that the dynamically e¢ cient allocation

falls in this class. We then obtain several properties of the welfare maximizing pol-

icy using stochastic dominance measures of increased variability and majorization

arguments. These results yield upper/lower bounds on e¢ ciency for large classes

of distributions of agents�characteristics or of distributions of inter-arrival times

for which explicit solutions cannot be obtained in closed form. We also propose re-

distribution mechanisms that 1) implement e¢ cient allocation 2) satisfy individual

rationality 3) never run a budget de�cit 4) may run a budget surplus that vanishes

asymptotically.
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ment of Heterogeneous Objects: A Mechanism Design Approach". We are grateful for �nancial support

from the German Science Foundation, and from the Max Planck Research Prize. Gershkov, Moldovanu:

Department of Economics, University of Bonn, Lennestr. 37, 53113 Bonn. alex.gershkov@uni-bonn.de,
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1 Introduction

We study e¢ cient, individual rational and budget-balanced schemes for the following

dynamic mechanism design problem: the designer wants to assign a �xed, �nite set of

heterogenous objects to a sequence of randomly arriving agents with privately known

characteristics. Monetary transfers are feasible. The objects are substitutes, and each

agent derives utility from at most one object. Moreover, all agents share a common

ranking over the available objects, and values for objects have a multiplicative structure

involving the agents� types and objects�qualities. In one formulation we assume that

there is a deadline by which all objects must be sold, in another we assume a discounted

in�nite horizon (in both scenarios, time is a continuous variable).

Examples of such settings include the dynamic allocation of limited resources among

incoming projects, the allocation of limited research facilities among research units (e.g.,

telescope time), the assignment of dormitory rooms to potential tenants, and the alloca-

tion of available positions to arriving candidates. The yield-management literature has

analyzed the simpler models of allocating identical objects (e.g., seats on an aeroplane,

or hotel rooms) from the point of view of revenue-maximization1. Our model also shares

several common features to the classical job search models2. The main di¤erence is that

in that literature it is usually assumed that the stream of the job o¤ers is generated by a

non-strategic player, without private information. Hence, implementation issues do not

arise there. 3

Compared to a static setting, the new trade-o¤ is between an assignment today and

the valuable option of assigning it in the future, possibly to an agent who values it more.

Since the arrival process of agents is stochastic, the "future" on which the option value

depends may never materialize (if there is a deadline) or it may be farther away in time,

and thus discounted.

First, we characterize all dynamically implementable deterministic allocation policies.

1See McAfee and te-Velde [14], and Gershkov and Moldovanu [9] for several reference to that large

literature
2For extensive surveys of the search literature see Lippman and McCall [13] , and Mortensen [15]
3Other di¤erences are: the job search model corresponds here to the one object case, and sampling

has an explicit cost.
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Such policies are described by partitions of the set of possible agent types: an arriving

agent gets the best available object if his type lies in the highest interval of the partition,

the second best available object if his type lies in the second highest interval, and so on.

These intervals may depend on the point in time of the arrival, and on the composition

of the set of available objects at that point in time. For implementable allocation poli-

cies we derive the associated menus of prices (one menu for each point in time, and for

each subset of remaining objects) that implement it, and show that these menus have

an appealing recursive structure: each agent who is assigned an object has to pay the

value he displaces in terms of the chosen allocation. It allows us to verify the imple-

mentability of the dynamically e¢ cient allocation policy under Poisson arrivals, which

has been characterized for the complete information case - via a system of di¤erential

equations - by Albright [1]4. Since that policy is deterministic, Markovian and has the

form of a partition, it can be implemented also in our private information framework

by the dynamic price schedules identi�ed above, which coincide then with a dynamic

version of the Vickrey-Clarke-Groves mechanism. Dolan [7] used a dynamic version of

the Vickrey-Clarke-Groves mechanism in order to achieve welfare maximization in queues

with random arrivals and with incomplete information about the agents�characteristics.

Dynamic extensions of VCG schemes (for much more general situations than those con-

sidered here) have recently attracted a lot of interest - see for example Athey and Segal [3],

Bergemann and Välimäki [4], and Parkes and Singh [17]. Gershkov and Moldovanu[10]

analyze the limitations encountered in a framework where the designer needs also to learn

about the distribution of agents�characteristics.

A somewhat surprising feature is that the cuto¤ curves de�ning the intervals in the

time-dependent partitions that characterize the dynamic welfare maximizing policy in

our model depend only on the cardinality of the set of available objects, but not on the

exact composition of that set. This is due here to the multiplicative structure of the

agents�valuations for objects.

4Derman, Lieberman and Ross [6] introduced the basic assignment model in a framework with a

�nite number of periods (time is discrete), and one arrival per period. An early paper that uses optimal

stopping theory to characterize the e¢ cient assignment of a single object to randomly arriving agents in

continuous time is Elfving [8].
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The dynamically e¢ cient allocation policy can be explicitly computed if the distrib-

ution of agents�types is exponential, while this is not often the case for general distri-

butions5. But, we use comparative static results in order to bound the cuto¤ curves in

the welfare maximizing policy (and the associated expected welfare) for the important

and large, non-parametric classes of distributions that second-order stochastically domi-

nate (are dominated by) the exponential distribution - these are the so called new better

(worse) than old in expectation distributions. These bounds can be used for evaluation

other simple, but not necessarily optimal allocation policies. We show that a decrease in

the second order stochastic sense in the distribution of agents�types (which implies an

increase in variability) leads to an increase in expected welfare in the dynamic assignment

problem. The proof of this result uses several simple insights from majorization theory.6

Majorization by a vector of weighted sums of order statistics plays also the main role in

assessing the welfare loss due to the sequential nature of the allocation process versus the

scenario where the allocation can be delayed till after all arrivals and types have been

observed.

While the above comparative static result holds for both the deadline model and for

the discounted, in�nite horizon model, in the latter case - where the welfare maximizing

policy can be characterized and turns out to be time-independent for general renewal

arrival processes - we also examine the e¤ect on expected welfare of a stochastic increase

in the distribution of inter-arrival times in the sense of the Laplace-transform order. This

stochastic order is much weaker than second order stochastic dominance.7 In particular,

more variability in inter-arrival times leads to higher expected welfare. For example, in

the case of one object, bounds on expected welfare relative to an exponential distribution

of agents�types and a Poisson arrival process can be expressed in terms of the well known

5In a model with identical objects, McAfee and te Velde [14] compute the dynamic welfare maximizing

policy for a Pareto distributions of agents� values, and show that it coincides then with the revenue

optimizing policy. For a general comparison of the welfare-maximizing and revenue-maximizing policies

see Gershkov and Moldovanu [9]. See also these papers for other references to the relevant literature on

yield/revenue management.
6See Hardy, Littlewood and Polya, [12].
7Any two distributions that are ranked in the second order stochastic dominance order are also ranked

in the Laplace-transform order, but the opposite is not true.
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Lambert-W function.

In general, it is not enough to focus on the physical allocation in order to ensure

e¢ ciency since one also has to describe what happens to the monetary payments. In

some frameworks these accrue to a third-party (e.g., a seller in an auction) and physical

e¢ ciency is thus what matters. In other settings, the implementation of the e¢ cient

physical allocation generates a de�cit or a surplus. If there is no third party, full e¢ ciency

calls then for budget-balancedness. It is well known that in the static setup no VCG

mechanism can generally be both individual rational and budget balanced. Guo and

Conitzer [11] and Moulin [16] analyze surplus minimizing VCG schemes in the static

environment, and derive bounds on the ensuing e¢ ciency loss.

For the study of e¢ cient, individual rational and budget-balanced mechanisms in our

frameworks, we distinguish between two scenarios: 1) Both physical assignments and

monetary payments must take place upon the agents�arrival; 2) Payments can be post-

poned to later stages. While in the second scenario budget balancedness can be always

reached, in the �rst scenario budget balancedness can only be reached asymptotically as

the arrival rate (or the time up to the deadline) increases without bound.

The rest of the paper is organized is follows: In Section 2 we present the continuous-

time model of sequential assignment of heterogenous objects to randomly arriving, pri-

vately informed agents. Section 3 focuses on a characterization of implementable policies,

and of the associated menus of dynamic prices that implement such policies. In Section 4

we present a Theorem, due to Albright [1] that determines the dynamic welfare maximiza-

tion policy in a framework with complete information and Poisson arrivals. In Subsection

4-1 we apply Albright�s theorem to a setting where the allocation of all available objects

must occur before a known deadline, and we consider the e¤ect of changes in the distri-

bution of agents�types. We also assess the welfare loss due to the sequential nature of

the allocation process. Subsection 4-2 deals with an in�nite horizon model with expo-

nential discounting. There we consider both the e¤ects of changes in the distribution of

agents�types, and in the distribution of inter-arrival times. Section 5 focuses on budget

balancedness and we look at mechanisms that redistribute the raised revenue from the

allocation process. Section 6 concludes. Most of the proofs are relegated to an Appendix.
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2 The Model

There are n items (or objects). Each item i is characterized by a "quality" qi. Each agent

j is characterized by a "type" xj: Agents arrive according to a (possibly non-homogenous)

Poisson process with intensity �(t), and each can only be served upon arrival (i.e., agents

are impatient). After an item is assigned, it cannot be reallocated in the future. For

some results we relax the Poisson assumption, and we allow for a more general renewal

stochastic process to describe arrivals.

An agent with type xj who obtains an item with characteristic qi enjoys a utility of

qixj. If an item of quality qi is assigned to an agent with type xj at time t, then the

utility for the designer is given by r(t)qixj where r is a piecewise continuous, non-negative,

non-increasing discount function which satis�es r(0) = 1.

While the items�types 0 � qn � qn�1 � ::: � q1 are assumed to be known constants,

the agents�types are assumed to be represented by independent and identically distrib-

uted random variables Xi on [0;+1) with common c.d.f. F that has a support [0;�]

with � � 1. The realization of Xi is private information of agent i: We assume that

each Xi has a �nite mean, denoted by �, and a �nite variance.

3 Implementable Policies

Without loss of generality, we restrict attention to direct mechanisms where every agent,

upon arrival, reports his characteristic xi and where the mechanism speci�es an allocation

(which item, if any, the agent gets) and a payment. As we shall see, the schemes we

develop also have an obvious and immediate interpretation as indirect mechanisms, where

the designer sets a time-dependent menu of prices, one for each item, and the arriving

agents are free to choose out that menu.

An allocation policy is called deterministic and Markovian if, at any time t; and for

any possible type of agent arriving at t, it uses a non-random allocation rule that only

depends on the arrival time t, on the declared type of the arriving agent, and on the set

of items available at t; denoted by �t: Thus, the policy depends on past decisions only

via the state variable �t. We restrict attention to interim-individually rational policies,
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where no agent ever pays more than the utility obtained from the physical allocation.

Denote by Qt : [0;+1)��t ! �t [; a non-randomized Markovian allocation policy

for time t and by Pt : [0;+1)��t ! R the associated payment rule. Denote also by kt
the cardinality of set �t:

The next Proposition shows that a non-randomized, Markovian allocation policy is

implementable if and only if it is based on a partition of the agents�type space.8 In other

words, implementability reduces here to setting a menu of prices, one for which object,

from which the arriving agent has to choose.

Proposition 1 Assume that �t is the set of objects available at time t; and assume that

qj 6= qk for any qj; qk 2 �t; j 6= k.

1. A non-randomized, Markovian policy Qt is implementable if and only if there exist

kt + 1 functions 1 = y0;�t (t) � y1;�t (t) � y2;�t (t) � � � � � ykt;�t (t) � 0, such

that x 2 [yj;�t (t) ; yj�1;�t (t)) ) Qt (x;�t) = q(j) where q(j) denotes the j�th highest

element of the set �t; and such that x < ykt;�t (t) ) Qt (x;�t) = ;.9

2. The associated payment scheme is given by Pt (x;�t) =
Pkt

i=j(q(i)� q(i+1))yi;�t (t)+

S(t) if x 2 [yj;�t (t) ; yj�1;�t (t)) where S(t) is some allocation- and type-independent

function.

Proof. =) If two reports of the agent that arrives at t lead to the same physical

allocation, then, in any incentive compatible mechanism, the associated payments should

be the same as well. Denote by Pj the payment that will be charged for the object with

quality qj. A direct mechanism is equivalent to a mechanism where the agent arriving

at time t chooses an object and a payment from a menu (qj; Pj)
kt
j=1. If some type x

prefers the pair (qk; Pk) over any other pair (ql; Pl) with qk > ql, then any type ex > x

also prefers (qk; Pk) over (ql; Pl). This implies that Qt (ex;�t) � Qt (x;�t) for any t and
8The result holds for any deterministic policy. But, since the rest of the analysis focuses on the

Markov case, and in order to save on notational complexity, we consider only this case here.
9Types at the boundary between two intervals can be assigned to either one of the neighbor-

ing elements of the partition. That is, if xi 2 fykt;�t (t) ; ykt�1;�t (t) ; :::; y2;�t (t) ; y1;�t (t)g, then

Qt (yi;�t (t) ;�t) 2 fqi; qi+1g, i = 1; 2; ::; kt.
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�t. Finally, noting that Qt (x;�t) = ; is equivalent to allocating an object with quality

equal to zero, implies that an agent who arrives at time t gets object q(k) if he reports

a type contained in the interval (yk;�t (t) ; yk�1;�t (t)). A similar argument shows that

Qt (yi;�t (t) ;�t) 2
�
q(i+1); q(i)

	
for i 2 f1; 2; :::; ktg.

(= The proof is constructive: given a partition-based policy, we design a payment

scheme Pt (x;�t) that, for any j 2 f1; :::; ktg; induces type x 2 [yj;�t (t) ; yj�1;�t (t)) to

choose the object with type q(j). Without loss of generality, we assume that an agent

whose type is on the boundary between two intervals in the partition chooses the item

with higher type. Consider then the following payment scheme

Pt (x;�t) =
ktX
i=j

(q(i) � q(i+1))yi;�t (t) + S(t), if x 2 [yj;�t (t) ; yj�1;�t (t))

where S(t) is some allocation- and type-independent function. Note that type x = yj;�t (t)

is indi¤erent between
�
q(j); Pj

�
and

�
q(j+1); Pj+1

�
. Moreover, any type above yj;�t (t)

prefers
�
q(j); Pj

�
over

�
q(j+1); Pj+1

�
, while any type below, prefers

�
q(j+1); Pj+1

�
over�

q(j); Pj
�
. Therefore, any type x 2 [yj;�t (t) ; yj�1;�t (t)) prefers

�
q(j); Pj

�
over any other

pairs in the menu.10

4 The Dynamically E¢ cient Policy

Albright [1] characterized the allocation policy that maximizes the total expected welfare

from the designer�s point of view in a complete-information model. That is, in his model,

the type of the arriving agent becomes public information upon arrival. His main result

is:

Theorem 1 (Albright, [1]) There exist n unique functions yn(t) � yn�1(t)::: � y1(t) , 8t

, which do not depend on the q�s such that:

1. If an agent with type x arrives at a time t, it is optimal to assign to that agent the

j�th highest element of �t if x 2 [yj(t); yj�1(t)) ,where y0 � 1, and not to assign

any object if x < ykt(t):
10If there are some identical objects, there exist implementable policies that do not take the form

of partitions. But, for each such policy, there exists another implementable policy that is based on a

partition, and that generates the same expected utility for all agents and for the designer.
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2. For each k; the function yk(t) satis�es :

(a) limt!1 r(t)yk(t) = 0

(b) d[r(t)yk(t)]
dt

= ��(t)r(t)
R yk�1
yk

(1� F (x))dx � 0 .

3. The expected welfare starting from time t is given by
hPkt

i=1 r(t)q(i)yi(t)
i
, where q(i)

is the i�th highest element of �t.

The surprising element in the above result is that the dynamic welfare maximizing

cuto¤ curves yj(t) do not depend on the items�characteristics. In other words, although

the Markov decision problem is one with 2n� 1 states, corresponding to all possible non-

empty subsets of items �t, the welfare maximizing policy is such that, at each point in

time t, and for each type of the arriving agent, the allocation decision is only contingent

on the cardinality of �t; kt:Moreover, since selling one object is equivalent to exchanging

one of the currently available items with an item having a type equal to zero, the above

observation implies that after any sale at time t; the kt � 1 curves that determine the

optimal allocation from time t on, coincide with the kt � 1 highest curves that were

relevant for the decision at time t: Thus, in e¤ect, there are only n relevant states for the

decision maker instead of 2n � 1.

To understand the intuition behind this result, assume for simplicity that at time t

there are two objects q1 > q2 and that the relevant cuto¤s are ye1 > ye2. Consider the

e¤ect of a small shift in the highest cut-o¤ from ye1 to y
e
1 + �. This shift has any e¤ect

only if an agent indeed arrives at t. Second, the shift has no e¤ect if the arriving agent

has a value above ye1+ � or below y
e
1. If, however, at time t an agent with value y

e
1 arrives,

then this shift switches the object he gets from q1 to q2 and therefore switches the object

available for future allocation from q2 to q1. Therefore, the e¤ect of the shift on the social

welfare is

f (ye1) (q1y
e
1 +W (q2; t)� q2ye1 �W (q1; t))

= (q1 � q2) f (ye1) (ye1 �W (1; t))

where W (q; t) denotes here the expected welfare at time t if only one object with type

q remains, given that the optimal policy is followed from time t on, where the equality
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follows since W (q; t) is linear in q. The above expression is linear and separable in the

di¤erence (q1 � q2), and therefore the optimal cuto¤ - where the total e¤ect of a shift

should be equal to zero - will not depend on this di¤erence.

Since the Markovian, deterministic policy described in Theorem 1 has the form of a

partition, it can be implemented by the payments (or by prices in an indirect mechanism)

described in Proposition 1. Note that Theorem 1 -3. implies that the payment

Pt (x;�t) =
ktX
i=j

(q(i) � q(i+1))yi;�t (t)

can be interpreted as the expected externality imposed on other agents by an agent that

arrives at time t who gets the object with the j-th highest type among those remaining at

time t. In other words, for the dynamically e¢ cient policy, our implementing mechanism

coincides with a dynamic Clarke-Groves-Vickrey mechanism, as studied by Athey and

Segal [3], Bergemann and Välimäki [4], and Parkes and Singh [17].

4.1 The Dynamic E¢ cient Allocation with a Deadline

In this Section we apply Theorem 1 to a framework with deadline T after which all objects

perish. Our main result shows that an increase in the variability of the distribution of

the agents�values (while keeping a constant mean) increases expected welfare. We want

to emphasize that this result holds even if all available objects are identical!

Besides its intrinsic interest, this result allows us to bound the welfare maximizing cut-

o¤curves (and thus the expected welfare) for large and important families of distributions

for which an explicit solution of the system of di¤erential equations that characterizes

the e¢ cient policy is not available (see Theorem 1-2b).

We assume that the discount rate satis�es:

r(t) =

8<: 1 if 0 � t � T

0 if t > T

It is then obvious that the dynamically e¢ cient policy needs to satisfy

y1(T ) = y2(T ) = ::: = yn(T ) = 0
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Example 1 (Exponential distribution) Assume that the arrival process is homogenous

with rate �(t) = � normalized to be 1; and that the distribution of agents� types is ex-

ponential, i.e., F (x) = 1 � e�x: From Theorem 1, we obtain the following system of

di¤erential equations that characterize cut-o¤ curves in the dynamic welfare maximizing

policy:

y01 = �
Z 1

y1

e�xdx = �e�y1 ;

y0i = �
Z yi�1

yi

e�xdx = e�yi�1 � e�yi ; i > 1

with initial conditions yi(T ) = 0; i � 1: For example, the solution to this system for the

case of three objects is:

y1(t) = ln(1 + T � t); y2(t) = ln
�
1 +

(T � t)2
2(1 + T � t)

�
y3(t) = ln

�
1 +

(T � t)3
3[(T � t)2 + 2(1 + T � t)]

�
For the main results in this Section, we need a well- known concept, due to Hardy,

Littlewood and Polya [12].

De�nition 1 For any n�tuple  = (1; 2; ::; n) let (j) denote the jth largest coordinate

(so that (n) � (n�1) � ::: � (1). Let � = (�1; �2; ::; �n) and � = (�1; �2; ::; �n) be two

n�tuples. We say that � is majorized by � and we write � � � if the following system

of n� 1 inequalities and one equality is satis�ed:

�(1) � �(1)

�(1) + �(2) � �(1) + �(2)

::: � :::

�(1) + �(2) + ::�(n�1) � �(1) + �(2) + �(n�1)

�(1) + �(2) + ::+ �(n) = �(1) + �(2) + ::+ �(n)

We say that � is weakly sub-majorized by � and we write � �w � if all relations above

hold with weak inequality.

Theorem 2 Consider two distributions of agents�types F and G such that �F = �G = �

and such that F second-order stochastically dominates G (in particular F has a lower

variance than G): Then it holds that:
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1. 8k; t;
Pk

i=1 y
F
i (t) �

Pk
i=1 y

G
i (t)

2. For any time t and for any set of available objects at t; �t 6= ;, the expected welfare

in the e¢ cient dynamic allocation under F is lower than that under G:

Proof. See Appendix.

The bene�ts of increased variability has also been discussed in the one-object model

analyzed in the job search literature. The proof of the above Theorem proceeds by show-

ing that the e¢ cient cuto¤s of one distribution are majorized by those of the other11. A

main application of the above Theorem follows: For a constant arrival rate, the system

of di¤erential equations that characterizes the e¢ cient dynamic allocation can be solved

explicitly for any number of objects if the distribution of the agents�types is exponen-

tial (see Example above), while this is rarely the case for other distributions. Together

with the above result, that solution can be used to bound the optimal policy and the

associated welfare for large, non-parametric classes of distributions that are often used in

applications.

De�nition 2 A non-negative random variable X is said to be new better than used in

expectation - NBUE (new worse than used in expectation - NWUE) if

E[X � a j X > a] � (�) E[X] ;8a � 0

The classes of NBUE (NWUE) distributions are large and contain most of the dis-

tributions that appear in applications. For example, any distribution with an increasing

failure (or hazard) rate is NBUE, while any distribution with a decreasing failure rate is

NWUE.

Corollary 1 Let F; the distribution of agents� types be NBUE (NWUE) with mean �.

Then, for any t and �t 6= ?, the expected welfare in the e¢ cient dynamic allocation

under F is lower (higher) than that under the exponential distribution G(x) = 1� e�
x
� :

11This Theorem has an analogous counterpart for the cuto¤s zi(t) appearing later in the scenario where

allocations can be delayed till the deadline. The proof uses then a recent result about majorization of

mean order statistics due to De La Cal and Carcamo[5].
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Proof. The result follows directly from Theorem 2 by noting that F second order

stochastically dominates G(x) = 1 � e�
x
� (is second-order stochastically dominated by

G(x) = 1 � e�
x
� ) is equivalent to F being NBUE (NWUE) . This is Theorem 8.6.1 in

Ross [21]. In other words,

8y � 0;
Z 1

y

(1� F (x))dx � (�)�e�
x
� if F is NBUE (NWUE)

Example 2 To illustrate the result above, let F (x) = x on [0; 1] so that F is IFR and

thus NBUE; and let �(t) = � = 1: Assume that there is one object with quality q1 = 1.

The optimal cut-o¤ curve satis�es

y0F = �
Z 1

yF

(1� x)dx = �1
2
+ yF �

y2F
2

with initial condition yF (T ) = 0: The solution to this di¤erential equation is

yF (t) = 1�
2

T � t+ 2

which is compared in the picture to 1
2
ln[1 + T � t], the e¢ cient cuto¤ curve for the

exponential distribution G(x) = 1� e�2x with mean 1
2
:

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

y

Full line: exponential distribution; Dashed line: uniform distribution
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4.1.1 The Welfare Loss Versus a Delayed Allocation

Assume that at time t there are n objects left, with qualities q1 � q2::: � qn: We assume

here for simplicity that arrivals follow a homogenous Poisson process with rate �12: Instead

of the original formulation, consider now the scenario where the allocation decision to all

subsequently arriving agents can be made at time T (the deadline) where their precise

number is known, and where their types can be extracted via the usual, static VCG

payments. At time T a welfare maximizing designer will allocate the object with the

highest quality to the agent with the highest type, the object with the second highest

quality to the agent with the second highest type, and so on... (assortative matching).

This means that expected welfare at time t is given by
Pn

i=1 qizi(t); where zi(t) represents

the expected type of an agent who arrives after t, and who get assigned to the object

with the i� th highest quality.

In order to calculate this term, let X(i;l) denote the i � th order statistic out of l

copies of X; and denote by �i;l its expectation (note that �l:l is the expectation of the

maximum or highest order statistic). Denote by Prl(t) � 0 the probability that there will

be l arrivals, l � 1; after time t. For a direct comparison to sequential assignment and

Poisson arrival process, we need to set:

Prl(t) = e
��(T�t)�

l(T � t)l
l!

.

Given assortative matching at time T; we then obtain13:

zi(t) =

1X
l=i

Prl(t)�l�i+1;l = e
��(T�t)

1X
l=i

�l(T � t)l�l�i+1;l
l!

; i = 1; 2; ::n

Note also that

mX
i=1

zi(t) =
1X
l=1

Prl(t)

0@min(l:m)X
i=1

�l�i+1;l

1A
= e��(T�t)

1X
l=1

�l(T � t)l
l!

0@min(l:m)X
i=1

�l�i+1;l

1A ; m = 1; 2; ::n

12The argument is easily extended to non-homogeneous processes.
13Note that an object remains unassigned if there are not su¢ cient arrivals, yielding a zero reward.
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The next result establishes a relation between the n�vector of optimal dynamic cuto¤s

fyi(t)gni=1 and the n-vector of the corresponding static expected types fzi(t)gni=1. Intu-

itively,
Pn

i=1 qi[yi(t)� zi(t)] measures the welfare loss due to the sequentiality constraint.

Theorem 3 For any period t; and for any n; the vector fyi(t)gni=1 of optimal cuto¤s

in the welfare maximizing sequential allocation of n objects to agents arriving according

to a Poisson process with parameter � is weakly sub-majorized by the vector fzi(t)gni=1 .

Moreover, limn!1
Pn

i=1 yi(t) = limn!1
Pn

i=1 zi(t) = �(T � t)�, where � is the mean of

the distribution of agents�types.

Proof. See Appendix.

If the number of homogenous objects n is large, sequentiality does not cause any

welfare loss since any arriving agent should get an object. The limit expression is intuitive:

for each arrival, expected welfare is given by the average type �, and �(T � t) is the

expected number of arrivals.

Example 3 For an illustration, let F (x) = x on [0; 1] , let � = 1 and T = 5: Assume

that there is one object with quality q1 = 1. The optimal cut-o¤ curve for the sequential

allocation is given by y1(t) = 1 � 2
7�t . Noting that the expectation of the highest order

statistic out l uniformly distributed random variables is l
l+1
; we obtain that

z1(t) = e
�(5�t)

1X
l=1

(5� t)ll
(l + 1)!

= 1� 1� e
�(5�t)

5� t

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

x

y

Dashed line: sequential allocation; Full line: delayed allocation.

15



4.2 The Dynamic E¢ cient Allocation with an In�nite Horizon

and Discounting

In this Section we assume that r(t) = e��t: Given this speci�cation, the arrival process

can be more general, and it is assumed here to be a renewal process with general inter-

arrival distribution B (instead of a Poisson process where the inter-arrival distribution

is exponential).14 We start with a simple example that illustrates the main insight: the

stationarity of the welfare maximizing dynamic policy.

Example 4 Let the arrival process be Poisson with rate �, i.e., B(t) = 1� e��t , and leteB denote the Laplace- transform of the inter-arrival distribution B: Note �rst that15

eB(�) = Z 1

0

e��t�e��tdt =
�

�+ �
;

eB(�)
1� eB(�) = �

�

Consider now the the di¤erential equation de�ning the e¢ cient allocation curve for the

case of one object y1(t)(see Theorem 1):

d[r(t)y1(t)]

dt
= ��r(t)

Z 1

y1

(1� F (x))dx

Plugging r(t) = e��t we get

(y01 � �y1) = ��
Z 1

y1

(1� F (x))dx.

Postulating now y01 = 0 yields

y1 =
�

�

Z 1

y1

(1� F (x))dx =
eB(�)

1� eB(�)
Z 1

y1

(1� F (x))dx

The equation above has a unique solution y�1 since its right hand side decreases in y1 from
�
�
� (where � is the mean of F ) to 0, and left hand side increases from 0 to in�nity. Since

limt!1 e
��ty�1 = 0, we obtain that the e¢ cient dynamic cut-o¤ curve is indeed described

by the constant y�1. The derivations for more items follow analogously.

14The derived controlled stochastic process is semi-Markov since the Markov property is preserved only

at decision points, but not between them. See Puterman (2005) for solution approaches to such problems

by an uniformization procedure, and for conditions guaranteeing that optimal policies are deterministic

and Markovian.
15 eB(�) acts here as the e¤ective discount rate. It represents the discounted value of one unit at the

expected time of the next arrival.
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The complete-information e¢ cient dynamic assignment for the general case is char-

acterized in the following Theorem:

Theorem 4 (Albright, [1]) Assume that r(t) = e��t: The e¢ cient allocation curves are

constants (i.e., independent of time) yn � yn�1::: � y1: These constants do not depend

on the q�s, and are given by the implicit recursion:

(yk + yk�1 + ::y1) =
eB(�)

1� eB(�)
Z 1

yk

(1� F (x))dx ; 1 � k � n

where eB is the Laplace- transform of the inter-arrival distribution B.

The e¢ cient dynamic allocation policy is obviously Markovian and deterministic, and

can be therefore implemented by the payments of Proposition 1. The analog of Theorem

2 for this case is:

Theorem 5 Consider two distributions of agents�types F and G such that �F = �G = �

and such that F second-order stochastically dominates F (in particular F has a lower

variance than G): Then, for any �xed inter-arrival distribution B it holds that:

1. 8k;
Pk

i=1 y
F
i �

Pk
i=1 y

G
i

2. For any t and any �t 6= ; the expected welfare in the e¢ cient dynamic allocation

under F is lower than that under G:

Proof. See Appendix.

In addition to the above Theorem about the bene�ts of increased variability in the

agents�types, we now obtain a comparative-statics result about the bene�ts of variability

in arrival times. Interestingly, this next result holds for a stochastic order that is much

weaker than second-order stochastic dominance. We �rst need the following de�nition

(see Shaked and Shanthikumar, 2007):

De�nition 3 Let X; Y be two non-negative random variables. Then X is said to be

smaller than Y in the Laplace transform order, denoted by X �Lt Y; if

E[e�sX ] � E[e�sY ] for all s > 0

17



The function w(x) = �e�sx is increasing an concave for any s > 0: Thus, we obtain

that X �SSD Y ) X �Lt Y since the former involves a comparison of expectations with

respect to all increasing concave functions.

Theorem 6 Consider two inter-arrival distributions B and E such that B �Lt E. Then,

for any �xed distribution of agents�characteristics F; it holds that:

1. 8k;
Pk

i=1 y
B
i �

Pk
i=1 y

E
i

2. For any t and for any �t 6= ;; the expected welfare in the e¢ cient dynamic allocation

under B is lower than that under E:

Proof. See Appendix.

The above result is in sharp contrast with a result from the job search literature: in

case of a constant per-period cost of search, a higher variance of the number of o¤ers

per period is detrimental.16 Again, we can apply the above comparative static results in

order to bound the optimal cut-o¤ curves and the associated expected welfare for large

classes of distributions of the agents�types and of the inter-arrival times.

Corollary 2 For any t and for any �t 6= ; we have:

1. For any �xed distribution of inter-arrival times, the expected welfare under an

NBUE(NWUE) distribution of agents� types with mean � is lower (higher) than

the expected welfare under the exponential distribution G(t) = 1� e�
t
� :

2. For any �xed distribution of agents�types, the expected welfare under an NBUE(NWUE)

distribution of inter-arrival times with mean � is lower (higher) than the expected

welfare under a Poisson arrival process with rate 1
�
:

Proof. The �rst claims follows from Theorems 5 and from the fact that NBUE (NWUE)

distributions second order stochastically dominate (are dominated by) an exponential

distribution with the same mean (see also the proof of Corollary 1). The second claim

follows from Theorem 6, from the above observation, and from the fact that second order

stochastic dominance implies domination in the Laplace-transform order.

16See Lippman and McCall [13], among others.
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Example 5 Assume that there is one object with q1 = 1; let the discount rate be �; and

consider the exponential distributions G� = 1�e�
t
� for the agents�types and G! = 1�e�

t
!

for the inter-arrival times: For these distributions, the optimal cuto¤ point y1 solves

y1 =
eG!(�)

1� eG!(�)
Z 1

y1

e�
t
�dt =

�

!�
e�

y1
�

The solution to this equation is given by

y1 = �LambertW(
1

!�
)

where the increasing function LambertW(x) is implicitly de�ned by

LambertW(x)eLambertW(x) = x

Thus, the expected welfare under the e¢ cient policy is lower (higher) than �LambertW( 1
!�
)

if the distribution of agents�abilities is NBUE(NWUE) with mean �, and if the distrib-

ution of inter-arrival times is NBUE(NWUE) with mean !:

5 Budget Balanceness

The above analysis was concerned solely with physical allocational e¢ ciency. Moreover,

the employed mechanisms were individual rational. While keeping these two require-

ments, we need to deal with another aspect: the monetary budget de�cit/surplus that

the mechanism generates. We assume below that there are no alternative resources to

subsidize the allocation process, and hence we require that the total payment is non-

negative. But, an inability to redistribute the raised money among agents reduces their

welfare and hence prevents reaching a fully e¢ cient outcome. Roughly speaking, in an

allocatively e¢ cient mechanism, the payment of a buyer is tied to the externality he

imposes on other agents, and hence it depends on the values of others. A redistribution

of this payment to others is therefore bound to a¤ect their incentives. In our dynamic

setting, budget balancedness is easier to achieve due to the sequential nature of the allo-

cation process: the amount each agent pays depends on the imposed expected externality,

and hence it is not a¤ected by the realized reports of the agents that should get this

amount as a refund.
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We propose below mechanisms that reallocate the gathered money among the agents

without distorting their incentives.17 We consider two classes of mechanisms: 1) Online

mechanisms, where monetary transfers pertaining to a speci�c transaction need to be

completed together with the physical allocation; 2) O ine mechanisms, where payments

can be postponed to later stages. For simplicity, we restrict attention to a homogeneous,

Poisson arrival process with parameter �.

5.1 Online mechanisms

Denote by B(t) the budget surplus accumulated by time t when using a mechanism that

implements the e¢ cient physical allocation and never runs a de�cit (thus B(t) � 0; 8t):

While it is impossible here to precisely obtain ex-post budget balancedness, we describe

below a scheme where the expected surplus vanishes asymptotically, as � �!1.

De�nition 4 (Online redistribution mechanism) A scheme that implements the ef-

�cient allocation such that the type-independent part of the payment scheme for the agent

arriving at t is S(t) = �B(t) will be called a dynamically e¢ cient online redistribution

mechanism (DEON hereafter).

In the DEON mechanism, if an agent arrives at time t and reports type xt 2

[yj;�t (t) ; yj�1;�t (t)), while the previous agent arrived at � < t and reported a type

x� 2 [yl;�� (�) ; yl�1;�� (�)) then the time t agent�s payment is given by

ktX
i=j

(q(i) � q(i+1))yi;�t (t)�
k�X
i=l

(q(i) � q(i+1))yi;�� (�) .

That is, each agent�s payment consists of the two parts: �rst, a non-negative fee for the

object he gets, which is determined by the report and by the e¢ cient cuto¤s; second, a

refund equal to the payment of the previously arrived agent.

Clearly, the DEON mechanism never runs a budget de�cit, but it may run a surplus

if, after the last sale, no agent arrives till the deadline. Since the probability that no

17We restrict attention here to the more interesting deadline scenario. The results can be easily

extended to the in�nite horizon case.
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agent arrives between periods s and T is e��(T�s), the expected surplus of the mechanism

is given by

ES (T ) =
X
�s��

TZ
0

Prs (�s)
ksX
j=1

ksX
i=j

(q(i;�s) � q(i+1;�s))yi;�s (s) gi;�s (s) e��(T�s)ds

where Pr� (�s) is the probability that at time � the set of the objects still available is

�s, q(j;�s) is the j�th highest quality out of �s, and gi;�s (s) is the density that at time s

an agent arrives with a type that leads to the allocation of the j�th highest quality out

of �s.

The next result shows that the expected surplus ES (T ) goes to zero if the rate of the

Poisson process goes to in�nity, that is if �!1. Note that increasing � has two opposite

e¤ects on the expected surplus: On the one hand, prices and the expected surplus in case

no agent arrives after the last sale go up. On the other, the probability of no arrival after

the last sale goes down. The next Theorem shows that the second e¤ect dominates. Since

� governs the number of arrivals per uit of time, a similar result holds if � is constant

but T !1:

Theorem 7 For any distribution of values, and for any deadline T; lim�!1ES (T ) = 0.

Proof. See Appendix.

5.2 O ine mechanism

In this subsection we show how to construct a mechanism that satis�es ex-post budget

balancedness for any � and T by relaxing the "online" requirement that all monetary

transfers need to be implemented upon arrival. We sketch here the case where there is

one object, with quality q = 1, but the generalization to the case with several heterogenous

objects is straightforward.

While online mechanisms could allocate the accrued surplus from a given sale only

among the agents that arrive after that transaction has been conducted (which may lead

to a budget surplus if no further arrivals take place), in the current setting the designer

can observe the number of the agents that eventually arrive, and may ex-post refund the

entire fee to the buyer who paid it if nobody else shows up. But, in order not to distort
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that buyer�s incentives, he has to pay a higher net price if additional agents subsequently

arrive.

Consider a time t where the object is still available, and the direct mechanism where:

1) the arriving agent at t does not gets the object and pays nothing if his reported type is

below y1(t); 2) the arriving agent at t gets the object and pays P (t) if his reported type

is above y1(t): Moreover, at time T , the designer distributes the raised revenue equally

among all agents that arrived after the sale. In other words, if a sale occurs at t and

no agents arrive after t; the buyer gets his entire payment back; if one agent arrived

after t, the buyer gets half of his payment back, and so on...Obviously, this mechanism

is budget-balanced.

The expected utility of an agent that arrives at t (if the object is still available) with

type x who reports a type above y1(t) is given by

x� P (t) +
1X
l=0

Prt (l)
P (t)

1 + l

where Prt (l) is the probability that exactly l additional agents arrive during the time

period between t and T . Since the arriving process is Poisson, we have
1X
l=0

Prt (l)

1 + l
=
1� e��(T�t)
� (T � t) .

In order to implement e¢ cient allocation, the type y1(t) should be exactly indi¤erent

between getting the object, which yields utility x�P (t)+
1P
l=0

Prt (l)
P (t)
1+l
, and not getting

the object, which generates utility of zero (recall that only buyers arriving after a sale

may get some redistributed revenue). This indi¤erence implies that the payment P (t)

must be given by

P (t) =
y1(t)

1� 1�e��(T�t)
�(T�t)

=
� (T � t) y1(t)

� (T � t) + e��(T�t) � 1 .

Although the proposed mechanism is interim individually rational, it is not be individually

rational ex-post. It is impossible to attain ex-post individual rationality if the designer

insists on an e¢ cient allocation and on budget balancedness. To see this, observe that if a

buyer is the only arriving agent, he should ultimately pay zero (by budget-balancedness);

since, by e¢ ciency, the type y1(t) should be indi¤erent between buying and not, we obtain

that sometimes this type needs to pay strictly more than his valuation.
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6 Conclusion

We have studied the continuous-time, sequential, welfare-maximizing assignment of sev-

eral heterogenous objects to privately informed agents that arrive according to a Poisson

or renewal process. Our results yield upper/lower bounds on e¢ ciency for large classes of

distributions of agents�characteristics or of distributions of inter-arrival times for which

explicit solutions cannot be obtained in closed form. We have also compared welfare in

our setting to other scenarios where physical or monetary allocations can be delayed until

more information becomes available.

The analysis was made possible by a fruitful combination of insights from stochastic

dynamic programming, mathematical statistics, and mechanism design. We believe that

the applicability of a large class of interesting dynamic problems that have been exten-

sively studies in the Economics, Operations Research and Management Science literature

can be signi�cantly increased by adding to their structure information and incentive

considerations.
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7 Appendix

First, we prove a Lemma that is used in the proof of Theorem 2.

Lemma 1 Let � = (�1; �2; ::�n) and � = (�1; �2; ::; �n) be two n�tuples such thatPn
i=1 �i =

Pn
i=1 �i: Then � � � if and only if

Pn
i=1 qi�(i) �

Pn
i=1 qi�(i) for any constants

qn � qn�1 � ::: � q1:

Proof of Lemma 1. (= Assume that
Pn

i=1 qi�(i) �
Pn

i=1 qi�(i) for any qn � qn�1 �

::: � q1: For each k = 1; 2; ::; n�1 consider qk = (qk1 ; qk2 ; ::; qkn) where qki = 1 for i = 1; 2; ::k;

and qki = 0 for i = k + 1; k + 2; ::n: Then, for each k we obtain

nX
i=1

qki �(i) �
nX
i=1

qki �(i) ,
kX
i=1

�(i) �
kX
i=1

�(i)

and thus � � �:
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=) Assume � � � and let qn � qn�1 � ::: � q1: Then we have the following chain:
nX
i=1

qi[�(i) � �(i)] = qn

nX
i=1

[�(i) � �(i)] +
n�1X
i=1

(qi � qn)[�(i) � �(i)]

= qn

nX
i=1

[�(i) � �(i)] + (qn�1 � qn)
n�1X
i=1

[�(i) � �(i)]

+
n�2X
i=1

(qi � qn�1)[�(i) � �(i)]

= :::

= qn

nX
i=1

[�(i) � �(i)] +
n�1X
j=1

(qj � qj+1)(
jX
i=1

[�(i) � �(i)]) � 0

The last inequality follows since: 1.
Pn

i=1[�(i) � �(i)] =
Pn

i=1 �i �
Pn

i=1 �i = 0 by

de�nition; 2. 8j; qj � qj�1 � 0 by de�nition; 3. 8j;
Pj

i=1[�(i)��(i)] � 0 by majorization.

Proof of Theorem 2. 1. By Theorem 1 we know that

d(
Pk

i=1 y
F
i (t))

dt
= ��(t)

Z 1

yFk (t)

(1� F (x))dx

d(
Pk

i=1 y
G
i (t))

dt
= ��(t)

Z 1

yGk (t)

(1�G(x))dx

De�ne �rst: HF (s) =
R1
s
(1 � F (x))dx and HG(s) =

R1
s
(1 � G(x))dx. These are

both positive, decreasing functions with HF (0) = HG(0) = �:

By SSD, for any s � 0 it holds thatZ s

0

F (x))dx �
Z s

0

G(x))dx,
Z s

0

(1� F (x))) dx �
Z s

0

(1�G(x))) dx

,
Z 1

s

(1� F (x))dx �
Z 1

s

(1�G(x))dx, HF (s) � HG(s)

where the second line follows becauseZ 1

0

(1� F (x))dx = �F = �G =
Z 1

0

(1�G(x))dx.

Thus, the curve HF is always below HG:

Consider now yF1 (t) and y
G
1 (t): These are, respectively, the solutions to the di¤erential

equations :

y0 = ��(t)HF (y) and y0 = ��(t)HG(y)
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with boundary condition y(T ) = 0: Integrating the above equations from t to T , and

using the boundary condition, we get the integral equations:

y(T )� y(t) = �
Z T

t

�(s)HF (y(s))ds, y(t) =

Z T

t

�(s)HF (y(s))ds and

y(T )� y(t) = �
Z T

t

�(s)HG(y(s))ds, y(t) =

Z T

t

�(s)HG(y(s))ds

Because HF is always below HG and because these are decreasing functions, we obtain

yF1 (t) � yG1 (t).

Consider now yF1 (t)+y
F
2 (t) and y

G
1 (t)+y

G
2 (t) . These functions satisfy the di¤erential

equations:

y0 = ��(t)
Z 1

y�yF1 (t)
(1� F (x))dx and y0 = ��(t)

Z 1

y�yG1 (t)
(1� F (x))dx

with boundary condition y(T ) = 0: Integrating from t to T yields the equations:

y(t) =

Z T

t

�(s)

"Z 1

y(s)�yF1 (s)
(1� F (x))dx

#
ds =

Z T

t

�(s)HF [(y(s)� yF1 (s)] ds

y(t) =

Z T

t

�(s)

"Z 1

y(s)�yG1 (s)
(1�G(x))dx

#
ds =

Z T

t

�(s)HG[(y(s)� yG1 (s)] ds

We have :

8t; HF [(y(t)� yF1 (t)] � HF [(y(t)� yG1 (t)] � HG[(y(t)� yG1 (t)]

where the �rst inequality follows because yF1 (t) � yG1 (t) , y(t) � yF1 (t) � y(t) � yG1 (t)

and because the function HF is decreasing, and the second inequality follows because HF

is always below HG: This yields yF1 (t) + y
F
2 (t) � yG1 (t) + y

G
2 (t); as required. The rest of

the proof follows analogously.

2. The expected welfare terms from time t on if there are k objects left are given

by
Pk

i=1 q(i)y
F
i (t) and by

Pk
i=1 q(i)y

G
i (t), respectively. By point 1, we know that for each

k and for each t; ykF (t) = (yF1 (t); y
F
2 (t); ::y

F
k (t)) �w (yG1 (t); yG2 (t); ::yGk (t)) := ykG(t): By

Result 12.5 (b) in Pecaric et. al [18], for each k and each t there exists a k�vector z(t)

such that z(t) � ykG(t) and such that zi(t) � ykFi ; 8i: We obtain then:

8k; t;
kX
i=1

q(i)y
F
i (t) �

kX
i=1

q(i)zi(t) �
kX
i=1

q(i)y
G
i (t)

27



where the last inequality follows from Lemma 1.

Proof of Theorem 3. Consider a situation with m � n identical objects available

at time t. For any particular realization of arrivals and agents types from period t on,

welfare in the case where the decision can be delayed until the entire realization has been

observed is given by
Pm

i=1 zi(t): Consider now the original sequential assignment problem

where agents arrive according to a Possion process, and allocations must be made upon

arrival. By Theorem 1, the expected total welfare is then given by
Pm

i=1 yi(t): It is obvious

that, for any realization of arrivals and types, this total reward cannot be larger than

that obtained in the previous scenario where allocations can be delayed since mistakes

may have occurred due to the constraints of sequentiality, i.e., an agent with a lower

type was served although there was another arrival with a higher type18. This yieldsPm
i=1 yi(t) �

Pm
i=1 zi(t); 8m � n; as required.

The second part follows by considering the limit when the number of identical objects

tends to in�nity. In that limit, all arriving agents should be served, and there is no welfare

loss due to the sequentiality constraint. By Theorem 1 we know that

d[
Pn

i=1 yi(s)]

ds
= ��

Z 1

yn(s)

(1� F (x))dx

Integrating the above expression between t and T yields:

nX
i=1

yi(T )�
nX
i=1

yi(t) = ��
Z T

t

�Z 1

yn(s)

(1� F (x))dx
�
ds,

nX
i=1

yi(t) = �

Z T

t

�Z 1

yn(s)

(1� F (x))dx
�
ds

Taking the limit with respect to n, we �nally obtain:

lim
n!1

nX
i=1

yi(t) = lim
n!1

�

Z T

t

�Z 1

yn(s)

(1� F (x))dx
�
ds

= �

Z T

t

�Z 1

0

(1� F (x))dx
�
ds = �(T � t)�

where the second line follows since limn!1 yn(t) = 0 uniformly.

18In other words, any allocation obtained in the sequential process can be replicated when delayed

allocations are possible.
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Proof of Theorem 5. 1. De�ne �rst HF (s) =
eB(�)

1� eB(�)
R1
s
(1� F (x))dx and HG(s) =eB(�)

1� eB(�)
R1
s
(1�G(x))dx . These are both decreasing functions and

HF (0) = HG(0) =
eB(�)

1� eB(�)�
Consider now yF1 and y

G
1 . These are, respectively, the solutions to the equations:

s = HF (s) and s = HG(s)

By SSD, for any s � 0 it holds thatZ s

0

F (x))dx �
Z s

0

G(x))dx,
Z s

0

(1� F (x))) dx �
Z s

0

(1�G(x))) dx

,
Z 1

s

(1� F (x))dx �
Z 1

s

(1�G(x))dx, HF (s) � HG(s)

Thus, the decreasing curve HF (s) is always below the decreasing curve HG(s) and we

obtain y1F � y1G. Consider now yF2 and yG2 which are de�ned by the equations:

yF2 + y
F
1 =

eB(�)
1� eB(�)

Z 1

yF2

(1� F (x))dx

yG2 + yG1 =
eB(�)

1� eB(�)
Z 1

yG2

(1�G(x))dx

Equivalently, yF2 + y
F
2 and y

G
2 +y

G
1 are, respectively, the solutions of:

s = HF (s� yF1 ) and s = HG(s� yG1 )

Recalling that yF1 � yG1 ; we obtain s� yF1 � s� yG1 ;8s: This yields:

HF (s� yF1 ) � HF (s� yG1 ) � HG(s� yG1 )

where the �rst inequality follows because the function HF is decreasing, and the second

inequality follows by SSD. Thus, the curve HF (s�yG1 ) is always below the curve HG(s�

yG1 ) and the result follows as above. The rest of the proof is completely analogous.

2. The expected welfare terms from time t on if k objects left are given by e��t
hPk

i=1 q(i)y
F
i

i
and by e��t

hPk
i=1 q(i)y

G
i

i
, respectively. The proof proceeds exactly as that of Theorem

2-2.
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Proof of Theorem 6. 1. LetHB(s) =
eB(�)

1� eB(�)
R1
s
(1�F (x))dx ; HE(s) =

eE(�)
1� eE(�)

R1
s
(1�

F (x))dx where eB and eE are the respective Laplace transforms. By the de�nition of the
Laplace transform, and by the assumption B �Lt E, we know that eB(�) � eE(�): This
yields: eB(�) � eE(�), eB(�)

1� eB(�) � eE(�)
1� eE(�) , HB(s) � HE(s)

The �rst equivalence follows because the function x
1�x is increasing on the interval [0; 1) with

limx!1
x
1�x =1 , and because Laplace transforms take values in the interval [0; 1].

Thus, we obtained that the decreasing function HB(s) is always below the decreasing

function HE(s). Consider �rst yB1 and y
E
1 : These are, respectively, the solutions to the

equations

s = HB(s) and s = HE(s)

The rest of the proof continues analogously to the proof of Theorem 5-1.

2. This follows analogously to the proof of Theorem 2-2.

Proof of Theorem 7. Let k0 = 1: That is, initially there is only one object available of

quality q normalized to be one. The expected surplus of the DEON mechanism is given

by

TZ
0

y1 (t)� [1� F (y1 (t))] e
��

tR
0

[1�F (y1(z))]dz
e��(T�t)dt

= �
y1 (t)� [1� F (y1 (t))] e

�
tR
0

F (y1(z))dz
ds

e�T

Since [1� F (y1 (t))] � 1 it is su¢ cient to show that

lim�!1

TZ
0

�y1 (t)

e
�

 
T�t+

tR
0

[1�F (y1(z))]dz
!dt = 0.

The claim will follow by showing that, for any t 2 [0; T ] , the integrand goes to 0 when

� ! 1. If t = T , the result follows immediately since y (T ) = 0. Assume then that

t < T , and recall that

y01(t) = ��
1Z
y1(t)

[1� F (x)] dx
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Integrating both sides yields between t and T yields

y1 (t) = �

TZ
t

1Z
y1(s)

[1� F (x)] dxds � � (T � t)E(x)

where the last inequality follows from
1R
0

[1� F (x)] dx = E(x). In addition, for any t < T ,

there exists a constant A > 0 such that T � t+
tR
0

[1� F (y1 (z))] dz > A. Therefore, it is

su¢ cient to show that

lim�!1
�2 (T � t)E(x)

e�A
= 0.

Applying L�Hospital�s rule twice on the above ratio provides the required results.

If k0 = 2 the expected surplus of the DEON mechanism is

TZ
0

� ((q1 � q2) y1 (t) + q2y2 (t)) [1� F (y1 (t))]

e
�

 
T�t+

tR
0

[1�F (y2(z))]dz
! dt+ q2

TZ
0

y2 (t)� [F (y1 (t))� F (y2 (t))]

e
�

 
T�t+

tR
0

[1�F (y2(z))]dz
! dt+

q1

TZ
0

TZ
s

�2y1 (t) [1� F (y1 (t))] [F (y1 (s))� F (y2 (s))]

e
�

 
T�t+

tR
s
[1�F (y1(z))]dz+

sR
0

[1�F (y2(z))]dz
! dtds+

q2

TZ
0

TZ
s

�2y1 (t) [1� F (y1 (s))] [1� F (y1 (t))]

e
�

 
T�t+

sR
0

[1�F (y2(z))]dz+
tR
s
[1�F (y2(z))]dz

! dtds

Similarly to the above argument, each element in the summation goes to 0 as � goes to

in�nity, and the result follows analogously.
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