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Abstract

A designer allocates several indivisible objects to a stream of randomly arriv-

ing agents. The long-lived agents are privately informed about their value for an

object, and about their arrival time to the market. The designer learns about

future arrivals from past arrivals, while agents strategically choose when to make

themselves available for trade. We characterize revenue maximizing direct mecha-

nism and show that it can be implemented by a ”Name-Your-Own-Price” dynamic

auction mechanism.
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1 Introduction

Revenue Management - broadly speaking, the study of the dynamic allocation of capacity

and its pricing under uncertain, fluctuating demand - has been pioneered on an indus-

trial scale by airline companies in the mid 70’s. These practices have rapidly spread

to the allocation of fixed capacities in hotel booking, freight transportation, car rentals

and holiday resorts, the retail of seasonal and style goods (e.g., groceries and apparel

), electricity generation, e-business (online advertising and broadcasting, allocation of

bandwidth), and event management (sports, concerts, etc...).

The RM techniques utilized in practice yield frequent price fluctuations, as prices

depend on a multitude of constantly changing variables such as time to take-off or major

event, remaining capacity, demand forecasts, weather and so on. In particular, prices

significantly change following unexpected demand shocks, as airlines, for example, have

the time and ability to revise their estimates about residual demand (see Escobari [2012])1.

As a consequence, customers have an incentive to strategize by carefully timing their

purchase2. Until recently the execution of such strategies was encumbered by the fact that

pricing algorithms are opaque, and by the absence of reliable historical data: strategizing

customers were basically playing a lottery. This dramatically changed with the advent of

price comparison websites such as Bing/Travel and Kayak who offer free advice (based

on huge amounts of data and on Artificial Intelligence algorithms) about the timing of

purchase: customers for a certain flight are advised whether to buy immediately or wait,

together with an estimate of the probability of saving money by waiting3. Similar websites

offer advice about the timing of purchase for durable goods.

The conventional wisdom is that consumer strategizing may hurt revenues (see, for

example, Mantin and Rubin [2013] who estimate a 3% revenue loss on routes where infor-

mation from Bing/Travel is available, or Soysal and Krishnamurthi [2012] who estimate

a significant 11% loss in the market for fashion goods). Note that revenue may be poten-

tially harmed both by the shift in demand to lower prices, and by the indirect effect on

1Booking is sometimes possible a year in advance !
2See for example Li, Granados and Netessine [2012] who empirically estimate the percentage of

strategic customers in the airline industry.
3See Etzioni [2003] for the scientifc basis of this development.
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the seller’s ability to learn about residual demand. An important question is therefore

to understand what are the precise consequences of such behavior, and how the existing

pricing techniques could be adjusted in order to take it into account.

As Talluri and van Ryzin [2004] note in their excellent overview of the RM literature,

the workhorse models in the scientific literature have ”myopic” customers who buy a

product as soon as the price drops below their willingness to pay. Moreover, the stochastic

pattern of customer arrivals (in other words, the demand pattern) is assumed to be

known to the designer, although, in practice, accurate demand forecasting in a changing

environment is one of the main difficulties in RM.

In this paper we take a step towards closing the gap between the practical reality

and theoretical research. We study a dynamic trading model where a designer allocates

several indivisible objects to a stream of randomly arriving, privately informed agents.

Agents arrive according to a general Markov counting process. This class is particularly

important, since it includes Poisson arrival process with unknown arrival rate4 (in this

case, the designer updates his beliefs about the arrival process and hence about the

future demand depending on calendar time and the number of earlier arrivals). All

agents are long lived, and each agent is privately informed about her value for an object,

and about her arrival time to the market (thus, private information is two-dimensional).

As the designer may not be aware of the nature of the arrival process, this naturally

leads to correlation between arrival times from the designers point of view. Thus, a

major feature of our model is that the designer learns about future demand from past

arrivals (for example, an airline may learn both from past sales but also by gathering

information about ”waiting” customers on platforms such as Bing/Travel). In turn,

agents strategically choose when to make themselves available for trade, and in doing so

they realize that they influence the designer’s beliefs, and hence, potentially, their own

terms of trade. Both agents and designer discount the future, and the designer wishes to

maximize her expected revenue.

We first look at the benchmark case with observable arrivals. In this case, private

information pertains only to values and is one-dimensional. As in a static auction, the

4Most of the revenue management literature assumes that consumers arrive according to Poisson

arrivals with a known rate of arrivals.
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seller’s revenue is maximized by a policy that maximizes the expected discounted sum of

virtual values (Theorem 1).

In case of unobservable arrivals the mechanism should take into account the second di-

mension of the agents private information, namely their arrival time. The main result here

(Theorem 3) is based on a monotonicity property of the revenue maximizing allocation:

Agents who arrive earlier get the object earlier. We use this property - which is satisfied

in our environment by the revenue maximizing allocation with observable arrivals - to

show that the payment scheme that maximizes revenue under observable arrivals maxi-

mizes revenue even if arrivals are unobservable (as long as the arrival process is Markov

!). Intuitively, early arrivals may be detrimental for the agents since, it makes the seller

more optimistic about the future arrivals and may induce higher prices. Yet, it does not

imply that the agents necessarily would like to postpone their arrivals, since later arrivals

also increase the risk of sales to other agents. The Markov property implies that an agent

who delays her arrival and arrives at time t gets exactly the same expected value as an

agent who truthfully arrives at t. Note that the agents here solve an optimal stopping

problem: when to reveal their presence to the mechanism designer? Together with the

fact that the designer’s allocation decision is itself the solution to a sequence of optimal

stopping problems, this allows us to show that, under the above payment scheme, it is

optimal for every agent to announce his presence immediately. This characterization uses

a specific and important physical property of the private information about the arrival

time, namely that the agent may misrepresent it only in one direction - by arriving or

making herself available for trade later. Therefore, only one-directional deviations with

respect to arrival time should be taken into account.

In the revenue-maximizing mechanism derived in our paper, the price paid by every

buyer depends only on the information obtained before the declared arrival time of that

buyer, and is known to him at the reporting time. The main distinctive feature of the

optimal mechanism - the recall option - is quite realistic and is actually employed in

practice. A leading example is the ”Name your Own Price ” mechanism and its variants

used by many firms following Priceline.com’s lead. In these schemes the customer names

a price - this is the indirect version of our direct mechanism where the buyer names a

price. If the price is above a posted price the buyer gets the object immediately. If it is
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below the seller decides, after a period of time (during which it potentially sells to others

while observing other arrivals and demands,) whether to come back to this customer

and sell at the named price. In this sense the Name Your-Own-Price mechanism is an

extension of a posted price mechanism which allows to sell to low value customers later.5

We use the above results to show that the presence of long-lived agents that strategize

over the timing of their purchases (assuming arrivals are unobservable) yields a higher

revenue than the one optimally obtained in the situation where agents are short lived

and must buy immediately upon arrival (Corollary 5). In other words, we show that

appropriate revenue management techniques can be used to overcome and even draw

benefits from the presence of consumers who strategically choose their purchase time.

This is particularly important in environments where learning about demand is relevant

since in those settings the advantages of RM techniques over simpler ”naive” strategies

such as fixed pricing or pricing without belief updates are most pronounced (see Aviv and

Pazgal [2005] for an excellent discussion of these issues). Most of the previous literature

showed that strategic customers hurt seller revenue. The reason we find that strategic

customers in our setup always increase the expected revenue of the seller is that we do

not restrict the seller to posted-price mechanisms.

Finally, our analysis answers the question whether the seller can increase revenue

by withholding information from potential buyers. This question is of high practical

relevance: shall an airline inform buyers about the remaining number of seats or not?

Shall a fashion store inform buyers when only few items of the current collection are left

in store to discourage waiting for the end-of-season sale?

The effects of informing customers go in different directions. When the remaining

number of items is low it reduces customers incentive to wait and thus increases the

discounted revenue of the seller. When many items are available the opposite happens.

In a recent study Yin, Aviv & Pazgal [2009] find that, with a known Poisson arrival

process, two types of buyers and a seller who is restricted to posted price mechanisms

with two prices, hiding the number of remaining items from potential buyers can increase

5Priceline accepts bids within a prespecified, bounded time period. The maximal time after

which priceline accepts a bid is 1 hour for national flights and 24 hours for international flights (see

http://www.priceline.com/InformationCenter/html/faq.htm#quest8).
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expected revenue by up to 20%. In contrast to this result we show in Theorem 4 that if

the seller is not restricted to a finite number of prices and to posted price mechanisms

hiding information is never beneficial.

1.1 Related Literature

Complete information, continuous time, dynamic allocation problems with long-lived

agents and with recall have been analyzed by, among others, Zuckerman [1988], Zucker-

man [1986], Stadje [1991], and Boshuizen and Gouweleeuw [1993]. In these models, the

planner is perfectly informed about the arrival process, and he also observes values and

arrival times.

Gershkov and Moldovanu [2009a] and Gershkov and Moldovanu [2010a] analyze effi-

ciency and revenue maximization in continuous-time optimal stopping frameworks where

the agents are short-lived (thus there is no recall) and where the planner has several

heterogenous objects. In a similar framework (but with discrete time), Gershkov and

Moldovanu [2009b] and Gershkov and Moldovanu [2012] allow the planner to learn about

the distribution of values from past observations6. Learning about values is akin to intro-

ducing direct informational externalities (i.e., interdependent values), and these authors

show that the efficient implementation of the complete information optimal dynamic pol-

icy is only possible under strong assumptions about the learning process. They also

characterize the incentive-efficient mechanism (second best) in this framework. In con-

trast to the case where there is learning via past observed values, a current paper uses a

special physical property of the arrival times: agents can only lie in one direction, making

themselves available for trade after they arrive, but not before.7

Mason and Välimäki [2011] focus on revenue maximizing, posted-price mechanisms

in a model with one object and with stochastic and unobservable arrivals of short-lived

6Babaioff, Blumrosen, Dughmi and Singer [2011] analyze posted price mechanism with observable

arrivals, and evaluate the loss of the revenue due to lack of knowledge of the distribution of the values.
7Green and Laffont [1986] pioneered the study of (static) mechanism design problems where particular

deviations from truth-telling are not feasible. Other aspects of these (static) environments were analyzed

in Deneckere and Severinov [2008], Bull and Watson [2004], [2007], Ben-Porath and Lipman [2012],

Kartik, Tercieux [2012].
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buyers. The arrival process is Poisson with two possible rates. The present strategic

effects of delaying arrivals do not arise in their model because the agents - who can only

be served upon arrival - cannot manipulate the designer’s belief about the underlying

demand. Aviv and Pazgal [2005] consider myopic agents. In their model the arrival

process is Poisson, and the belief about its rate follows a Gamma distribution with up-

dated parameters (also in their model consumers cannot strategically affect the designer’s

beliefs).

Only a small literature considers the effect of patient, strategic customers. Su [2007]

determines the revenue maximizing policy for a monopolist selling a fixed supply to

a deterministic flow of agents that differ in valuations and patience, and hence have

different incentives to wait for sales. Aviv and Pazgal [2008] also consider patient buyers,

but restrict the monopolist seller to choosing two prices, independently of the past history

of sales. They show that the presence of patient buyers may be detrimental for revenue.

Closer in spirit to the present paper, Gallien [2006] analyzes the revenue maximizing

procedure in a continuous time model where the agents are long-lived, and where arrivals

are private information. He restricts attention to arrivals that are governed by special,

commonly known arrival processes where recall is never used by the complete information

stopping policy. In these processes the optimal pricing scheme is time-independent, thus

strategizing in the time dimension and the ensuing learning - which are the focus of our

paper - do not play any role. In other words, Gallien’s solution coincides with the one

where arrivals are observable, and where agents are short lived (see Albright [1977] and

Gershkov and Moldovanu [2009a]).

Board and Skrzypacz [2015] characterize revenue maximization in a finite horizon

model with several objects and patient agents where arrivals are described by a Poisson

process with a known, fixed arrival rate. A main assumption is that current arrivals are

independent of past ones. Thus, there are no informational externalities, and learning

from arrivals does not play a role in their model. Roughly speaking, allocative externality

payoffs (modified to maximize virtual values instead of values) maximize revenue in their

case. Similar to our Corollary 5, Board and Skrzypacz show that, in their environment,

strategic customers increase the sellers revenue.8

8Board and Skrzypacz’s [2015] paper and the present article where written in parallel, and indepen-
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Garrett [2013] also analyzes revenue maximization in a model where arrivals are

governed by a known, fixed process. In his setting the values of the agents evolve over

time, which yields price fluctuations. Contrasting the present model, there are no infor-

mational externalities between the agents since the evolution processes are independent

across agents. His analysis builds upon the work of Pavan, Segal and Toikka [2014] who

analyzed incentive compatibility and derived optimal mechanisms in very general envi-

ronments where all the agents are present at all periods but where information arrives

over time.

Besbes and Lobel [2012], Pai and Vohra [2008] and Mierendorff [2010a] analyze revenue

maximization in a discrete time, finite horizon framework where the arriving agents are

privately informed about values, and about a deadline by which they need to get the

object. The distribution of the number of arrivals in each period is known to the designer.

A recent literature looks at efficient dynamic mechanism design, e.g. Bergemann and

Välimäki [2010], Cavallo, Parkes and Singh [2010], Parkes and Singh [2003], Said [2012],

Athey and Segal [2013] and Mierendorff [2010b] construct generalizations of the Clarke-

Groves-Vickrey/ Arrow-D’Aspremont-Gerard Varet mechanisms for various environments

where either the population or the available information changes over time9. It is im-

portant to note, for example, that the independence assumptions made by Bergemann

and Välimäki do not hold in our model since arrivals are correlated and unobservable10.

Moreover, the type of mechanisms used by Athey and Segal are excluded here by the

requirement that prices cannot depend on information arriving after the allocation time.

In a companion paper, Gershkov et. al [2014], we analyze the properties and the im-

plementation of the efficient dynamic allocation and implementation within the present

arrival model.

dently of each other.
9An earlier literature starting with Dolan [1978] has dealt with similar questions in the more restricted

environment of queueing/scheduling. For example, Kittsteiner and Moldovanu [2005] study efficient

dynamic auctions in a continuous time queueing framework where agents arrive according to a Poisson

process and have private information about needed processing times.
10This would correspond to correlations in the times where values jump upwards (from zero) in their

model, and hence to correlations of values.
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2 The Model

A designer endowed with k ≥ 1 indivisible, identical objects faces a stream of ran-

domly arriving agents in continuous time. The agents’ arrivals are described by a time-

inhomogeneous Markov counting process {N (t), t ≥ 0} where N (t) is a random variable

representing the number of arrivals up to time t. This means that the probability measure

over arrivals after time t depends on the time t, and on the number of prior arrivals.11

The time horizon is potentially infinite, but the framework is rich enough to embed the

finite horizon case by considering arrival processes where after some time T̄ <∞ no more

arrivals occur, i.e., where N (t) stays constant for any t ≥ T̄ . Since arrivals are described

by Markov counting processes, the designer’s beliefs about future arrivals may evolve over

time, and may depend on the number of past arrivals.

Each agent’s private information is two-dimensional: the arrival time a ≥ 0 and the

value v ≥ 0 he gets if allocated an object. In other words, we assume that the designer

does not observe agents’ arrivals. If an agent arrives at time a, gets the object at time

τ ≥ a and pays p at time t′ ∈ [a, τ ], then her utility is given by

e−rτv − e−rt′p

where r ≥ 0 is the discount factor. We assume that an item cannot be reallocated after

an initial assignment. We denote by {k(t), t ≥ 0} the number of remaining objects at

time t.

The agents’ values are represented by I.I.D. random variables vi on the support [0, v̄)

where v̄ ≤ ∞, with common c.d.f. F, and with continuous density f . We assume that

each vi has a finite mean, and a finite variance. We make a standard assumption that

the virtual valuation v − 1−F (v)
f(v)

is increasing in v. We also assume that, for each agent,

his arrival time is independent of his value. This allows us to focus on the information

revealed by manipulating arrivals, as opposed to information revealed by manipulating

values.12 A designer maximizes his expected discounted revenues. That is, a payment

11The Markov case is of particular importance, as all commonly used models of learning about the

arrival rate of a Poisson process are covered by it (see e.g. Presman [1990], and Example 3.3 in the

present paper). In fact, almost the entire literature deals solely with this case.
12Assuming dependence between the arrival times and values will generate correlation between the
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of p at time τ ′ generates utility of e−rτ
′
p. Potentially, every agent may pay more than

once, however, since the agent has the same discount factor as the seller, if some agent

pays more than once, there exists another mechanism that generates the same expected

payment and utilities, in which every agent pays only once.

We denote by τi the (random) time the designer allocates an object to the i-th agent

(set τi = ∞ if agent i does not receive an object) and by τ ′i the time agent i pays. A

vector τ of such allocation times is feasible if no agent receives an object before he arrives,

ai ≤ τi, if no agent pays before his arrival, ai ≤ τ ′i and if at most k objects are allocated∑∞
i=1 1{τi<∞} ≤ k. Denote the set of feasible allocations by T and by pi the payment of

player i. The revenue maximizing principal aims at maximizing

E

[
∞∑
i=1

e−rτ
′
ipi

]
over the set of feasible and incentive compatible allocations T .

2.1 Direct Revelation Mechanisms

The Revelation Principle for dynamic environments (see Myerson [1986])13 implies that we

can restrict attention to mechanisms where each agent reports his value and arrival time,

and where the mechanism specifies a probability of getting the object and a payment as a

function of the reported value, reported arrival time and the time of the report. Moreover,

without loss of generality, we can restrict attention to direct mechanisms where each

agent reports his type upon arrival, e.g., the time of the report coincides with the arrival

time.14. To maximize revenue, we could restrict attention to mechanisms where agents do

not observe the history15. But, we conduct our analysis in a different way: we first assume

values. This may create additional complications in implementation, as explored in Gershkov and

Moldovanu [2009b] and Gershkov and Moldovanu [2012].
13Although the so called ”revelation principle” need not hold in settings where some deviations from

truth-telling are unfeasible for certain types, this principle does hold for our case of unilateral deviations

in the time dimension -see Theorem 1 and Example 5.a.2 in Green and Laffont [1986].
14The equilibrium outcome of any mechanism where at least one agent reports his type (value and the

arrival time) after his arrival, can be replicated by another mechanism and equilibrium where all agents

reports their types upon arrival.
15Intuitively, minimizing the information revealed to each agent reduces the available contingent de-

viations from truthtelling, and therefore relaxes the incentive compatibility constraints for that agent.
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that all the agents observe the entire history of reports, and we later show that, assuming

this information structure, does not affect the seller’s expected revenue. That is, we show

that the seller can never generate any additional revenue from hiding information from

the agents. Since recall may be employed by the optimal policy, an allocation and a

payment to an agent can be conditioned also on information that accrues between the

arrival of that agent and the allocation time.

We shall assume below that, upon arrival, the agents observe the entire history of

the reports made by previous agents. Nevertheless, we show that revelation of previous

information by the designer does not affect the ex-ante expected revenue. Therefore, the

optimal mechanism obtained here under the full disclosure is optimal even if the designer

could hide from the agents historical information revealed by earlier arriving agents.

A direct mechanism specifies at every time t and for every agent that reported an

arrival at that or any earlier time the probability of getting the object and a payment

at t. We assume that agents leave the mechanism as soon as they obtain an object, and

thus we do not allow an agent’s payment to depend on information that accrues after her

allocation:

Assumption 1 (Agents’ Exit Condition ) The payment Pi made by agent i only de-

pends on information accruing before the time she gets allocated an object, τi.

Assumption 1 is identical to the efficient exit condition made in Bergemann and

Välimäki [2010]. We discuss the effect of this assumption in later stages. This property

is very appealing as in many applications uncoupling of the physical and monetary parts,

and conditioning the payment on the information arrived after the physical allocation is

not always realistic, and we abstract from it here.

Assumption 2 (Ex-Post Individual Rationality) We restrict attention to ex-post

individual rational mechanisms, where, after every history, the equilibrium utilities of

all agents are non-negative.16

16Assumption 2 excludes schemes a la Cremer and McLean which could otherwise be used to extract

correlated arrival times at no cost.
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2.2 Observable Arrivals

Let us first briefly consider the benchmark case of welfare maximizing designer who

observes both the agents’ arrivals and their values for the object, so that agents have no

private information. Our environment is then equivalent to a standard continuous-time

search model with perfect recall. Since the main focus here is on the implementation

of the revenue maximizing dynamic allocation (or, equivalently, the implementation of

the classical welfare maximizing policy), we assume that a unique optimal policy in the

complete information model exists.

For future reference, we denote by τ ? ∈ T the welfare maximizing policy under

complete information

τ ? ∈ arg max
τ∈T

E

[∑
j∈N

e−rτjvj

]
.

It follows from the dynamic programming principle that the optimal stopping policy

is then deterministic. As the realized optimal allocation depends only on the realized

sequence of arrival times a = (a1, a2, . . .) and valuations v = (v1, v2, . . .) we use the

notation τ ?(a, v).

To shorten notation we denote by h(t) a history at time t, i.e.

h(t) = ((aj)j≤N (t), (vj)j≤N (t)) .

Finally, we denote by E[ · | h(t)] the probability measure conditional on the history h(t).

We denote by τ � ∈ T the policy maximizing the expected discounted sum of virtual

valuations:

τ � ∈ arg max
τ∈T

E

[∑
i∈N

e−rτi
(
vi −

1− F (vi)

f(vi)

)]
.

As in the welfare maximizing case policy τ � depends only on the realized sequence of

arrival times a = (a1, a2, . . .) and valuations v = (v1, v2, . . .) and hence we use the notation

τ �(a, v).

As an intermediate step we consider now the case where values are private information,

but where arrival times are observable. We characterize below the optimal allocation and

the transfers that implement it.
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Theorem 1 (Revenue Maximizing Policy) When arrivals are observable, the policy

τ � is implementable using the following payments

Pi(a, v) = 1{τ�i (a,v)<∞}
E
[∫ vi

0

(
e−rτ

�
i (a,v) − e−rτ�i (a,(z,v−i))

)
dz |h(ai)

]
E
[
e−rτ

�
i (a,v) |h(ai)

] . (1)

charged upon allocation. In addition, this mechanism is revenue maximizing.

Proof. See Appendix.

Although the time when agent i gets the object depends on the history up to this

time, and, in particular, it depends on the arrival times and values of the agents that

arrive after the arrival of agent i, the payment agent i will pay at the time of allocation

depends only on the information available up to his arrival.

The proof of the above theorem is based on a few observations. First, we show that

monotonicity of the stopping time with respect to agent’s valuation is a necessary and

sufficient condition for implementation. Monotonicity implies that a higher value of agent

i must lead to a smaller expected discounted time of getting the object. Second, we show

that, in the optimal mechanism, hiding information about earlier arrivals and values does

not increase the seller’s expected revenues. Finally, we show that the stopping rule τ �

maximizes the seller’s expected revenue.

3 Unobservable Arrivals and Implementation via the

Name-Your-Own-Price Mechanism

It is not at all clear that the revenue-maximizing allocation derived in Theorem 1 remains

implementable also in case that the arrivals are unobservable. Recall that in case of a

Markov arrival process, the probability measure on arrivals after time t, depends on the

time t and on the number of arrivals prior to time t. Assume that all the agents but

some arbitrary player i report truthfully their arrival time, while player i that arrives at

ai consider reporting a′i > ai. In both cases, after time a′i the designer will have the same

beliefs about the future arrivals. Therefore, one may think that agents’ incentives about

arrival time are trivially satisfied. This however is not true, since in case of arrival at time

ai rather then at a′i, the designer becomes more optimistic (in the time interval between
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ai and a′i) about the future arrivals. Hence she may charge higher price than in case of

arrival at time a′i > ai. Therefore, arriving later may decrease the expected payment.

The disadvantage of this deviation is that it may decrease the chance of getting the object

in case of arrivals of additional agents between ai and a′i. Nevertheless, we show that

the payments characterized in Theorem 1 continue to generate correct incentives even if

arrivals are unobservable.

In the optimal direct mechanisms agents are supposed to report their values. Direct

mechanisms are somewhat less appealing in practice, and therefore we suggest another,

more intuitive indirect mechanism. This mechanism has many common features with

the ”Name Your Own Price” mechanism, pioneered by Priceline.com. That scheme was

introduced in 2000, and today Priceline.com generates annual revenues of 6.8 billion US$

and employs 9000 people. There a buyer specifies a price he is willing to pay for a

product (e.g., an airline ticket or hotel room). The seller then decides after a period

of time (during which it potentially sells to others while observing other arrivals and

demands) whether to come back to this customer and sell at the named price.17

Definition 2 (Name Your Own Price Mechanism) Every agent decides on a bid

and on the time of submitting his bid. At every point in time, the seller decides which of

the previously submitted bids to accept (if any). As the function Pi defined in Eq. (1) is

increasing in v we can define the function v̂(b) implicitly and recursively in i for every

sequence of reported submission times â by

v̂i(b, â) = min
vi
{bi = Pi(â, (vi, v̂−i(b))} ,

where we take the minimum over the empty set to be zero. Using those inferred valuations,

the seller uses the allocation rule τ �(â, v̂(b, â)), where â are the submission times18.

Recall that Pi(â, (vi, v̂−i(b)) depends only on the information up until â. Therefore,

the recursion is with respect to i. The next theorem shows that the allocation and the pay-

17Later similar schemes were adopted by additional companies in other industries (e.g., Chiching.com

offers using Name Your Price for local services). In 2005 EBay introduced a design option called ”Best

Offer” that allows potential buyers to submit an offer to a seller that can accept or reject. ScoreBig

offers Name Your Own Ticket Price for sport events and concerts.
18Note, that this allocation rule depends only on the times the players made bids and the bids they

submitted.
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ment scheme characterized in Theorem 1 are implementable also in case of unobservable

arrivals and thus revenue maximizing. Furthermore, we show that the dynamic bidding

mechanism with the allocation rule τ �(â, v̂(b)) generates the same expected revenue as

the optimal mechanism.

Theorem 3 (Unobservable Arrivals and Name-Your-Own-Price)

1. The payment defined in Theorem 1 implements policy τ � under unobservable ar-

rivals, and this mechanism is revenue maximizing.

2. The Name-Your-Own-Price mechanism with the allocation rule τ �(â, v̂(b)) is rev-

enue maximizing.

Proof. See Appendix.

Note that if an agent gets an object immediately all agents with higher valuations

also get the object immediately. By incentive compatibility, all agents who get the object

immediately must pay the same price. Let us denote this price by p(h(t)). As any agent

who makes a bid of p(h(t)) in the indirect mechanism gets the object immediately, we can

interpret p(h(t)) as a posted price (or buy it now price). Thus, the dynamic bidding

mechanism proposed in this paper is an extension of a posted-price mechanism where

agents who value the good less than the posted price have the chance to make lower bids

and be recalled later.

The first result above uses the fact that it impossible for the agent to ”fool” the

designer about the latter’s continuation value. At the time the agent reports his arrival,

the designer knows his true continuation value since this only depends on the information

that the agent arrived, but not on the precise arrival time. The result is, however, non-

trivial since the agent can still manipulate the price by changing the reported arrival time.

For example, in a learning setting, the designer’s continuation value may be decreasing

over time if no agent arrives. Thus, an agent who announces his presence later will pay a

lower price (conditional on no other agent arriving in between). But, delaying arrival also

entails the risk of another agent with a higher valuation arriving beforehand. Roughly

speaking, our above result shows that the risk of not getting the object offsets the benefits

of lower future prices.
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In the static case, the expected utility in any incentive compatible mechanism is spec-

ified by the allocation (up to a constant) while prices were set, for a given allocation, by

the incentive compatibility constraints. In the dynamic setting the discounted stopping

times replace the static probabilities of getting the object. Therefore, the monotonicity

of the allocation yields monotonicity of the expected utility, while prices (given the allo-

cation) again play a secondary role, and are determined by the incentive compatibility

with respect to values. The agent who reports type (a′, v) where v is his true value, gets

the utility of type (a′, v) independently of his true arrival time a ≤ a′ (up to the effect of

discounting), since, in both cases, the designer will have the same beliefs about the ar-

rivals posterior to time a′. Monotonicity of the allocation with respect to arrivals together

with incentive compatibility with respect to values imply that a later arrival necessarily

decreases the expected utility. In addition, discounting makes such a deviation even less

profitable.

Note also that in the direct mechanism an agent who decides when to report his

arrival solves an optimal stopping problem about her arrival time! Proving that truthful

reporting of arrival times is incentive compatible under the payment scheme of Theorem

1 is difficult because no explicit solution τ � to the designer’s (complete information)

optimization problem is known. Hence, it is not possible to directly verify that, under

the proposed optimal stopping time τ �, agents have incentives to truthfully report their

arrival times. We overcome this difficulty by connecting the incentives of an agent to

report a later arrival with the designer’s incentives to delay the allocation of the object.

In the proof of Theorem 3 we first show that monotonicity in arrivals is sufficient to ensure

truthfulness even when arrivals are unobservable. This monotonicity requires that agents

who arrive earlier get the object earlier. In a second step we show how the fact that the

designer’s allocation decision is itself the solution of an optimal stopping problem ensures

the necessary monotonicity in arrival times, so that it is indeed optimal for every agent

to announce his presence immediately.

16



3.1 Information Disclosure

In dynamic environments the seller can use various information disclosure policies, e.g.

about the available stock of objects, or about the previous arrivals. Yin et al [2009]

showed that hiding information about the remaining stock is revenue enhancing, as it

places ”more pressure” on the agents with high values. This observation is puzzling since

we often see that sellers disclose information about the number of remaining objects, or

about the timing of earlier reservations (for example, Expedia reveals information about

the number of the remaining seats in the current price category, and about time of the

last booking in suggested hotels). Given that this information disclosure is voluntary, it

is reasonable to think that it should not decrease the seller’s expected revenues. Our next

result shows that, in our environment, disclosing information to the agents does not affect

the ex-ante expected revenue of the designer. The difference in results stems from the

imposed restriction on the selling mechanisms in Yin et al [2009]. They analyzed a class

of mechanisms in which the seller preannounces two prices: premium and postseasonal

prices. In particular, more sophisticated pricing policies that depend on the available

stock or on some additional information such as previous arrivals are a-priori excluded.

Our next result formally proves a revenue equivalence which holds independently of the

information revealed to the agent:

Theorem 4 (Generalized Revenue Equivalence) Suppose that arrivals are unobserv-

able to the principal, and that each agent i observes at the time of her arrival ai a signal si

which is (weakly) less informative than observing the prior history of arrivals and reported

values {(aj)j≤N (ai), (vj)j≤N (ai),j 6=i}. Then, it is revenue maximizing for the principal to

disclose all information to the agents and to use the mechanism from Theorem 3-1.

Proof. See Appendix.

The intuitive interpretation of Theorem 4 is that, as the signal si is observable to

the principal, he needs not to pay an information rent for it, and thus his revenue is not

distorted by it. More interestingly, Theorem 4 also shows that, in the case of observable

arrivals, the principal cannot increase revenue by hiding any information from agents: as

an agent forms correct expectations about his chance of getting an object, he can not

be “fooled” on average. If some information is concealed from an agent, then the agent
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and the principal have different beliefs about the the future arrivals, and hence different

probability measures in calculating the discounted time of getting the object. However,

the agent has the ”correct” ex-ante beliefs about the arrivals. Since the principal cares

about the ex-ante revenues, he is willing to adopt the agent’s beliefs.

3.2 The Effect of Strategic Agents on Revenue

As mentioned in the Introduction, a major issue in the recent literature on applied revenue

management has been to quantify the cost of strategic arrivals. This literature compares

two situations: In the first situation, buyers arrive and decide whether to buy or not,

and then leave the mechanism immediately. In the second situation, buyers strategically

time their purchase. The following proposition shows that, at the optimum, the obtained

revenue is always higher when customers strategically time their purchase! This holds

here because the seller is able to better intertemporally price-discriminate (by ”keeping in

store ” customers that may myopically not buy at a time where prices are too high, and

then disappear). This benefit accrues here despite the fact that learning about demand

may be potentially disrupted by consumers’ strategic behavior.

Corollary 5 (Strategic) The revenue in the optimal mechanism for short-lived agents

(that only buy upon arrival) is lower than the revenue in the optimal mechanism for agents

who can strategically time their buying decision, and whose arrivals are unobservable.19

Proof. See Appendix.

Board and Skrypacz [2015] reached the same conclusion using deterministic posted

price mechanisms in a model where arrivals follow a Poisson process. In our model

the same result holds true despite the effect of later arrivals on the designer’s beliefs,

continuation value and pricing scheme.

Remark 1 In the analysis above we assumed (Agents’ Exit Condition) that the payment

made by agent i only depends on information accruing before the time she gets the object.

However, this assumption is without loss of generality and the seller cannot increase his

expected revenue even if he could condition the payment for an object on the information

obtained after allocating that object.

19We assume here that the seller is able to distinguish between the long- and short-lived agents.
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We now illustrates the above results with an example of Poisson arrival process with

unknown rate of arrivals.

3.3 Example: Learning the Arrival Rate of a Poisson Process

Let (N (t))t∈R+ be a Poisson process with unknown arrival rate κ ∈ {l, h} ⊂ R+. Define

the posterior arrival rate process

λ(t) = E[κ |h(t)] ,

and note that the posterior expected arrival rate λ(t) only depends on time t and the

number of arrivals before t, N (t), i.e. λ(t) = λ(t,N (t)). More precisely, by Bayes rule

we have that

λ(t, n) = l + (h− l)P[κ = h | Nt = n]

= l + (h− l) P[κ = h]P[Nt = n |λ = h]

P[κ = h]P[Nt = n |κ = h] + P[κ = l]P[Nt = n |κ = l]

= l +

λ(0)−l
h−l exp(−h t) (h t)

n

n!
(h− l)

λ(0)−l
h−l exp(−h t) (h t)n

n!
+ h−λ(0)

h−l exp(−l t) (l t)n
n!

= l +
h− l

1 + h−λ(0)
λ(0)−l exp((h− l)t− n log(h

l
))
.

We can easily introduce a deadline T̄ ∈ R+ after which the designer cannot allocate

the good: this is done by simply setting λ(t, n) = 0 for all t ≥ T̄ and all n ∈ N. As

no agent arrives after time T̄ , and as the designer discounts the future, it will never be

optimal to allocate an object after the deadline.

Note that the expected posterior arrival rate continuously decreases if there is no

arrival, and it jumps up at the time of each arrival. As a consequence, the optimal policy

with learning is very different from the optimal policy without learning. To see this,

consider, for example, the case of a single object. Without learning the optimal policy is

given by a constant cutoff together with a fire-sale auction at the deadline (if any) (see

Board and Skrypacz [2015]).

In our case with learning, the value obtained by a fixed continuation strategy is higher

when the arrival rate is higher, and thus the optimal policy allocates the object later.

Thus, as only higher types acquire the object, the optimal cut-off and price both jump
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Figure 1: Numerical solution of the optimal cutoffs as a function of time. The cutoffs are welfare max-

imizing when the valuations are uniform distributed on [0.5, 1] and revenue maximizing when valuations

are uniform distributed on [0, 1]. Depicted here are the cutoffs for zero to five arrivals in the single object

situation with a prior that assigns probability to the arrival rates 1 and 5. Higher cutoffs correspond to

more arrivals. The deadline equals T̄ = 1 and the exponential discount rate is given by r = 0.05. At

the deadline T̄ there is an auction with reserve price equal to 0.5 and the agent, who arrived with the

highest valuation above 0.5 gets the object. The dotted lines mark the optimal constant cutoff’s when

the arrival rate is known to be 1 or 5. The expected arrival rate at time zero equals two. The dashed

line is an example path where at time 1/3 and 2/3 an agent arrives and the optimal cutoff jumps up.

up after every arrival (for an illustration see Figure 1)20. In practice the arrival of the

agent might be a physical arrival in a store, or a visit on a website selling the good.

Ignoring the opportunity of learning may cause a significant loss in revenue: For

example in the setup of Figure 1 setting the optimal constant cut-off of 0.854 (i.e., optimal

for the time zero expected arrival rate of 2) yields an expected welfare/revenue of 0.577.

20In addition, with several objects, cutoffs and prices jump after each sale since supply becomes smaller.
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This represents a loss of approximately 19% compared to the optimal optimal policy that

generates here a welfare/revenue of 0.711.

4 Conclusion

We have analyzed dynamic allocation and pricing in a continuous time, discounted model

where arrivals are governed by a Markov counting process, and where agents are privately

informed both about values and arrival times. Since arrivals may be correlated, the plan-

ner learns along the way about future arrivals. Besides the theoretical interest of ex-

tending the static mechanism design paradigm to a basic dynamic allocation problem, we

see the main applications of our model and methods to revenue management techniques

in complex situations where capacity is limited, where agents can strategically choose

the time of their purchases, and where the underlying stochastic nature of the demand

pattern must be learned along the way. We offer tools and insights that allow providers

of Revenue Management and of consumer search tools to extract the benefits from such

situations.
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5 Appendix

5.1 Proof of Theorem 1

The proof of Theorem 1 is based on a couple of results interesting on their own. As

an intermediate step we provide a characterization of a mechanism that implements the

welfare maximizing (the dynamically efficient) allocation.

Definition 6 Consider two histories h(ai) and h′ (ai) that differ only in the valuation

of agent i , such that v′i, the valuation of i in h′ (ai), is larger than vi, the valuation in

h (ai) . A stopping time τ is monotone with respect to valuations if for any agent i, and

for any two such histories it holds that

E
[
e−rτi(a,(v

′
i,v−i)) |h′(ai)

]
≥ E

[
e−rτi(a,(vi,v−i)) |h(ai)

]
.

The next theorem shows that the monotonicity with respect to valuations is crucial

for implementation.

Theorem 7 (Monotone Allocations are Implementable) Assume that arrivals are

observable. If the allocation τ is implementable then it is monotone with respect to valu-

ations. Conversely, if the allocation τ is monotone with respect to valuations, then τ can

be implemented using a payment paid at the time of allocation τi:

Pi(a, v) = 1{τi(a,v)<∞}
E
[∫ vi

0

(
e−rτi(a,v) − e−rτi(a,(z,v−i))

)
dz |h(ai)

]
E [e−rτi(a,v) |h(ai) ]

. (2)

Proof. Under observable arrivals, any agent reports his type (valuation) at just one point

in time, and the agent’s incentive problem is analogous to a static one. The expected

utility of agent i who has valuation vi, arrives at ai and reports truthfully equals

Ui(h(ai)) = E
[
e−rτi(vi − Pi(h(ai)) |h(ai)

]
.

By the standard envelope argument, in every mechanism where the agent reports his

value vi truthfully, it holds that

∂Ui(h(ai))

∂vi
= E

[
e−rτi(a,v) |h(ai)

]
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The result follows immediately from the standard static analysis (see Myerson [1981])

by noting that E[e−rτi(a,(vi,v−i)) |h(ai)] plays here the role of the probabilistic allocation

function in Myerson’s analysis.

We now show that the dynamically efficient allocation is implementable by a mech-

anism where each agent pays the expected externality he imposes on other current, and

on future agents. Despite the possible correlation in arrival times (which implicitly de-

termine whether the value for the object at a certain period is positive or not in the

formulation of Bergemann and Välimäki [2010]), in the case of observable arrivals the

dynamic pivot mechanism implements the efficient allocation in the case of observable

arrivals since, conditional on the observable arrivals, the agents’ values are independent.

Let Pi(a, v) denote the payment charged to agent i at time τi when he gets an ob-

ject, as a function of the arrival times and valuations reported by all agents. The next

Proposition shows that a payment equal to the expected externality conditional on the

information available to the agent at arrival divided by the expected discounted allocation

time implements the socially efficient allocation:

Proposition 8 (Pivotal Payment) The payment scheme

Pi(a, v) = 1{τi(a,v)<∞}
E
[∑

j 6=i(e
−rτ?j (a,(0,v−i)) − e−rτ?j (a,v))vj |h(ai)

]
E
[
e−rτ

?
i (a,v) |h(ai)

] (3)

implements the efficient dynamic allocation policy τ ∗. The resulting mechanism is ex-post

individually rational. Moreover, the efficient dynamic allocation policy τ ∗ is monotone

with respect to valuations.

Proof. We prove that the mechanism is incentive compatible if each agent can observe

all arrivals and valuations of agents that arrived prior to herself. First note that the

payment Pi only depends on arrivals and valuations of agents who arrived prior to i, and

thus is fixed for any future transaction that involves i. The expected value of agent i
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when he arrives at time ai and reports (ai, v̂i) equals

E
[
e−rτ

?
i (a,(v̂i,v−i)) (vi − Pi(a, (v̂i, v−i))) |h(ai)

]
=E
[
e−rτ

?
i (a,(v̂i,v−i)) |h(ai)

]
(vi − Pi(a, (v̂i, v−i)))

=E
[
e−rτ

?
i (a,(v̂i,v−i))vi +

∑
j 6=i

(e−rτ
?
j (a,(v̂i,v−i)) − e−rτ?j (a,(0,v−i)))vj |h(ai)

]
=E
[∑
j∈N

e−rτ
?
j (a,(v̂i,v−i))vj |h(ai)

]
− E

[∑
j 6=i

e−rτ
?
j (a,(0,v−i))vj |h(ai)

]
Note that only the first part of the last expression above depends on the report of the

agent: this exactly equals the value of the principal when agent i arrives with valuation

vi and when the policy τ ?(a, (ṽi, v−i)) is used. By definition, this is less than the value

when the optimal policy τ ?(a, (vi, v−i)) is used, and thus it is optimal for the i to report

vi truthfully. In this case the expected utility of agent i is exactly equal to the difference

between the values of the principal if agent i arrives with valuation either vi or zero,

which is positive, again by optimality. As the payment is fixed, this implies that Pi(a, v)

is less than the valuation of the agent vi, and thus that the mechanism is individually

rational. Monotonicity follows from the previous construction and from Theorem 7.

Corollary 9 (Monotonicity in Valuations) The stopping time which maximizes the

expected discounted sum of virtual valuations τ � is monotone in valuations.

Proof. Proposition 8 shows that the welfare maximizing policy is monotone in valuations.

Replacing valuations by virtual valuations shows that, in the policy maximizing the

expected discounted sum of virtual valuations, agent i′s expected discounted probability

of getting an object is increasing in her virtual valuation vi− 1−F (vi)
f(vi)

. Finally, the result

follows from the monotonicity of the virtual valuation function.

The next theorem specifies the expected revenue in any incentive compatible mecha-

nism.

Theorem 10 (Generalized Revenue Equivalence) Suppose that arrivals are observ-

able to the principal, and that each agent i observes at the time of her arrival ai a signal

si which is (weakly) less informative than observing the prior history of arrivals and
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reported values {(aj)j≤N (ai), (vj)j≤N (ai),j 6=i}.21 Furthermore, assume that this signal is

observable to the principal. Than, the expected revenue of the principal in an incentive

compatible mechanism that implements the allocation τ = (τi)i∈N such that every agent

with a valuation of zero gets a utility of zero equals

E

[∑
i∈N

e−rτi(a,v,s)
(
vi −

1− F (vi)

f(vi)

)]
.

Proof. As the signal si is observable to the principal, he could potentially condition the

allocation τi and the payment P on it. To reflect this dependence in our notation we

write τi(v, a, s). By the Envelope Theorem, the expected payoff of agent i in any incentive

compatible mechanism is given by

E
[∫ vi

0

e−rτi(a,(z,v−i),s)dz | si
]
.

It follows from the law of iterated expectations that the ex-ante (i.e., before seeing his

signal) expected payoff (or information rent) to agent i is given by

E
[
E
[∫ vi

0

e−rτi(a,(z,v−i),s)dz | si
]]

= E
[∫ vi

0

e−rτi(a,(z,v−i),s)dz

]
The outer expectation on the left-hand side is over the signals the agent could observe,

while the inner expectation is over arrival times and valuations of all agents. The expec-

tation on the right-hand side is over valuations, arrivals and signals, and for the rest of

the proof we shall only use this expectation. In the last step we use the usual integration

by parts argument to get revenue equivalence;

E
[∫ vi

0

e−rτi(a,(z,v−i),s)dz

]
=

∫ v

0

E
[∫ x

0

e−rτi(a,(z,v−i),s)dz

]
f(x)dx

= E
[∫ v

0

f(x)

∫ x

0

e−rτi(a,(z,v−i),s)dz dx

]
= E

[∫ v

0

(1− F (x))e−rτi(a,(x,v−i),s)dx

]
= E

[
1− F (vi)

f(vi)
e−rτi(a,v,s)

]
.

21In particular, this implies that the signal is independent of vi, the valuation of player i, vi. Moreover,

we assume that the signal si also contains information on i′s own arrival ai.
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Thus, we have that the revenue of the principal in any incentive compatible mechanism

equals

E

[∑
i∈N

e−rτi(a,v,s)
(
vi −

1− F (vi)

f(vi)

)]
.

We now have all the necessary tools in order to prove Theorem 1:

Proof of Theorem 1. By Corollary 9, the policy τ � is monotone with respect to

valuations, and thus implementable by Theorem 7. By the definition of τ � as the virtual

valuation maximizing allocation, and by Theorem 10, the revenue in any other imple-

mentable mechanism is lower than the revenue in this mechanism.

5.2 Proof of Theorem 3

The main property conducive to implementation under unobservable arrivals is the mono-

tonicity of a stopping time with respect to arrivals:

Definition 11 (Monotonicity in Arrivals) A deterministic stopping time τ is mono-

tone in the arrival times if and only if agents who arrive earlier get the object earlier, i.e.

for all i, ai < ãi and all a−i, v ∈ R∞+

τi((ai, a−i), v) ≤ τi((ãi, a−i), v) .

Theorem 12 Consider a vector of deterministic and Markovian22 stopping times τ and

a vector of payments P such that:

1 the payment P implements τ under observable arrivals

2 τ is monotone with respect to arrivals

3 (τ,P) leaves every agent with a value of zero with a utility of zero

Then P implements τ under unobservable arrivals.

22Markovian: the stopping decision at every point in time depends only on calendar time and on the

number of arrivals, but not on their precise timing.
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Proof. The expected utility of agent i who has valuation vi, arrives at ai and reports

truthfully equals

Ui(h(ai)) = E
[
e−rτi(vi − Pi(a, v)) |h(ai)

]
.

By the standard envelope argument, in every mechanism where the agent reports his

value vi truthfully it holds that

∂Ui(h(ai))

∂vi
= E

[
e−rτi(a,v) |h(ai)

]
.

Thus, the payoff of the agent in any incentive compatible mechanism (in the valuation

dimension) equals

Ui(h(ai)) =

∫ v

0

E
[
e−rτi(a,(z,v−i)) |h(ai)

]
dz + Ui((a1, . . . , ai), (v1, . . . , vi−1, 0))

= E
[∫ v

0

e−rτi(a,(z,v−i))dz |h(ai)

]
+ Ui((a1, . . . , ai), (v1, . . . , vi−1, 0)) .

By (3) the designer does not make any transfer to the lowest type and thus the second

summand equals zero. We show that no agent i has an incentives to misreport his arrival

time as ãi ≥ ai. As the stopping time and the process are Markov, conditional on not

having allocated the object between ai and ãi, the stopping time τ does not change if the

agent deviates and reports his arrival at ãi. Consequently, conditional on the object not

being allocated between ai and ãi, an agent who misreports his arrival time as ãi > ai

and his valuation as ṽi 6= vi receives the same payoff as the agent who truly arrived

at that time ãi with valuation vi and misreported his valuation to be ṽi. Hence, the

optimality of truthful reporting (1) implies that even if he deviates by misreporting his

arrival time it will be optimal for him to report his valuation truthfully. Let us denote

by h̃ the counterfactual histories where agent i arrived at time ãi. The expected utility

of reporting the arrival at the (stopping) time ãi equals:

E
[
Ui(h̃(ãi)) |h(ai)

]
= E

[
E
[∫ vi

0

e−rτi((ãi,a−i),(z,v−i))dz | h̃(ãi)

]
|h(ai)

]
= E

[
E
[∫ vi

0

e−rτi((ãi,a−i),(z,v−i))dz |h(ãi)

]
|h(ai)

]
= E

[∫ vi

0

e−rτi((ãi,a−i),(z,v−i))dz |h(ai)

]
.

The first step follows since, by the Markov property, the probability measure only depends

on the number of arrivals prior to time ãi which is the same in the history h̃(ãi) and h(ãi).
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The last step is just the law of iterated expectations. The loss in expected payoff for agent

i from reporting the arrival at time ãi ≥ ai instead of ai is thus given by:

Ui(h(ai))− E
[
Ui(h̃(ãi)) |h(ai)

]
= E

[∫ v

0

e−rτi(a,(z,v−i))dz |h(ai)

]
− E

[∫ vi

0

e−rτi((ãi,a−i),(z,v−i))dz |h(ai)

]
= E

[∫ v

0

e−rτi(a,(z,v−i)) − e−rτi((ãi,a−i),(z,v−i))dz |h(ai)

]
≥ 0 .

Here, the last step follows from (2), i.e. from the monotonicity of the allocation with

respect to arrival times.

Theorem 12 can be used directly to prove that the revenue maximizing allocation τ �

is implementable even if arrivals are unobservable.

Proof of Theorem 3. 1. It follows from the dynamic programming principle that

the virtual valuation maximizing policy is Markov. Furthermore, the payments defined

in Theorem 7 for allocation policy τ � leave an agent with a valuation of zero with utility

of zero. Thus, it only remains to prove that the optimal policy is monotone with respect

to arrivals. Recall that the probability measure over future arrivals depends only on the

number of past arrivals. Hence, when an agent arrives later, the principal uses the same

continuation strategy as he would have used conditional on not allocating the object to

the agent, i.e. τ �i (a, v) ≥ ãi implies that τ �i ((ai, a−i) , v) = τ �i ((ãi, a−i) , v). Consequently

we have that,

τ �i (a, v) ≤ max {ãi, τ �i (a, v)} = max {ãi, τ �i ((ãi, a−i) , v)} = τ �i ((ãi, a−i) , v)

where the last step follows since no agent gets an object before she arrives.

2. Recall that the price paid by agent i at the time of allocation in Theorem 1 depends

only on the information obtained before the arrival of that agent and thus Pi(a, v) is a

feasible bidding strategy in the indirect mechanism.

First, we show that bidding Pi(a, v) at the time of arrival is incentive compatible,

and second that it implements the same allocation as the revenue maximizing, direct

mechanism. By the revenue equivalence result proved above, the indirect mechanism

generates the same expected revenue to the seller.
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Incentive compatibility: Suppose that there exist a bid b 6= Pi(a, v) that increases

the expected utility of buyer i in the indirect mechanism. If the agent submits a bid

at time a which is inconsistent with any value that arrives at time a, he never gets the

object. This gives him the lowest possible payoff of zero, and thus such a bid is never a

profitable deviation. If the bid b is consistent with some valuation v̂, buyer i can profitably

deviate already in the direct mechanism by reporting the valuation v̂i(b, â) inferred by the

seller from this bid. Similarly, the existence of a profitable deviation in the arrival time

dimension in the indirect mechanism implies the existence of a profitable deviation in the

direct mechanism. Since the direct mechanism is incentive compatible, it is optimal for

every agent in the indirect mechanism to submit immediately upon arrival a bid equal to

the payment Pi(a, v) given in Theorem 1.

Revenue Maximization: Since the stopping policy is given by τ �, and since the

virtual values are monotone, the revenue maximizing allocation has a cutoff property:

for every history, values above some cutoff get the object. If there is a unique valuation

that is consistent with the bid made by the agent at time ai the seller infers buyer i’s

valuation perfectly from her bid. If two different values in the direct mechanism are

supposed to get the object with the same probability and to pay the same price, the

designer is indifferent between them and he may apply stopping policy τ � with respect to

any of these values. Therefore, the indirect mechanism implements an allocation which

leads to the same revenue as the revenue maximizing, direct mechanism.

5.3 Remaining Proofs

Proof of Theorem 4. An upper bound for the revenue of the principal is the revenue

he could obtain if he would be able to observe the agents arrivals, which is given by

Theorem 10. In this case his revenue is maximized by disclosing all information to the

agents, and by using the virtual valuation maximizing mechanism. Due to Theorem 3-

1the same revenue can be obtained by disclosing all information to the agents even when

arrivals are unobservable.

Proof of Corollary 5. First, note that the revenue in the optimal mechanism where

agents only buy upon arrival is lower than the revenue in the optimal mechanism when
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buyers are long-lived and arrivals are observable. This holds since any mechanism that is

implementable with short-lived agents is also implementable with long-lived agents and

yields the same revenue by Theorem 10. By Theorem 3 this revenue is unchanged if

arrivals are unobservable and if the process is Markov.
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