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Abstract

We derive the incentive compatible and ex-ante welfare maximizing (i.e., utilitarian)

mechanism for settings with an arbitrary number of agents and alternatives where the

privately informed agents have single-crossing and single-peaked preferences. The optimal

outcome can be implemented by modifying a sequential voting scheme, due to Bowen

(1943), and used in many legislatures and committees. The modification uses a flexible

majority threshold for each of several alternatives, and allows us to replicate, via a single

sequential procedure, the entire class of anonymous, unanimous and dominant strategy

incentive compatible mechanisms. Our analysis relies on the elegant characterization of

this class of mechanisms for single-peaked preferences by Moulin (1980) and, subsequently,

for single-crossing preferences by Saporiti (2009).
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1 Introduction

We derive the welfare maximizing (i.e., utilitarian) mechanism for settings with an arbitrary

number of social alternatives where privately informed agents have single-crossing and single-

peaked preferences. Our analysis takes into account the agents’strategic incentives in such

situations.

The point of departure for our analysis is a classical “converse” to the Median Voter

Theorem due to Moulin [1980]. Moulin’s result says that, on the full domain of single-peaked

preferences, all dominant strategy incentive compatible (DIC), Pareto effi cient and anony-

mous mechanisms can be described as generalized median schemes that choose the median

among the n real peaks of actual voters and additional (n − 1) fixed “phantom” voters’

peaks.1

The characterization via phantoms is not very intuitive, and we first show that all gen-

eralized median schemes can be implemented by modifying the well-known successive voting

procedure used in European legislatures (Rasch [2000]). In this voting procedure, alterna-

tives are brought to the ballot in a pre-specified order, and at each step an alternative is

either adopted (and voting stops), or eliminated from further consideration (and the next

alternative is considered).2 Usually the result at each stage is determined by a fixed, possibly

qualified majority. It is well known that, under complete information, single-peaked prefer-

ences and simple majority, the “sophisticated” equilibrium outcome (reached by backward

induction) of the successive voting procedures (and of many other binary voting schemes) is

the Condorcet winner, i.e., the alternative preferred by the median voter.

For the case where the alternatives are clearly defined by a numerical magnitude, such

as the level of a public good, an interest rate, a tax levy, or a minimum wage, the successive

voting procedure is equivalent to another well-known procedure, devised by Bowen [1943]

for the provision of a public good.3 Starting from a status-quo quantity of public good,

voters vote on successive increments (decrements) until no more increases (decreases) garner

a suffi cient majority. In our modification, the majority needed for successive increases or

decreases is not constant; instead, this majority increases as the process gets further away

from the status-quo. Such staggered hurdles are commonplace in the laws governing tax or

expenditure increases (for financing various public goods such as education or transportation)

in most U.S. states.4 For example, the legislature of Nebraska can vote to increase property

taxes reflecting changes in the Consumer Price Index by simple majority, while larger increases

1Several authors have extended Moulin’s characterization by discarding the assumption that mechanisms

can only depend on peaks: examples are Barbera, Gul and Stacchetti [1993], Sprumont [1991], Ching [1997],

Schummer and Vohra [2002], and Chatterjee and Sen [2011].
2 In Scandinavia and the Anglo Saxon world, where the alternative amendment procedure is used, voting oc-

curs over pairs of alternatives, with the winner advancing to the next stage until all alternatives are exhausted.

Apesteguia, Ballester and Masatlioglu [2014] offer a parallel axiomatic characterization of both procedures.
3Bowen’s scheme has been extensively studied in the subsequent literature (see for example Chapter 14 in

Green and Laffont [1979]).
4See Joyce et al. (1995) for a summary of local tax and expenditure limitations imposed by states.

2



up to 5% require a three-quarters majority. Increases above 5% require a referendum in the

population. In Florida, the law sets a maximum rolled-back rate that a county can adopt to

fund the county’s general public hospital. A rate of up to 110% of the rolled-back rate needs

a two-thirds majority of the county’s governing body, while a rate in excess of 110% requires

a three-fourths majority, or a referendum.5

As noted above, even if formal decisions are taken by a qualified majority in a legisla-

ture, additional indirect hurdles apply to various motions, according to their main proper-

ties/potential for disruption or harm to those in a minority.6 These include quorum rules,

referenda, mandatory intervening elections, double majorities in several houses of parliaments,

or approval by additional public or federal bodies.7 The prevalent use of supermajorities and

other non-neutral measures suggests a utilitarian rationale where potential gains and losses

are weighed against each other and where minorities get proper legal protection.8

The utilitarian principle uses cardinal information and dictates the choice of an alternative

that is preferred by the average voter. At least since Galton’s 1907 famous letter to Nature

where he proposes the choice of the median alternative, it has been recognized that the average

is not implementable if voters are strategic: each agent has an incentive to exaggerate her

position in order to move the average towards her preferred outcome.9

Our optimization analysis reconciles these two conflicting principles– implementable median-

like procedures versus non-implementable but ex-ante effi cient average procedures– in the

best possible way for any number of voters and alternatives: this is achieved by introducing

flexible adoption thresholds that depend on the respective alternative, and optimizing over

these thresholds. As a result, the optimal mechanism chooses the alternative favored by the

“average”type, but the average is not the naive one: instead it is calculated from the coarse

information that could be inferred solely from the agents’equilibrium voting behavior. In

other words, to satisfy DIC, the mechanism needs to filter the agents’information, and then

chooses the effi cient alternative given this filtration.

Our main results are:
5See Florida Statutes (2015), http://dor.myflorida.com/dor/property/legislation/pdf/2015statutes.pdf.
6Public firms also use super-majority requirements when shareholders vote about major issues such as

mergers. See Gompers et al. [2003] and Bebchuk et al. [2009].
7These bodies can be seen as “phantoms”in Moulin’s analysis.
8We note that the Austrian, Belgian, Finnish, Dutch, German and US constitutions can be changed only

if two-thirds of the parliaments’members are in favor. Three-fifths majorities for constitutional changes are

used in France, Greece and Spain.
9Galton (1907) writes: “... (1) A jury has to assess damages. (2) The council of a society has to fix on a

sum of money, suitable for some particular purpose. How can the right conclusion be reached, considering that

there may be as many different estimates as there are members? That conclusion is clearly not the average of

all the estimates, which would give a voting power to ‘cranks’in proportion to their crankiness. One absurdly

large or small estimate would leave a greater impress on the result than one of reasonable amount, and the

more an estimate diverges from the bulk of the rest, the more influence would it exert. I wish to point out that

the estimate to which least objection can be raised is the middlemost estimate, the number of votes that it is

too high being exactly balanced by the number of votes that it is too low. Every other estimate is condemned

by a majority of voters as being either too high or too low, the middlemost alone escaping this condemnation.”
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1. We show that, by varying the threshold requirement in the successive voting schemes,

we can replicate the outcome of any anonymous, unanimous and DIC mechanism. The

equilibrium notion is the very simple and robust (ex-post perfect and Markov) Nash

equilibrium where, at each stage, agents use sincere strategies. Conversely, for any

successive voting scheme with decreasing thresholds, there is an anonymous, unanimous

and DIC mechanism that generates the same equilibrium outcome.

2. Under standard assumptions on preferences and their distribution (yielding symmetric,

independent, private values), we compute the adoption thresholds that maximize ex

ante expected welfare. In other words, we derive the incentive compatible optimal

mechanism (second-best). We then extend this result to the correlated case with linear

utilities, where types are independently drawn conditional on the realization of one out

of several possible states of the world.

3. We show that, for large societies where types are independently drawn, our solution

(that converges then to the first-best) can be approximated by a fixed adoption thresh-

old that equals the statistical proportion of voters with peaks below the effi cient alter-

native. In contrast, when types are correlated, the first-best cannot be approximated

by a fixed threshold: flexible decreasing thresholds are then necessary to approximate

the first-best even if the number of voters is very large.

Moulin’s characterization does not directly apply to our setting because it requires a full

domain of single-peaked preferences. Since the (standard) one-dimensional model of private

information used here cannot generate this full domain, we rely instead on an analogous result

for maximal domains of single-crossing preferences, due to Saporiti [2009].10 To understand

the logic of our results, let m(k) be the number of phantom voters with peaks to the left of,

and including alternative k, in a generalized median mechanism. By definition, this function

is increasing. The outcome of the median mechanism with such phantom distribution can

be replicated by the sincere equilibrium of the successive voting procedure among privately

informed agents where the adoption threshold for alternative k is decreasing, and given by

τ(k) = n−m(k).11 The optimization task is then of combinatorial nature, to determine the

optimal, decreasing function τ as a function of the agents’preferences and their distribution.

Since the domain of maximization is finite, a solution always exists. The main diffi culty is the

analytic identification of the solution and its properties. Just to give an example, the June

1991 successive voting procedure that determined the new capital of the reunited Germany

involved 658 members of parliament and 4 alternatives.12 This yields 47 698 420 different

10A well-known application of a social choice framework with single-crossing preferences is voting over linear

tax schedules– see for example, Roberts [1977], Romer [1975], and Meltzer and Richard [1981].
11Although they do not refer to the successive voting procedure, our argument is inspired by Barbera, Gul

and Stacchetti’s [1993] interpretation of generalized median mechanisms in terms of coalitional systems. See

also the survey by Barbera [2001].
12Besides simple alternatives such as Bonn and Berlin, there were composite ones that involved different

4



anonymous, unanimous and incentive compatible mechanisms among which we look for the

optimal one (see formula (7) below).

We also briefly sketch how our model could be used on actual data. Just to give an

example, assume that income is the relevant defining “type” of voters. Then, for a large

population with an income inequality measure in the observed range of Western democracies

(where Gini coeffi cients are between 0.25 and 0.55) our approach suggests that a required ma-

jority of about two-thirds will be approximately optimal and relatively stable under changes

of the underlying distribution.13

The rest of the paper is organized as follows. In the remainder of this Section we review

the related literature. In Section 2 we describe the social choice model and the mechanism

design problem. In Subsection 2.1 we illustrate the model and some implications of incentive

compatibility in the simple special case where utilities are linear. In particular, we show that

the welfare-maximizing rule (first-best) is not implementable although it is monotone. In

Section 3 we first introduce the modification of the successive voting procedure and derive an

ex-post Nash equilibrium where voters vote sincerely. Next, we prove that, for any unanimous

and anonymous DIC mechanism, there exists a successive voting procedure with decreasing

majority requirements that generates the same outcome, and vice versa. In Section 4 we use

the equivalence result to derive the precise decreasing sequence of the majority thresholds

associated with the ex-ante welfare maximizing DIC mechanism. In Section 4.1 we illustrate

some of the insights, including comparative statics, for the case of linear utilities. Section 5

treats the case of decisions with large number of voters. In Section 6 we extend our results

to the case of correlated types. Section 7 concludes. All omitted proofs are in Appendix

A. Appendix B discusses the regularity condition used in the characterization of optimal

mechanisms.

Related Literature

A large body of work has focused on the implementation of desirable social choice rules

in abstract frameworks with ordinal preferences. Classical results include the Gibbard-

Satterthwaite Impossibility Theorem (Gibbard [1973] and Satterthwaite [1975]) and the Me-

dian Voter Theorem for settings with single-peaked preferences (see Black [1948]). Preference

intensities are not part of those models and maximization goals are not easily formulated

within them.

The idea of comparing voting rules in terms of the ex-ante expected utility they generate

goes back to Rae [1969].14 That paper and almost the entire following literature focus on

locations of parliament and government.
13The two-thirds requirement probably stems from the rules for electing a new pope, devised by Pope

Alexander III in 1179. Although only unanimity was thought to reveal the will of God, Pope Pius II summa-

rized his own election in 1458: “What is done by two thirds of the sacred college, that is surely of the Holy

Ghost, which may not be resisted”(in Gragg and Gabel, 1959: 88).
14A recent analysis of the median versus the mean mechanism is in Rosar [2012].

5



settings with two social alternatives (a reform and a status quo, say). Schmitz and Tröger

[2012] identify qualified majority rules as ex-ante welfare maximizing in the class of DIC

mechanisms with two alternatives– this can be seen as an implication of our main result.15

Azrieli and Kim [2014] nicely complement this analysis for two alternatives by showing that

any interim Pareto effi cient, Bayesian incentive compatible (BIC) choice rule must be a

qualified majority rule. Dekel and Piccione [2000], Callander [2007] and Ali and Kartik [2012]

analyzed procedures where voters act sequentially, one after the other. In their settings, there

are two alternatives and voters have common or interdependent values.

Drexl and Kleiner [2013] also confine attention to settings with two social alternatives

and show that a principal who wishes to maximize the agents’welfare from the physical allo-

cation minus potential transfers to outsiders will use a mechanism that does not involve any

monetary transfers. In particular, for settings with two alternatives, their optimal mechanism

coincides with the one derived in this paper.

The situation dramatically changes when there are three, or more alternatives: the

DIC/BIC constraints and the mechanisms themselves are much more numerous and com-

plex. Börgers and Postl [2009] study a setting with three alternatives where it is common

knowledge that the top alternative for one agent is the bottom for the other, and vice-versa.

The agents differ in the relative intensity of their preferences for a middle alternative (the

compromise). In addition to a characterization of BIC mechanisms, Börgers and Postl con-

duct numerical simulations and show that the effi ciency loss from second-best rules is often

small.

Apesteguia, Ballester and Ferrer [2011] consider a general social choice model with car-

dinal utility. Strategic voting is not considered in their analysis– this would lead there to

impossibility results– and the scoring rules that emerge as optimal in their analysis are known

to be subject to strategic manipulation.

Flexible thresholds have been advocated with a clear utilitarian rationale in mind by

Gersbach and Pachl [2009] in the context of the common European monetary policy: the

size of the required majority should depend monotonically on the proposed change in interest

rate. In this way, small shocks affecting only a few countries can be readily accommodated,

while radical changes that affect the entire Euro area should only be implemented if they

command a broad support. Interestingly, Riboni and Ruge-Murcia [2010] empirically show

that (sincere) successive voting, augmented by a supermajority requirement, best explains

the decision on interest rates by monetary committees at several major, independent central

banks.

2 The Social Choice Model

We consider n agents who have to choose one out of K mutually exclusive alternatives. Let

K = {1, ...,K} denote the set of alternatives. Agent i ∈ {1, ..., n} has (cardinal) utility uk(xi),
15These authors also perform an analysis for Bayesian mechanisms, which is not covered by our study.
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where k ∈ K is the chosen alternative and where xi is a parameter (or type) privately known
to agent i only. We assume that uk(xi) is continuous in xi for any k. The types x1, ..., xn
are distributed on the interval [x, x]n , 0 ≤ x < x < ∞, according to a commonly known,
joint cumulative distribution function Ψ with density ψ having full support.16 This is the

one-dimensional, private values specification, the most common one in the vast literature on

optimal mechanism design with monetary transfers. Monetary transfers, however, are not

allowed here.

Agents’utilities are assumed to be single-crossing with respect to the order of alternatives

1, ...,K. Formally, for any two alternatives k and l with k < l, we assume that there exists a

unique cutoff type xk,l with ul(xk,l) = uk(xk,l) such that17{
uk (xi) > ul (xi) if xi < xk,l

uk (xi) < ul (xi) if xi > xk,l
. (1)

To simplify notation, we denote xk ≡ xk−1,k. We further assume that each alternative is the
top alternative for some type of the agents.18 That is, for any k ∈ K, there exists xi ∈ [x, x]

such that

uk (xi) > max
l∈K,l 6=k

ul (xi) . (2)

We shall focus on the case of a utilitarian planner whose objective is to maximize the sum

of the agents’expected utilities

max
k∈K

E
[∑

i
uk (xi)

]
.

Remark 1 The single-crossing property (1), together with assumption (2), implies that the
cutoffs xk are well-ordered:

x ≡ x1 < ... < xK < xK+1 ≡ x. (3)

To see this, we note that, by definition of xk and the single-crossing property (1),

uk (xi) < uk−1 (xi) for all xi < xk.

Similarly, by definition of xk+1 and the single-crossing property (1), we have

uk (xi) < uk+1 (xi) for all xi > xk+1.

If xk ≥ xk+1, any type xi satisfies either xi ≤ xk or xi ≥ xk+1, and thus alternative k is

(weakly) dominated either by alternative k− 1 or by alternative k+ 1, which contradicts (2).

16We can allow x =∞ as long as uk(xi) is bounded for all k.
17We also assume that the indifference types xk,l are different across pairs, which is a generic assumption.
18This assumption ensures that our single-crossing preferences are also single-peaked (see Remark 1). How-

ever, it rules out the setting of Börgers and Postl [2009] where the third alternative, compromise, is not the

top alternative of any agent.
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Therefore, we must have xk < xk+1 for all k ∈ K, which proves (3). By the definition of xk

and by (3), agents with type xi have k as their top alternative if and only if xi ∈
[
xk, xk+1

]
.

Note also that the agents’preferences are single-peaked. To see this, consider agent i with

type xi ∈
(
xk, xk+1

)
. By definition of xk, agent i prefers alternative k to any alternative

l < k, and by definition of xk+1, agent i prefers k over any l > k. Consider two alternatives

l and m with l < m < k. Since xl < xm < xk, we have xi > xl,m and agent i prefers m to

l. Similarly, agent i prefers m to l if k < m < l. Therefore, agent i’s preferences are single-

peaked. On the other hand, our preference domain is a strict subset of the full single-peaked

preference domain whenever K > 3: not all single-peaked preferences are compatible with our

environment (see below an explicit illustration in the linear environment).

A deterministic, direct mechanism asks agents to report their types, and, for any profile

of reports, the mechanism chooses one alternative from K. Formally, a deterministic direct
mechanism is a function g : [x, x]n → K = {1, ...,K}. A deterministic mechanism is dominant
strategy incentive compatible (DIC) if for any player i and for any xi, x′i and x−i:

ug(xi,x−i) (xi) ≥ ug(x
′
i,x−i) (xi) . (4)

It is clear from the above definition that two types that have the same ordinal preferences

must be treated in the same way by a DIC mechanism. Thus, an implication of the lack

of monetary transfers is that deterministic DIC mechanisms cannot depend on preference

intensities.

2.1 An Illustration: Linear Preferences

Suppose the utilities are linear: uk (xi) = ak + bkxi. These preferences are necessarily single-

crossing. We assume that bK > bK−1 > ... > b1 ≥ 0 and a1 > a2 > ... > aK . The cutoff type

who is indifferent between two adjacent alternatives k and k − 1 is given by

xk ≡ xk−1,k =
ak−1 − ak
bk − bk−1

. (5)

We impose further restrictions on bk and ak so that our previous assumption (2) is satisfied.19

These restrictions, together with the definition of xk,l, imply that xk,l ∈ (xk+1, xl) for l > k+1,

because

xk,l =
ak − al
bl − bk

=
(ak − ak+1) + ...+ (al−1 − al)
(bk+1 − bk) + ...+ (bl − bl−1)

.

Similarly to the general case, we assume that xk,l are different across pairs.

Our preference domain is a strict subset of the full single-peaked preference domain.

Indeed, consider a setting with 4 different alternatives (1, 2, 3 and 4) with x1,4 ∈
(
x1,2, x3,4

)
.

19That is, we assume that for all k ≥ 2 ,
ak−1 − ak
bk − bk−1

<
ak − ak+1
bk+1 − bk

,

so cutoffs are ordered according to (3).
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If x1,4 ∈
(
x2,3, x3,4

)
, as shown in Figure 1, then the feasible single-peaked preferences that

have alternative 2 on their top are 2 � 1 � 3 � 4 and 2 � 3 � 1 � 4. In particular,

the preference 2 � 3 � 4 � 1 is not compatible with the linear environment. Similarly, if

x1,4 ∈
(
x1,2, x2,3

)
, the feasible single-peaked preferences that have alternative 3 on their top

are 3 � 2 � 4 � 1 and 3 � 4 � 2 � 1. Here the preference profile 3 � 2 � 1 � 4 is not

compatible with our structure.

Alternative 4

Alternative 3

Alternative 2

Alternative 1

2,1x 3,2x 4,3x

4,1x

ix

),( ixku

Figure 1: Not all single-peaked preferences are compatible with our linear structure.

Analogously to the classical framework with monetary transfers, a mechanism g (xi, x−i)

is DIC if and only if (i) for all x−i and for all i, g (xi, x−i) is increasing in xi; and (ii) for any

agent i, any xi ∈ [x, x] and x−i ∈ [x, x]n−1, the following envelope condition holds

ug(xi,x−i) (xi) = ug(0,x−i) (0) +

∫ xi

0
bg(z,x−i)dz. (6)

When monetary transfers are feasible, any monotone decision rule g (xi, x−i) is incentive

compatible since it is always possible to augment it with a transfer such that the equality

required by (6) holds. Thus, with transfers, only monotonicity really matters for DIC. If

monetary transfers were available, the welfare-maximizing allocation would be implementable

via the well-known Vickrey-Clarke-Groves mechanisms. But, without monetary transfers,

not all monotone decision rules g (xi, x−i) are implementable, and in particular, the welfare

maximizing allocation need not be incentive compatible although it is monotone. This well-

known phenomenon is illustrated in the next example.

Example 1 (First-best Rule Not Implementable) Consider the linear environment with
two alternatives {1, 2}, two agents {i,−i} and [x, x] = [0, 1]. The designer is indifferent be-

tween alternatives 1 and 2 if

2a1 + b1 (xi + x−i) = 2a2 + b2 (xi + x−i) .
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The first-best rule conditions on the value of the average type, and is given by

g (xi, x−i) =

{
1 if 1

2 (xi + x−i) ∈ [0, x2)

2 if 1
2 (xi + x−i) ∈ [x2, 1]

where the cutoff x2 is defined in (5): x2 ≡ (a1 − a2) / (b2 − b1). The first-best rule is increas-
ing in both xi and x−i. Yet, it is not implementable. To see this, consider the realization of

types (xi, x−i) = (x2 + ε, x2 − 2ε) where ε > 0 is small. Then 1
2 (xi + x−i) < x2, and hence

g (xi, x−i) = 1, which is not optimal for player i. By misreporting any type above x2 + 2ε

player i can shift the decision to his preferred alternative 2. Therefore, this mechanism is not

DIC.

3 The Successive Voting Procedure

In this procedure, alternatives are first arranged in some pre-determined voting order, say

1, 2, ...,K. The first ballot determines whether there is a (qualified) majority for alternative 1.

If so, alternative 1 is adopted and voting ends. If alternative 1 fails to command a majority,

this alternative is removed from future consideration, and the parliament proceeds to vote

on alternative 2. If a majority supports alternative 2, alternative 2 is adopted; otherwise,

the agents proceeds to vote on alternative 3. Voting continues until one alternative gains

majority. If no alternative gains majority in earlier stages, the last two alternatives K − 1

and K are paired and the one with majority support is adopted. In most cases, the required

majority for adoption is the same across alternatives, and the voting order is either suggested

by the agenda setter or is pre-determined by custom. Without single-peaked preferences, the

voting outcome (even under complete information) is sensitive to the voting order.20

In order to link the successive procedure to unanimous, anonymous and DIC mechanisms,

we consider a modified successive procedure with two properties. First, the order of vote is

according to the natural order (1, 2, ...,K) under which the preferences are single-peaked

(see Remark 1).21 Second, the required majority for adoption is no longer kept constant

across alternatives: instead, the adoption threshold for choosing alternative k, τ (k), is a

decreasing function. That is, a more stringent majority requirement (which may be more or

less than simple majority) is set for earlier alternatives, while a lower majority is required

for adopting later alternatives. Equivalently put, it becomes increasingly diffi cult to keep the

voting process in motion.

As mentioned in the Introduction, the modified successive procedure can also be seen as

a simple variation of the classical Bowen’s scheme for public good provision. There voters

vote on successive increments (or decrements) to the status quo – the quantity of public

good already provided. If a simple majority of voters are against the first increment, voting

20 If voters vote sincerely, later alternatives have better chance to be adopted (Black [1958]), but if voters

vote strategically earlier alternatives are more likely to be adopted (Farquharson [1969]).
21Alternatively, the successive voting procedure can be run in reverse order.
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stops and the status quo is adopted. If the first increment gains a majority support, voting

continues to another increment. If the second increment fails to gain a simple majority

support, the voting stops and the first increment is implemented, otherwise, voters are asked

to vote yet another increment, and so on. Therefore, if the underlying collective decision is

numerical in nature and has a clear direction of change, the natural order of alternatives of

our modified procedure is the same as in Bowen’s scheme, but we have a declining threshold

τ (k) for adopting alternative k, which corresponds to an increasing threshold for voting on

further increments in Bowen’s original formulation.

The results in this section are purely ordinal, and thus do not depend on the particular

cardinal specification of utility (nor on the distribution of types) as long as the single-crossing

assumption is satisfied and the domain of preferences is maximal with respect to single-

crossing.22

Definition 1 1. A voting strategy for an agent is sincere if, at each stage, the agent votes

in favor of the respective alternative if and only if it is the best (among the remaining

alternatives) given his preferences.

2. A voting strategy for an agent is monotone if it consists of a series of “No” in early

stages (possible none), followed by a series of “Yes” in all later stages.

Note that, with single-peaked preferences and with our natural voting order, a sincere

strategy has a particular structure: the agent votes “No”for all alternatives that appear on

the ballot before his most preferred one (he wants the voting to continue), and then votes

“Yes”for his peak alternative and for all successive ones (he wants the voting to stop). Hence,

under the successive voting rule with the natural order, monotone voting is a generalization

of sincere voting.23 The next result holds for the entire domain of single-peaked preferences.24

Proposition 1 Consider the successive procedure with a decreasing threshold function τ (k) ,

and assume that all agents except agent i use monotone voting strategies. Then, the sincere

voting strategy is optimal for agent i. In particular, the strategy profile where all agents vote

sincerely constitutes an ex-post perfect Nash equilibrium.25

Proof. Assume that all agents other than i use monotone strategies, and let the peak of
agent i be on alternative k. Consider first an alternative k′ < k. The sincere voting strategy
22A domain of preferences is maximal with respect to single-crossing if one cannot add to it another ordinal

preference profile without violating the single crossing property (see Saporiti [2009] for a formal definition).
23Monotone strategies are also Markov, i.e., they do not condition on the history of votes before the current

one.
24The amendment procedure where alternatives are voted one against the other in the natural order (or its

reverse) and the winner advances to the next stage given some (flexible) qualified majority need not possess

an ex-post, sincere equilibrium.
25An n-tuple strategy profile is said to constitute an ex-post perfect equilibrium if at every stage, and for

every realization of private information, the n-tuple of continuation strategies constitutes a Nash equilibrium

of the subgame in which the realization of the agents’types is common knowledge.
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calls for i to vote against k′. A deviation from sincere voting matters only if, by changing

his strategy from “No”to “Yes”at this stage, alternative k′ is chosen whereas it would not

be chosen if i voted sincerely. But in this case, the number of “Yes”votes for alternative k′

must be τ(k′)− 1. Since τ is decreasing, and since all other agents use monotone strategies,

voting “No”on alternative k′ implies that, in this case, agent i can ensure that the chosen

alternative k′′ satisfies k′ < k′′ ≤ k (either voting stops before reaching k, or i ensures the

choice of k by voting “Yes”on it, and then joining at least τ(k′)− 1 ≥ τ(k)− 1 “Yes”votes).

All alternatives k′′ with k′ < k′′ ≤ k are preferred by i to k′, so this deviation from sincere

voting is not beneficial. Consider now k′ ≥ k. The sincere strategy calls for i to vote “Yes”

at the relevant stage. By deviating to “No”, the chosen alternative must satisfy k′′ ≥ k′.

All these alternatives are dominated by k′ from i’s point of view, so a deviation is again not

beneficial. This completes the proof of optimality of the sincere voting strategy for agent i.

Since the argument applies to all agents, and since sincere voting is monotone, sincere voting

constitutes an ex-post perfect Nash equilibrium.26

Remark 2 The above result applies, as stated, for the case where the results of previous vot-
ing stages is not revealed: the only possible inference at a particular stage is that no earlier

alternative has obtained a necessary majority. In practical applications one needs to consider

more permissive information disclosure policies, such as revealing the margin of past deci-

sions, or even the individual voting records. By the robust nature of the ex-post equilibrium,

where agents do not regret their strategies even if all private information is revealed ex-post,

sincere voting after each history remains an ex-post perfect equilibrium for any disclosure
policy. But, disclosing more information adds more strategies and potential equilibria. Nev-

ertheless, we show in Lemma 1 in Appendix A that, irrespective of the disclosure policy,

sincere voting is the unique outcome that survives iterated elimination of (weakly) dominated

strategies. This gives another strong rationale for the simplest, sincere equilibrium. The

reader may also notice the close parallels to the implementation, via a dynamic auction, of

the Vickrey-Clarke-Groves mechanism due to Ausubel [2004].

We now uncover the connection between the outcome of any DIC mechanisms and the

sincere equilibria of the successive procedures with decreasing thresholds. An influential

paper by Moulin [1980] shows that, if each agent is restricted to report his top alternative

only, then every DIC, Pareto effi cient and anonymous voting scheme on the full domain of

single-peaked preferences is equivalent to a generalized median voter scheme that is obtained

by adding (n− 1) fixed peaks (phantoms) to the n voters’reported peaks and then choosing

the median of this larger set of peaks.

26Bowen’s procedure for public good provision is analyzed, under incomplete information, by Green and

Laffont [1979]. They erroneously claim (Theorem 14.2) that sincere voting constitutes an equilibrium in

dominant strategies. This holds only if agents are a-priori restricted to play monotone strategies, as defined

here.
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Moulin’s characterization also holds in our setting although agents are not restricted to

report only their peaks, and although the domain of preferences is a strict subset of the full

domain of single-peaked preferences. The relevant result is due to Saporiti [2009]: he provides

a characterization of unanimous, anonymous and DIC mechanisms for maximal domains of

single-crossing preferences, in a spirit similar to Moulin [1980].

To get some intuition about Moulin’s characterization, consider a mechanism that always

picks the top alternative of the agent with the lowest type (an analogous intuition works for

other order statistics). Such a mechanism is clearly DIC, Pareto effi cient and anonymous. It

can be replicated by a generalized median that places all (n− 1) phantoms at alternative 1,

because the median of the n real votes and the (n− 1) phantoms is always the top alternative

of the lowest type agent. The number of phantoms cannot be n because then generalized

median is not uniquely defined. It cannot be n+1 or higher, because the resulting generalized

median may not be Pareto effi cient. For example, if there are (n+ 1) phantoms all placed

at alternative 1, then alternative 1 is the generalized median, which may not be Pareto

effi cient.27

To formally state the connection between DIC mechanisms and the successive procedures,

we need several definitions:

Definition 2 1. A mechanism g is unanimous if xi ∈
(
xk, xk+1

)
for all i implies g (x) =

k.

2. A mechanism g is Pareto effi cient if, for any profile of reports (xi, x−i) ∈ [x, x]n , there

is no alternative k ∈ K such that uk(xi) ≥ ug(x)(xi) for all i, with strict inequality for

at least one agent.

3. A mechanism g is anonymous if, for any profile of reports (xi, x−i) ∈ [x, x]n , g (x1, ..., xn) =

g
(
xσ(1), ..., xσ(n)

)
where σ denotes any permutation of the set {1, ..., n}.

It is clear that a Pareto-effi cient mechanism is unanimous. In the presence of dominant

strategy incentive compatibility, an anonymous and unanimous mechanism is also Pareto

effi cient (Corollary 1 in Saporiti [2009]). We are now ready to state our first main result.

Theorem 1 1. For any unanimous and anonymous DIC mechanism g, there exists a

decreasing threshold function τ g (k) with τ g (k) ≤ n for all k ∈ K and τ g (K) = 1 such

that, for any realization of types, the outcome of g coincides with the outcome in the

sincere equilibrium of successive procedure with thresholds τ g (k).

2. Conversely, for any decreasing threshold function τ (k) with τ (k) ≤ n for all k ∈ K and
τ (K) = 1, there exists an anonymous, unanimous and DIC mechanism gτ such that,

27Pareto effi ciency implies that the chosen alternative must be between the top alternatives of the agents

with the lowest and the highest type). Moulin shows that all DIC and anonymous (not necessarily Pareto

effi cient) mechanisms can be replicated by a generalized median with (n+ 1) phantoms.
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for any realization of types, the outcome of gτ coincides with the outcome of the sincere

equilibrium in successive procedure with thresholds τ (k).

Proof. 1. Our underlying domain of ordinal preferences is maximal with respect to single-
crossing. To see this, note that every two alternatives, say k and l, induce a cutoff xk,l, and

each cutoff xk,l divides the set of types into two intervals where ordinal preferences differ with

respect to the ordering of alternative k and l.28 Since each alternative is top for some types,

the interval of types is thus partitioned into K(K − 1)/2 + 1 parts, each corresponding to

a distinct ordinal preference. But this is also the maximum number of ordinal profiles in a

maximal domain of single-crossing preferences on K alternatives.

Saporiti [2009] shows that, on a maximal domain of (ordinal) single-crossing preferences

any anonymous, unanimous and DIC mechanism in an environment with n voters can be

obtained as a generalized median voter mechanism with n−1 phantom voters.29 In the dom-

inant strategy equilibrium of such a generalized median voter scheme, all n voters truthfully

report their top alternatives, and the outcome is the median of the n real peaks and the n−1

fixed phantom peaks.

Let `k ≥ 0 denote the number of phantom voters with peak on alternative k in the

generalized median voter scheme corresponding to a DIC mechanism g. To construct an

equivalent successive voting scheme, we define the thresholds τ g(k) ≡ n−
∑k

m=1 `m, and note

that τ g (k) is decreasing and that τ g (K) = 1.

Alternative 1 is the generalized median only if the number of (real) agents who report this

alternative as their top alternative exceeds n − `1 = τ g (1). Alternative 2 is the generalized

median if the number of agents who report a peak on alternative 1 is less than n − `1 and
if the number of the agents who report either alternative 1 or alternative 2 as their top

alternative is at least n− `1− `2 = τ g (2). In general, alternative k is the generalized median

if, for any k′ < k, the number of reported peaks on alternatives 1, 2, ..., k′ was strictly less

than τ g(k′) and if the number of agents who report their peak on alternative k or lower is at

least n −
∑k

m=1 `m = τ g(k). Otherwise, alternative K is the generalized median. With this

interpretation, it is now clear that the outcome of the sincere equilibrium under successive

voting with threshold τ g (k) coincides with the outcome of mechanism g.

2. Conversely, for a given successive procedure with decreasing cutoffs τ (k) such that

τ (k) ≤ n for any k ∈ K and τ (K) = 1, we can define `1 ≡ n−τ (1) , and `k ≡ τ (k − 1)−τ (k)

for k ≥ 2. Since τ (k) is decreasing, τ (k) ≤ n for all k ∈ K and τ (K) = 1, we have `k ≥ 0

for all k ∈ K and
∑K

k=1 `k = n − τ (K) = n − 1. The constructed phantom distribution

{`k} is part of a generalized median voter scheme which corresponds to some unanimous and
anonymous DIC mechanism gτ . Moreover, it is easy to verify that the outcome of mechanism

gτ is the same as the sincere equilibrium outcome in successive voting with threshold τ (k).

28Recall the (generic) assumption that all xk,l are distinct.
29See Theorem 3 in the Appendix A for a formal statement of Saporiti’s characterization.
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The above theorem implies that the search for optimal mechanisms within the class of

successive procedures with decreasing cutoffs τ (k) is without loss of generality. With many

agents and alternatives, this remains a rather complex discrete optimization problem since

there are many decreasing sequences τ (k) : the number of DIC, anonymous and unanimous

mechanisms for n agents and K alternatives is given by30

(n+K − 2)!

(K − 1)! (n− 1)!
. (7)

We conclude this Section with a simple illustration of the welfare benefit of having flexible

thresholds.

Example 2 There are three alternatives, denoted by 1, 2, 3, and preferences are single-peaked

with respect to the order: 1, 2, 3. Assume for simplicity and concreteness that all feasible

ordinal single-peaked rankings occur with the same probability. Note that alternative 2 is

never ranked as the bottom alternative in such a scenario.31 Endow each agent with a simple

cardinal preference where the top alternative yields utility ε > 0, the middle alternative yields

utility 0, and the bottom alternative yields utility η < 0 with |η| � ε.32 Whenever some agents

rank alternative 1 at the top and other agents rank alternative 3 at the top, the only way to

avoid a substantial utility loss is to choose alternative 2. This outcome cannot be achieved

by any fixed threshold policy since, for any such policy (for example simple majority with

τ(k) = (n + 1)/2, k = 1, 2, 3), there is a positive probability of choosing either alternative 1

or alternative 3. In contrast, the successive procedure with the decreasing threshold function

τ(1) = n, τ(2) = τ(3) = 1 always generates positive utility since: 1) it chooses alternatives

1 and 3 only when there is unanimity in their favor (yielding welfare nε > 0), and chooses

alternative 2 otherwise (yielding welfare n2ε > 0, where n2 is the number of agents who rank

2 at the top).

4 The Optimal Mechanism

We now characterize the welfare maximizing allocations that respect the incentive constraints

(constrained effi ciency, or “second-best”). We first introduce two assumptions that put more

structure on the optimization problem, allowing us to solve it analytically.

Assumption A Agents’ signals are distributed identically and independently of each other

on the interval [x, x] according to a cumulative distribution F with density f .

30The problem is to partition (n− 1) phantoms into K alternatives, which can be represented by (K − 1)
bars placed among (n − 1) balls. Hence, it is equivalent to choosing (K − 1) out of (n+K − 2) positions to
place (K − 1) bars.
31This insight is more general and it applies irrespective of the number of alternatives: alternatives that

are not extreme in the linear order determining single-peakedness cannot be ranked at the bottom of the

preference list.
32We can approximate these utilities through our continuous, type-dependent function uk (xi).
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This assumption yields the standard symmetric, independent private values model (SIPV)

that is widely used in the literature on trading mechanisms with transfers (where utility is

usually linear). We need another joint requirement on the utility functions and on the dis-

tribution of types, ensuring that the optimal threshold function τ∗– which necessarily exists

and is monotone– is identified by the necessary first order conditions, and thus amenable to

analysis. We first need some notation. Let us define, for all k ≥ 2 and l ≥ 1,

ulx<xk = E
[
ul (x) |x < xk

]
as the expected utility from alternative l, conditional on the agent’s type x being lower than

the cutoff xk. Similarly, we define

ulx>xk = E
[
ul (x) |x > xk

]
as the expected utility from alternative l conditional on the agent’s type x being higher than

the cutoff xk. With single-crossing preferences, the entire (convex) interval of types below

(above) xk prefer alternative k − 1 to k (alternative k to k − 1). Finally, let us define

β (k) =

(
uk
x>xk

− uk−1
x>xk

)
(
uk−1
x<xk

− uk
x<xk

)
+
(
uk
x>xk

− uk−1
x>xk

) , k ≥ 2. (8)

By the definition of xk and by the single-crossing property, uk−1
x<xk

> uk
x<xk

and uk
x>xk

> uk−1
x>xk

.

Therefore, β (k) ∈ (0, 1) for all k ≥ 2.

Assumption B The function β is decreasing.

The function β plays a crucial rule in our analysis and is intimately related to the optimal

threshold function τ∗. In order to better understand its definition, we can rewrite (8) as

β (k)
(
uk−1
x<xk

− ukx<xk
)

+ [1− β (k)]
(
uk−1
x>xk

− ukx>xk
)

= 0.

Suppose that the chosen alternative changes from k to k− 1. The expected gain for an agent

with type below xk is uk−1
x<xk

− uk
x<xk

, while the expected loss for an agent with type above

xk is uk−1
x>xk

−uk
x>xk

. The function β is defined such that the expected gain weighted by β (k)

and the expected loss weighted by 1− β (k) cancel out.

In Appendix B we derive suffi cient conditions on the primitives of the social choice model

(utility functions and the distribution of types) for the above assumption to hold. In Sec-

tion 4.1, where we assume linear utility, we show how it reduces to simple and well-known

conditions on the distribution function only.

Consider then an environment with n voters, and let τ∗ be the optimal threshold function

in the successive procedure. The analysis is based on the following simple observation. Fix

any alternative k with τ∗ (k − 1) > τ∗ (k). If τ∗ (k − 1) and τ∗ (k) are part of the optimal

voting procedure, then increasing τ∗ (k) by 1 or decreasing τ∗ (k − 1) by 1 should weakly
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reduce the total expected utility.33 For instance, increasing τ∗ (k) by 1 (while keeping τ∗ (k′)

with k′ 6= k unchanged) has an impact only if it changes the chosen alternative. The proposed

deviation will change the chosen alternative only if there are exactly τ∗ (k) voters with values

below xk+1. These arguments generate the following bounds on the threshold function τ∗:

τ∗ (k − 1) ≤ nβ (k) + 1, for all k ≥ 2, (9)

τ∗ (k) ≥ nβ (k + 1) , for all k ≤ K − 1. (10)

The proposed deviation, however, is not feasible for alternative k with τ∗ (k − 1) = τ∗ (k),

because the cutoff function τ∗ (k) must be weakly decreasing. It turns out that, under

Assumption B, the two derived bounds (9) and (10) remain valid also for alternatives k with

τ∗ (k − 1) = τ∗ (k) (see Lemma 2 in Appendix A). Since τ∗ (k)has to be integer, the above

two bounds lead to an essentially unique threshold function.

Theorem 2 Let dze denote the smallest integer that is above z. Under Assumptions A and
B, the sincere equilibrium of the successive procedure with the threshold function

τ∗(k) =

{
dnβ (k + 1)e if k < K

1 if k = K

implements the optimal anonymous, unanimous and DIC mechanism.

Proof. See Appendix A.
The above theorem reveals that adding or eliminating an alternative has only a local

effect. That is, adding an alternative k1 such that an interval
[
xk, xk+1

]
is further divided

into
[
xk, xk1

]
and

[
xk1 , xk+1

]
changes only the threshold of alternative k. Similarly, the elim-

ination of an alternative k changes the threshold of alternative k− 1 only, without any effect

on the other alternatives. This “locality-effect” follows from the single-peaked preferences:

the social planner does not want to change the chosen alternative if the peak of the median

voter does not change as a result of adding/eliminating alternatives.

The following corollary characterizes the optimal voting rule for the case of two alter-

natives by specifying the optimal qualified majority rule (or super-majority).34 Note that

Assumption B is not needed for the case of two alternatives.

Corollary 1 Suppose there are n agents and only two alternatives, K = 2. Under Assump-

tion A, the optimal rule is implemented through the sequential procedure where alternative 1

is chosen if and only if at least τ∗ (1) = dnβ (2)e voters voted in its favour.
33 In the language of phantoms, increasing τ∗ (k) by 1 while keeping other cutoffs unchanged corresponds to

moving one phantom voter from alternative k to alternative k+1 in the generalized median voter scheme. Sim-

ilarly, decreasing τ∗ (k − 1) by 1 while keeping other cutoffs unchanged is equivalent to shifting one phantom
from alternative k to alternative k − 1.
34See Nehring [2004], Barbera and Jackson [1994] and Schmitz and Tröger [2012] for related results.
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4.1 The Linear Case

We now illustrate our characterization of optimal mechanisms in the linear environment set

out in Section 2.1. For this environment, we first derive a more intuitive assumption to

replace Assumption B. Let X be the random variable governing the agents’type. We first

recall two well-known concepts from the theory of reliability:

Definition 3 1. The mean residual life (MRL) of a random variable X ∈ [x, x] is defined

as

MRL(x) =

{
E [X − x|X > x] if x < x

0 if x = x

A random variable X satisfies the decreasing mean residual life (DMRL) property if the

function MRL (x) is decreasing in x. This is equivalent to requiring that the function∫ x
x (1− F (t))dt is log-convex where F is the CDF of X.

2. The reversed mean residual life (RMRL) of a random variable X ∈ [x, x] is defined as

RMRL (x) =

{
E [x−X|X < x] if x > x

0 if x = x

A random variable X satisfies the increasing reversed mean residual life (IRMRL) prop-

erty if the function RMRL (x) is increasing in x. This is equivalent to requiring that

the function
∫ x
x F (t)dt is log-concave where F is the CDF of X.

If we let X denote the life-time of a component, then MRL (x) measures the mean

remaining life of a component that has survived until time x: intuitively this should decrease

as the component ages. The function RMRL(x) measures the mean time since the failure of

a component that has already failed by time x: intuitively this should increase as x increases.

The DMRL and IRMRL properties hold for a large, non-parametric, class of distributions

(in fact a lifetime with decreasing RMRL does not even exist on an unbounded interval).

A simple suffi cient condition for both properties to hold is the log-concavity of the density

function f .35

In the linear setting, the function β that determines the optimal thresholds becomes

β (k) =
E
[
X|X > xk

]
− xk

E [X|X > xk]− E [X|X < xk]
=

1

1 +
E[xk−X|X<xk]
E[X−xk|X>xk]

, (11)

and therefore a suffi cient condition for β to decrease is:
35The log-concavity of density is stronger than (and implies) increasing failure rate (IFR) which is equivalent

to log-concavity of the reliability function (1− F ). Moreover, it implies the logconcavity of F and
∫ x
x
F (t)dt

which is equivalent to IRMRL. The family of log-concave densities is large and includes many commonly used

distributions such as uniform, normal, exponential, logistic, extreme value etc. The power function distribution

(F (x) = (x)s) has log-concave density if s ≥ 1, but it does not if s < 1. However, one can easily verify that

the two properties in Assumption B’still hold for F (x) = (x)s even with s < 1. Therefore, a log-concave

density is not necessary. See Bagnoli and Bergstrom [2005] for an excellent discussion of these implications.
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Assumption B’The random variable X governing the distribution of types has both DMRL

and IRMRL properties.

Corollary 2 Suppose utilities are linear and Assumptions A and B’hold. The sincere equi-
librium of the successive procedure with the threshold function

τ∗(k) =

{
dnβ (k + 1)e if k < K

1 if k = K

implements the optimal anonymous, unanimous and DIC mechanism.

To get a better intuition for the characterization, consider the optimal threshold τ∗ (k)

for alternative k. Ignoring the integer problem, the threshold is chosen such that, in case of

pivotality, the inferred average type (given the information revealed by this event) is exactly

the cutoff type xk+1 who is indifferent among alternatives k and k+1. To see this, recall that

in case of pivotality there are exactly τ∗(k) = nβ (k + 1) agents with types in the interval[
x, xk+1

]
, while all the remaining n− nβ (k + 1) agents have types in the interval

[
xk+1, x

]
.

Given this information, it follows from the definition of β (see equation 11) that the inferred

average type is

β (k + 1)E
[
X|X < xk+1

]
+ (1− β (k + 1))E

[
X|X > xk+1

]
= xk+1. (12)

We can obtain immediate and intuitive comparative statics with respect to parameters

of the linear utility function {ak, bk}Kk=1. By the definition of xk, increases in either ak or
bk decrease xk and increase xk+1, which in turn leads to a higher threshold τ∗(k − 1) for

adopting alternative k − 1, and a lower threshold τ∗(k) for adopting alternative k. That

is, if the attractiveness of any alternative increases, the chances of adopting that alternative

increase as well.

Our next proposition shows how the entire optimal threshold function τ∗ changes with

respect to the distribution of types. It uses the following well known stochastic orders (see

Shaked and Shanthikumar [2007]). Let ≤st denote the standard first order stochastic domi-
nance relation.

Definition 4 1. A random variable Y dominates a random variable X in the hazard rate

order (denoted as X ≤hr Y ) if [X|X > x] ≤st [Y |Y > x] for all x.

2. A random variable Y dominates a random variable X in the reverse hazard rate order

(denoted as X ≤rh Y ) if [X|X < x] ≤st [Y |Y < x] for all x.

3. A random variable Y dominates a random variable X in the likelihood ratio order

(denoted as X ≤lr Y ) if [X|a ≤ X ≤ b] ≤st [Y |a ≤ Y ≤ b] for all a < b.

It is clear from the above definitions that X ≤lr Y implies both X ≤hr Y and X ≤rh Y .
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Proposition 2 Consider two distinct type distributions F and F̃ . Let X and X̃ be the

random variables representing agent types associated with distribution F and F̃ , respectively.

Assume that X ≤hr X̃ and X ≤rh X̃. Let τ̃∗ and τ∗ be the optimal threshold function under
X̃ and X, respectively. Then, for any k ∈ {1, ...,K}, τ̃∗ (k) ≥ τ∗ (k) .

Proof. See Appendix A.
For an intuition, recall the identity (12) with k + 1 replaced by k:

β (k)E
[
X|X < xk

]
+ (1− β (k))E

[
X|X > xk

]
= xk.

When the distribution is improved by the likelihood ratio order, both conditional expectations

go up. Thus, in order to keep the average constant at xk, one needs to increase the weight on

the smaller term E
[
X|X < xk

]
. Thus, the weight of this term must increase and the optimal

threshold is shifted upwards.

5 Large Societies

If the number of voters is large, then we can ignore the integer problem. We also normalize

the threshold τ∗(k) by the size of voter population n, and write τ∗(k) = β (k + 1), which is

interpreted as the minimal proportion of voters required in order to undertake alternative k.

In a large society, the optimal (second-best) mechanism approximates the welfare max-

imizing mechanism (first-best), which, as illustrated in Example 1, is not directly imple-

mentable.36 This is intuitive since the aggregate uncertainty vanishes in the limit. For a

simple proof, assume that the ex-ante optimal alternative is l, and consider a fixed threshold

mechanism that requires the support of a proportion t of voters where F (xl) < t < F (xl+1).

This mechanism is anonymous, unanimous and DIC, and hence it must be welfare inferior

to the optimal mechanism derived above. The per-capita welfare attained by this mecha-

nism converges to the first-best when the population size tends to infinity since the welfare

maximizing alternative is chosen with a probability that converges to unity.

With linear utility and a large number of voters, the maximization of average utility

coincides with the maximization of the utility of the mean (average) voter. Thus, our optimal

mechanism should pick the alternative favored by the mean voter with probability going to

one. To see that this is indeed the case, assume that the mean voter’s top alternative is kµ,

which implies that µ ∈ [xkµ , xkµ+1] and F (xkµ) ≤ F (µ) ≤ F (xkµ+1). With a slight abuse of

notation, we express the function β as a continuous function of type:

β (x) =
E [X|X > x]− x

E [X|X > x]− E [X|X < x]
. (13)

It is easy to verify that

β (x) =
F (x)(E [X|X > x]− x)

E [X|X > x]F (x)− µ+ E [X|X > x] [1− F (x)]
= F (x)

E [X|X > x]− x
E [X|X > x]− µ.

36A result in the same spirit for settings with only two alternatives has been obtained by Ledyard and

Palfrey [2002].
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Thus β (µ) = F (µ) and β
(
xkµ
)
≥ F (µ) ≥ β

(
xkµ+1

)
, because β (x) is decreasing by As-

sumption B’. This implies that, under our optimal voting thresholds, any alternative k < kµ

is not likely to be chosen because µ ≥ xk+1 and thus τ∗ (k) = β
(
xk+1

)
> F (xk+1), while

the alternative kµ, preferred by the mean voter, will be chosen with probability going to one

because τ∗ (kµ) = β
(
xkµ+1

)
≤ F (µ).

To conclude, for any distribution of preferences F satisfying our assumptions, a simple

threshold mechanism which requires an F (µ)-majority for adoption, where µ is the mean of

F , is approximately effi cient (and optimal) when the number of voters is suffi ciently large,

types are independent and utility is linear.

5.1 Voting over the Provision of a Public Good

In order to illustrate the above insight in a less abstract setting, we sketch below a very

simple, textbook example about the provision of a public good subject to congestion. There
are n agents, each endowed with an exogenous amount of a private good Mi. An agent i

with type xi has a utility function of the form ui = xiG/
√
n+ Zi where G is the amount of

public good, Zi is the amount of the private good, and the factor of 1/
√
n captures the effect

of congestion.37 Types distribute identically and independently of each other according to

distribution F . Producing G units of the public good costs G2/2 units of the private good.

The cost is equally shared among the agents, so that the only decision is about the level of

public good provision.

Suppose endowments are suffi ciently large. Individual utility maximization reveals that

each individual i prefers a public good level of G∗i =
√
nxi. Preferences over the various levels

of the public good are easily seen to be single-peaked and single-crossing. For each realization

of types, the outcome of simple majority voting produces the Condorcet winnerGsm =
√
nxsm

where xsm is the sample median. In contrast, the effi cient production level, that satisfies

Samuelson’s (or Bowen’s !) well-known condition is such that the sum of individual marginal

rate of substitution must be equal to the social marginal cost. Here we obtain Gsµ =
√
nxsµ,

where xsµ = 1
n

∑
xi is the sample mean. Given the linear structure, we can identify any level

of public good G with the type xG = G/
√
n for which this level is optimal.

It is obvious, and has been noted by Bowen, that the outcome of majority voting is almost

always ineffi cient if the distribution of types is skewed, so that the mean and the median do

not coincide. If the number of voters is large so that the sample mean xsµ and sample median

xsm approach the mean µ and median m respectively, too little (too much) public good is

provided by majority voting if the the median m is lower (higher) than the mean µ. As shown

above, the effi cient outcome Gµ can be attained by an F (µ)-majority rule.

If we normalize each individual’s utility without the public good to be zero, we can express

the ineffi ciency ratio (IR) of simple majority as the ratio between the welfare from the public

37For expositional simplicity we assume here that any level of the public good can be provided, so that the

quantity is continuous.
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good obtained under the simple majority rule and the first-best outcome as

IR =
m

µ
(2− m

µ
)

where the ratio m
µ is a simple measure of skewness. This function is strictly less than 1 if

m 6= µ.

5.2 Gini Coeffi cients and the Effi cient Supermajority

Let us apply the F (µ)-majority rule to social decisions that depend on the distribution of

income, where agents with higher income prefer higher decisions. As already seen above,

the necessary correction versus the simple majority rule increases with the skewness of the

distribution. Assume, as in a large number of empirical studies, that the distribution of

income is given by a lognormal distribution with parameters µ and σ.38 Such distributions

are of course skewed, with the mean larger than the median. The Gini coeffi cient, which is

readily available in practice, is given by gσ = 2Φ(
√

2σ/2)−1 where Φ is the standard normal

CDF. Note that this only depends on σ. The threshold at the mean as a function of the Gini

coeffi cient can be computed by

Fσ = Φ

[√
2

2
Φ−1(

gσ + 1

2
)

]
,

This threshold is increasing in g, and hence in σ. For the typical range of Gini coeffi cients

found in (Western) democracies gα ∈ [0.25, 0.55] the resulting optimal supermajority does

not vary too much, ranging between 58% and 68%.39

6 Voting with Correlated Types

The optimality calculations in the previous parts were conducted under the basic assump-

tions that types are independent. But, there are numerous situations where the agents’

preferences depend on some underlying state of the world, and are thus correlated. Consider,

for example, the decision to change income taxes in an environment where the economy’s

fundamentals (and hence the government’s fiscal needs) are not constant over time. Indi-

vidual preferences depend then on the economy’s fundamentals, and hence, presumably, the

optimality conditions should also reflect this dependence. As a typical illustration, note that

tax increases over $70 million require a referendum in Missouri, but the legislature can raise

itself such taxes by a two-thirds majority if the governor declares a state emergency (e.g.,

after a flood).40

38We use notational convention here. The parameters µ and σ of the lognormal distribution determine, but

are not identical to, the mean and the standard deviation.
39As an example, the U.S. has a Gini of .45 and a required threshold of exactly two-thirds.
40See National Conference of State Legislators, http://www.ncsl.org/issues-research/budget/state-tax-and-

expenditure-limits-2010.aspx
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For another example, consider a monetary committee that votes on interest rates. Mem-

bers usually agree that the optimal rate needs to balance the trade-off between inflation and

unemployment, but have different signals or perceptions about the economy. Relatively pes-

simistic (optimistic) members will be more dovish (hawkish) regarding a raise in the interest

rate. Perceptions depend of course on the prevailing market conditions, and thus types are

again correlated.

Given the ubiquity of examples such as the above, it is of interest to establish whether the

intuitions developed above for the case of independent types continue to hold with correlated

types. Note that the class of anonymous, unanimous and DIC mechanisms is independent

of assumptions about the probability distribution of voters’types. The same holds for the

sincere equilibria of the successive voting procedure with a decreasing threshold. Thus, the

changes induced by possible correlations will affect our results only via their effect on the

threshold function itself and its calculation.

The analysis is complicated by the fact that the various events of pivotality– which deter-

mine the optimal thresholds– reveal now information about the underlying state of the world,

and, moreover, the revealed information is influenced by the imposed thresholds themselves.

Nevertheless, we are able to extend our main insights, albeit under more stringent suffi cient

conditions.

Assume that there are S states of the world:41 if the state is s ∈ {1, ..., S}, then types
xs distribute identically and independently of each other according to a distribution Fs with

mean µs. Let ps ≥ 0 denote the probability that the state of the world is s, with
∑
ps = 1.

Utilities are assumed here to be linear, as in Section 4.1.

Let τ∗ denote the optimal cutoff function and apply the same reasoning as in the case of

independent types. Consider any alternative k with τ∗ (k − 1) > τ∗ (k) and k ≥ 2. For τ∗ to

be optimal, “local”changes should weakly decrease the expected social welfare. In particular,

decreasing τ∗ (k − 1) by 1 while keeping all other cutoffs unchanged will have any effect only

if there are exactly τ∗ (k − 1)− 1 agents with types in
[
x, xk

]
and n− τ∗ (k − 1) + 1 agents

with types in
[
xk, x

]
. In this case, the chosen alternative becomes k − 1 instead of k. With

correlated types, however, additional complication arises because this pivotal event affects the

implied probabilities of the states of the world: conditional on having exactly τ∗ (k − 1)− 1

agents with types in
[
x, xk

]
and n− τ∗ (k − 1) + 1 agents with types in

[
xk, x

]
, the posterior

probability of state s is

P (s|τ∗(k − 1)) =
ps
(

n
τ∗(k−1)−1

) (
Fs(x

k)
)τ∗(k−1)−1 (

1− Fs
(
xk
))n−τ∗(k−1)+1∑S

l=1 pl
(

n
τ∗(k−1)−1

)
(Fl (xk))

τ∗(k−1)−1
(1− Fl (xk))n−τ

∗(k−1)+1 .

Note that this probability depends on the number of agents, on the cutoff xk, and on the

assumed threshold τ∗(k − 1).

41We assume here for simplicity that there is a finite number of states, but the analysis does not depend on

this assumption.
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The expected social utility from alternative k − 1 in this case is given by

nak−1 + bk−1

S∑
s=1

P (s|τ∗(k − 1))

{
(τ∗ (k − 1)− 1)E

[
Xs|Xs < xk

]
+ (n− τ∗ (k − 1) + 1)E

[
Xs|Xs > xk

] } . (14)

The expected social utility from alternative k is given by

nak + bk

S∑
s=1

P (s|τ∗(k − 1))

{
(τ∗ (k − 1)− 1)E

[
Xs|Xs < xk

]
+ (n− τ∗ (k − 1) + 1)E

[
Xs|Xs > xk

] } . (15)

Because τ∗ (k − 1) is part of the optimal voting procedure, decreasing τ∗ (k − 1) by 1 should

weakly decrease the expected social welfare. This implies that expression (15) is weakly

higher than expression (14). This yields

S∑
s=1

Hs (k)

(
Fs
(
xk
)

1− Fs (xk)

)τ∗(k−1)−1
(nβs (k)− τ∗ (k − 1) + 1) ≥ 0, (16)

where the function βs for state s is defined by

βs (k) =
E[Xs|Xs > xk]− xk

E[Xs|Xs > xk]− E[Xs|Xs < xk]
,

and where the function Hs (k) is defined as

Hs (k) = ps

(
1− Fs(xk)

)n (
E[Xs|Xs > xk]− E[Xs|Xs < xk]

)
. (17)

Similarly, fix any alternative k with τ∗ (k − 1) > τ∗ (k) and k ≤ K − 1. Increasing τ∗ (k) by

1 should also lead to a weakly lower expected social welfare, which yields

S∑
s=1

Hs (k + 1)

(
Fs
(
xk+1

)
1− Fs (xk+1)

)τ∗(k)
(nβs (k + 1)− τ∗ (k)) ≤ 0. (18)

Now let us define functions Tk (τ), k = 1, 2, ...,K − 1, as

Tk (τ) =
S∑
s=1

Hs (k + 1)

(
Fs
(
xk+1

)
1− Fs (xk+1)

)τ
(nβs (k + 1)− τ) . (19)

Our candidate solution τ (k) is an integer that satisfies Tk (τ − 1) ≥ 0 and Tk (τ) ≤ 0, i.e.,

that satisfies inequalities (16) and (18)). In order to ensure that τ (k) is well-defined it suffi ces

to establish that each function Tk is single-crossing in τ , i.e., there is a unique τ such that

Tk (τ) = 0.

The diffi culty of proving the single-crossing property (SCP) lies in the fact that the terms

of the form nβs (k + 1)− τ (which were the only relevant terms in the independent case) are
now weighted by the updated probabilities that vary in both the chosen alternative and in the

threshold imposed there. Nevertheless, SCP holds if the states of the world can be ordered

stochastically according to the likelihood ratio order.42 Its proof requires recently developed

tools from the theory of monotone comparative statics (Quah and Strulovici [2012]) that

allow us to aggregate SCP’s relevant in each state.
42As in Proposition 2, the combination of the hazard and reversed hazard rate order also suffi ces here.
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Proposition 3 Assume that (possibly after reordering the states of the world) X1 ≤lr X2 ≤lr
... ≤lr XS and that each Xs, s = 1, ..., S satisfies Assumption B’. Then, for each k, the

function Tk is single-crossing.

Proof. See Appendix A.
Since we are optimizing a bounded function over a discrete and finite domain of monotone

decreasing cutoff sequences, an optimal solution always exists. Similarly to the independent

types case, in order to identify the solution by the necessary first order conditions we also need

to ensure that the two derived inequalities (16) and (18) hold for all alternatives, including

alternatives k with τ∗(k − 1) = τ∗(k). This is proved in Lemma 3 in the Appendix A where,

in addition to the likelihood ratio stochastic dominance and Assumption B’, we offer a simple

suffi cient condition under which these two inequalities hold. Finally, this yields

Proposition 4 Assume that X1 ≤lr X2 ≤lr ... ≤lr XS and that each Xs, s = 1, ..., S satisfies

Assumption B’. Suppose βS (k + 1) ≤ β1(k) for all k ≤ K − 1. Let τ∗ (k) be the unique

integer that satisfies Tk (τ) ≤ 0 and Tk (τ − 1) ≥ 0. Then the threshold τ∗ (k) is optimal and

the obtained function τ∗ is decreasing.

Proof. See Appendix A.
The condition βS (k + 1) ≤ β1(k) for all k ≤ K − 1, imposes restrictions on both agents’

utilities and type distributions. It becomes more restrictive when there are more alternatives

(and the interval of types is bounded) and when the distance between the distributions in

the lowest and highest states of the world is large. But it is relatively mild, as illustrated by

the following example.

Example 3 There are two states of the world with distributions F1 = x and F2 = (x)2

on [0, 1] respectively. It is clear that X1 ≤lr X2. Moreover, β1(k) = 1 − xk and β2(k) =

1− 1
2(xk+(xk)2). As should be the case by the above argument, these functions are decreasing

in k and β1(k) ≤ β2(k). Then the condition in Proposition 4 requires β2 (k + 1) ≤ β1(k) for

all k ≤ K−1, which is equivalent to xk+1 ≥ 1
2(
√

8xk + 1−1). Since it is always the case that

xk+1 ≥ xk, a mild, suffi cient condition is xk+1 − xk ≥ 1/8 = maxx∈[0,1]
1
2(
√

8x+ 1− 1)− x.

6.1 Large Societies with Correlated Types

The implementation of the optimal mechanism via a fixed threshold when the society is large

(see Section 5 above) clearly hinges on the assumption that uncertainty about the effi cient

alternative vanishes in the limit when the number of agents gets large. It fails if there is

uncertainty about the states of the world, and hence residual uncertainty about the best

course of action.

Consider a large society with S states of the world where types xs distribute identically

and independently of each other according to a distribution Fs (with a mean µs) if the state

is s ∈ {1, ..., S}. Denote by ks the effi cient alternative in state s, preferred by the mean
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voter µs. When states are stochastically ordered we obtain that µ1 ≤ µ2 ≤ ... ≤ µS and

therefore k1 ≤ k2 ≤ ... ≤ kS . A flexible threshold τ∗(ks) = Fs(µs) implements then the

effi cient outcome in each state of the world if F1(µ1) ≥ F2(µ2) ≥ ... ≥ FS(µS).43 It is obvious

that in general this outcome cannot be obtained by a fixed threshold policy.

It is interesting to note that for the special case where Fs(x) = 1− e−λsx we obtain that
Fs(µs) = Fs(λ

−1
s ) = 1 − e−1 ≈ 0.63, so that a fixed two-thirds majority is approximately

optimal in all states of the world. The same holds if the states of the world are governed by

lognormal distributions with Gini coeffi cients in the actual range of Western democracies, so

that the same two-thirds majority obtained above is relatively stable under the typical range

of income inequality.

To conclude, the large-society setting with correlated types forcefully demonstrates the

importance of flexible thresholds, and our results are consistent with observed practices that,

for example, adjust legislative hurdles in times of financial distress or national emergency.

7 Concluding Remarks

We have characterized constrained effi cient (i.e., second-best) dominant strategy incentive

compatible and deterministic mechanisms in a setting where privately informed agents have

single-crossing utility functions, but where monetary transfers are not feasible. Our approach

allows a systematic choice among Pareto-effi cient mechanisms based on the ex-ante utility

they generate. We have also shown that the optimal mechanism can be implemented by a

modification of a widely used voting procedure. This modification is an extension to several

alternatives of the idea behind qualified majorities (or supermajorities) that are also widely

used for binary decisions. In practice, one could use flexible thresholds in a simplified way

(e.g., by using only one switching point from a high threshold to a low one) instead of changing

the required threshold for each alternative. Such schemes are already welfare superior to those

using a fixed threshold.

An open question is whether random mechanisms can yield a improvement over the deter-

ministic mechanisms studied in this paper. The answer would be clearly negative if one could

show that any probabilistic, DIC and anonymous mechanism is a lottery over deterministic,

DIC and anonymous mechanisms. Peters et al. [2014] prove exactly that on single-peaked

domains satisfying a minimally richness condition. But, their result is not immediately ap-

plicable here, mainly because their incentive compatibility concept is ordinal: a deviation

from truth-telling must be disadvantageous for any cardinal utility representation of the

ordinal single-peaked preferences; thus, their concept is stronger than the incentive compat-

ibility concept for a specific and given cardinal utility function, and it potentially excludes

more mechanisms.
43As an example, consider Fs(x) = (x)s. Then Fs(µs) = ( s

s+1
)s , which is decreasing in the parameter

s. Because Fs(µs) = βs(µs), s = 1, 2, ..., S, the condition here is a special case of what was assumed in

Proposition 4 for a finite number of voters.
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Another open question is whether using the more permissive Bayesian incentive com-

patibility concept can improve the performance of constrained effi cient mechanisms. It is

instructing to note that in the standard setting with independent types, linear utility and

with monetary transfers, a general welfare equivalence result between dominant strategy in-

centive compatible and Bayes-Nash incentive compatible mechanisms has been established

by Gershkov et al. [2013].

Finally, recall that we studied a private value environment in the sense that a voter’s

payoff, conditional on the chosen alternative, depends on only his own private information.

Given that in many applications voters’payoffs often depend on other voters’private infor-

mation, it will be interesting to study optimal voting rules for information aggregation in an

interdependent value environment.

Appendix A: Proofs

Lemma 1 Sincere voting is the unique outcome surviving iterated elimination of (weakly)
dominated strategies.44

Proof. The final vote is between alternatives K and K − 1: for any observed history of

previous play, voters with peaks up to and including K − 1 have a dominant action, to vote

for K−1, while voters with peak on alternative K must vote for K. Thus, at the first stage of

elimination, for all players, we can delete the strategies that prescribe an insincere action at

the last vote. Consider now the vote to approve or reject alternative K−2. Voting insincerely

is clearly dominated for all agents with peaks up to and including K − 2 (since any outcome

that can be obtained by voting No is worse than any outcome that can be obtained by voting

Yes), and for all agents with peak on alternative K (vice-versa). Thus, we can eliminate

all strategies that prescribe insincere voting at stage K − 2 for these types of all agents. It

remains to deal with types having a peak on alternative K − 1. If such an agent prefers

alternative K to alternative K − 2, then the argument is the same as for an agent with peak

on K, and insincere voting at K − 2 is dominated. Look then at an agent with peak on

alternative K − 1, who prefers alternative K − 2 to K. He may, theoretically, believe that,

given the observed history of play, voting Yes (stopping at K− 2) is better, as voting No will

ultimately lead to K, a worse option. But note that the action of such an agent at stage K−2

makes any difference only in the particular instance where there are exactly τ(K − 2) − 1

other agents that vote Yes at that stage. By the previous arguments, this set must consist of

all agents with peak up to and including K−2 and, possibly, of some other agents with peak

on K − 1 who favor alternative K − 2 over K. But then, because τ(K − 1) ≤ τ(K − 2), our

44 If agents have strict ordinal preferences, then a simple condition ensuring that the order of elimination

does not matter is trivially satisfied in our setting (for example the condition of transference of decision maker

indifference in Marx and Swinkels [1997]). The model with a continuum of types is the limit of models with

a finite number of types (representing the possible ordinal profiles) with strict preferences. In the limit, only

a finite number of types (measure zero) do not have strict preferences.
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agent must conclude that, in the only instance where he can affect the outcome, voting No at

stage K − 2 (and voting Yes at the next stage, as required) necessarily leads to the adoption

of alternative K − 1, his peak. Thus, voting insincerely at K − 2 is also dominated for such

agents, and thus for all possible types of all agents. The proof for all earlier stages continues

analogously, and sincere voting after each possible history is the only outcome surviving the

iterated elimination process.

The formal statement of the main theorem in Saporiti [2009] used in the proof of Theorem

1 is as follows:

Theorem 3 (Saporiti, 2009) An unanimous, anonymous mechanism g is DIC if and only

if there exists (n− 1) numbers α1, ..., αn−1 ∈ K such that for any type profile (x1, ..., xn) ∈
[x, x]n with xi ∈ (xki , xki+1) for all i, it holds that

g (x1, ..., xn) = M(α1, ..., αn−1, k1, ..., kn),

where the function M returns the median of (α1, ..., αn−1, k1, ..., kn).

Proof of Theorem 2. Consider the optimal mechanism with decreasing threshold func-

tion τ∗. Suppose the optimal threshold function satisfies τ∗ (k − 1) > τ∗ (k) for some k ≥ 2.

Suppose the planner decreases the cutoff τ∗ (k − 1) by 1 while keeping all other cutoffs un-

changed. Because τ∗ (k − 1) > τ∗ (k), the alternative cutoff sequence is still monotone and

thus feasible. This change matters only if there are exactly τ∗ (k − 1)− 1 voters with values

below xk and (n+ 1− τ∗ (k − 1)) voters with values above xk (recall that xk is the cutoff type

that is indifferent between alternative k − 1 and alternative k). In this case, by decreasing

the cutoff τ∗ (k − 1) by 1, the planner might change the allocation from k to k− 1 given that

τ∗ (k − 1)− 1 ≥ τ∗ (k). In this case, the total expected utility from alternative k is given by

[τ∗ (k − 1)− 1]ukx<xk + [n+ 1− τ∗ (k − 1)]ukx>xk .

The total expected utility from alternative k − 1 is given by

[τ∗ (k − 1)− 1]uk−1
x<xk

+ [n+ 1− τ∗ (k − 1)]uk−1
x>xk

.

Since the planner (weakly) prefers k to k − 1, the total expected utility from alternative k

must be higher than the total expected utility from alternative k − 1. This gives us the

following “first-order condition”for all k ≥ 2 with τ∗ (k − 1) > τ∗ (k):

[τ∗ (k − 1)− 1]
(
ukx<xk − u

k−1
x<xk

)
+ [n+ 1− τ∗ (k − 1)]

(
ukx>xk − u

k−1
x>xk

)
≥ 0. (20)

Similarly, suppose the optimal threshold function satisfies τ∗ (k − 1) > τ∗ (k) for some

k ≤ K − 1. Now suppose the planner increases τ∗ (k) by 1 while keeping all other cutoffs

unchanged. Since τ∗ (k − 1) > τ∗ (k) and k ≤ K − 1, this alternative cutoff sequence is
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still monotone and thus feasible. This change matters only if only if there are exactly τ∗ (k)

voters with values below xk+1 and (n− τ∗ (k)) voters with values above xk+1. In this case,

by increasing the cutoff τ∗ (k) by 1, the planner might change the allocation from k to k + 1

given that τ∗ (k + 1) ≤ τ∗ (k). In this case, the total expected utility from alternative k is

given by

τ∗ (k)ukx<xk+1 + [n− τ∗ (k)]ukx>xk+1 .

The total expected utility from alternative k + 1 is given by

τ∗ (k)uk+1
x<xk+1

+ [n− τ∗ (k)]uk+1
x>xk+1

.

This yields another “first-order condition”for all k ≤ K − 1 with τ∗ (k − 1) > τ∗ (k):

τ∗ (k)
(
ukx<xk+1 − u

k+1
x<xk+1

)
+ [n− τ∗ (k)]

(
ukx>xk+1 − u

k+1
x>xk+1

)
≥ 0. (21)

These two first-order conditions can be rewritten as bounds on the cutoff functions τ∗ (k) :

τ∗ (k − 1) ≤
n
(
uk
x>xk

− uk−1
x>xk

)
(
uk−1
x<xk

− uk
x<xk

)
+
(
uk
x>xk

− uk−1
x>xk

) + 1,

τ∗ (k) ≥
n
(
uk
x>xk+1

− uk+1
x>xk+1

)
(
uk
x<xk+1

− uk+1
x<xk+1

)
+
(
uk+1
x>xk+1

− uk
x>xk+1

) .
We can use the definition (8) of β (k) to rewrite it as

τ∗ (k − 1) ≤ nβ (k) + 1, for all k ≥ 2, (22)

τ∗ (k) ≥ nβ (k + 1) , for all k ≤ K − 1, (23)

which are exactly the inequalities (9) and (10) in the main text. Lemma 2 below shows that

the above two conditions also hold for k with τ∗ (k − 1) = τ∗ (k).

Therefore, we can construct the (generically unique) optimal cutoff function τ∗ (k) as

follows. We first derive bounds for τ∗ (1) by taking k = 2 in (22) and k = 1 in (23):

nβ (2) ≤ τ∗ (1) ≤ nβ (2) + 1.

Since the two bounds differ by 1 and τ∗ (1) must be an integer, τ∗ (1) is generically unique

and must be equal to dnβ (2)e ,where dze denotes the smallest integer that is above z. Next,
for all 2 ≤ k ≤ K − 1, conditions (22) and (23) imply that

nβ (k + 1) ≤ τ∗ (k) ≤ nβ (k + 1) + 1.

Hence, τ∗ (k) is also generically unique and must be equal to dnβ (k + 1)e. Finally, for k = K,

the cutoff τ∗ (K) is fixed at 1.

Note that by Assumption B, β is decreasing in k, so the optimal cutoffτ∗ (k) = dnβ (k + 1)e
is indeed decreasing for all k ≤ K − 1. Further note that β (K) > 0, so we must have

τ∗ (K − 1) ≥ 1 = τ∗ (K). Therefore, the optimal cutoff function τ is decreasing.
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To complete the proof, we need to argue that the cutoff function τ∗ we constructed above

is indeed optimal. Note that we are optimizing a bounded function over a finite domain of

decreasing sequences τ(k) where τ (k) ≤ n for all k and τ(K) = 1. Thus an optimal solution

always exists. Because the optimal solution has to satisfy the two necessary conditions (22)

and (23), and because there is an essentially unique cutoff function that satisfies these two

conditions, our candidate distribution τ∗ must be optimal.

Lemma 2 The bounds (22) and (23) hold for all k ∈ K with τ∗ (k) = τ∗ (k − 1).

Proof. First let us define κ1 and κ2 as follows:

κ1 = max {m ∈ K : τ∗ (m) = n} ,
κ2 = min {m ∈ K and m ≤ K − 1 : τ∗ (m) = 1} .

We need to consider four cases.

Case 1: Both κ1 and κ2 exist. Then by definition, we have τ∗ (1) = ... = τ∗ (κ1) = n,

τ∗ (κ1 + 1) < n, τ∗ (κ2) = ... = τ∗ (K) = 1 and τ∗ (κ2 − 1) > 1. An alternative k with

τ∗ (k) = τ∗ (k − 1) could belong to one of the following three possible scenarios:

(i) k ≤ κ1. Then τ∗ (k) = n and condition (23) holds trivially. We only need to prove

condition (22). By definition of κ1, τ∗ (κ1) > τ∗ (κ1 + 1). Thus, (22) must hold at κ1 + 1:

τ∗ (κ1) ≤ nβ (κ1 + 1) + 1.

Therefore, we have

τ∗ (k − 1) = τ∗ (k) = τ∗ (κ1) ≤ nβ (κ1 + 1) + 1 ≤ nβ (k) + 1,

where the second inequality follows because β is decreasing and κ1 + 1 > k.

(ii) k ≥ κ2 + 1. Then τ∗ (k) = τ∗ (κ2) = 1 and condition (22) is trivially satisfied, and we

only need to prove condition (23). By definition of κ2, τ∗ (κ2 − 1) > τ∗ (κ2). So we have (23)

hold at κ2:

τ∗ (κ2) ≥ nβ (κ2 + 1) .

Therefore,

τ∗ (k) = τ∗ (κ2) ≥ nβ (κ2 + 1) ≥ nβ (k + 1) .

Again, the last inequality follows from the monotonicity of β (·) and the fact that k ≥ κ2+ 1.

(iii) k ∈ (κ1, κ2 + 1). Define k1 and k2 as follows:

k1 = max {m ∈ K : τ∗ (m) > τ∗ (k)} ,
k2 = min {m ∈ K : τ∗ (m) < τ∗ (k)} .

It’s clear that both k1 and k2 are well defined for all k ∈ (κ1, κ2), and k1 < k < k2. By

definition of k1 and k2, we have

τ∗ (k1) > τ∗ (k1 + 1) = ... = τ∗ (k − 1) = τ∗ (k) = ... = τ∗ (k2 − 1) > τ∗ (k2) .
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Therefore, both conditions (23) and (22) hold at k1 + 1 and k2. In particular,

τ∗ (k1 + 1) ≥ nβ (k1 + 2) and τ∗ (k2 − 1) ≤ nβ (k2) + 1.

Since τ∗ (k − 1) = τ∗ (k), we must have k1 ≤ k− 1 or equivalently k ≥ k1+ 1. It follows from

the monotonicity of β that

τ∗ (k) = τ∗ (k1 + 1) ≥ nβ (k1 + 2) ≥ nβ (k + 1) ,

which is (23). Similarly, we can use the monotonicity of β and the fact that k2 > k to obtain

τ∗ (k − 1) = τ∗ (k2 − 1) ≤ nβ (k2) + 1 ≤ nβ (k) + 1,

which is (22).

Case 2: Neither κ1 nor κ2 exists. Then the argument of Case 1(iii) applies for all k with
τ∗ (k − 1) = τ∗ (k).

Case 3: κ1 exists but κ2 does not. Consider alternative k with τ∗ (k − 1) = τ∗ (k). If

k ≤ κ1, the argument of Case 1(i) applies. If k > κ1, the argument of Case 1 (iii) applies.

Case 4: κ2 exists but κ1 does not. Consider alternative k with τ∗ (k − 1) = τ∗ (k). If

k ≥ κ2 + 1, the argument of Case 1(ii) applies. If k < κ2 + 1, the argument of Case 1(iii)

applies.

Proof of Proposition 2. Observe that, under distribution F ,

β (k) ≡
E
[
X|X > xk

]
− xk

E [X|X > xk]− E [X|X ≤ xk]

=
E
[
X|X > xk

]
− xk

E [X|X > xk]− xk + xk − E [X|X ≤ xk]

=
1

1 +
xk−E[X|X≤xk]
E[X|X>xk]−xk

.

Similarly, under distribution F̃ , we can obtain the corresponding β̃ (k) as

β̃ (k) =
1

1 + xk−E[X̃|X̃≤xk]
E[X̃|X̃>xk]−xk

.

Note that, for any x ∈ [x, x],

X ≤ hr X̃ ⇒ E [X|X > x] ≤ E[X̃|X̃ > x]

X ≤ rh X̃ ⇒ E [X|X ≤ x] ≤ E[X̃|X̃ > x]

Therefore, we have β̃ (k) ≥ β (k) under the assumptions given in the proposition. As a result,

we must have τ̃∗ (k) ≥ τ∗ (k) for all k.

31



Proof of Proposition 3. Consider the function Tk and express each component in this

summation as

Zk(τ , s) = Hs(k + 1) (αs(k + 1))τ (nβs(k + 1)− τ)

where Hs(k + 1) is defined in (17) and

αs(k + 1) =
Fs
(
xk+1

)
1− Fs (xk+1)

.

Then, each Zk is single-crossing in τ on [0, n] since the function ατ (nβ − τ) is first positive,

zero at τ = nβ, and then negative. The function H does not play here any role. Look now

at s and s′ such that Xs ≥lr Xs′ . Then by usual stochastic dominance and the monotonicity

of function x
1−x on [0, 1], we have αs(k+1)

αs′ (k+1)
< 1. In addition, the proof of Proposition 2 shows

that the likelihood ratio order implies βs(k + 1) > βs′(k + 1). Look now at the ratio:

Zk(τ , s)

Zk(τ , s′)
=
Hs(k + 1)

Hs′(k + 1)

(
αs(k + 1)

αs′(k + 1)

)τ nβs(k + 1)− τ
nβs′(k + 1)− τ .

Since βs(k + 1) > βs′(k + 1), we know that nβs′(k + 1)− τ < 0 if nβs(k + 1)− τ < 0. Thus

the ratio Zk(τ ,s)
Zk(τ ,s′)

is negative only on the interval [nβs′(k + 1), nβs(k + 1)]. By Theorem 1

of Quah and Strulovici [2012], the function Tk(τ) =
∑

s Zk(τ , s) will be single-crossing in τ

if for each parameters s, s′, the ratio Zk(τ ,s)
Zk(τ ,s′)

is increasing in τ on the interval [nβs′(k + 1),

nβs(k+ 1)]. Since τ is not a variable of the functions Hs and Hs′ , it is suffi cient to check the

derivative of a function of the form vτ (nβ − τ)/
(
nβ′ − τ

)
, where v = α/α′ < 1 and β > β′,

on the interval [nβ′, nβ]. Its derivative with respect to τ is

vτ(
nβ′ − τ

)2 [nβ − nβ′ + (ln v) (nβ − τ)
(
nβ′ − τ

)
] > 0

because ln v < 0 and nβ′ < τ < nβ.

Lemma 3 Assume that X1 ≤lr X2 ≤lr ... ≤lr XS and that each Xs, s = 1, ..., S satisfies

Assumption B’. Assume also that βS (k + 1) ≤ β1(k) for all k ≤ K − 1. Then conditions

(16) and (18) hold for all k ∈ K with τ∗ (k) = τ∗ (k − 1).

Proof. This lemma extends Lemma 2 to the case with correlated types, and the proof follows
the same steps as before. Define κ1 and κ2 as follows:

κ1 = max {m ∈ K : τ∗ (m) = n} ,
κ2 = min {m ∈ K and m ≤ K − 1 : τ∗ (m) = 1} .

We need to consider four cases.

Case 1: Both κ1 and κ2 exist. Then, by definition, we have τ∗ (1) = ... = τ∗ (κ1) = n,

τ∗ (κ1 + 1) < n, τ∗ (κ2) = ... = τ∗ (K) = 1 and τ∗ (κ2 − 1) > 1. An alternative k with

τ∗ (k) = τ∗ (k − 1) could belong to one of the following three possible scenarios:
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(i) k ≤ κ1. Then τ∗ (k) = n and condition (18) holds trivially. We only need to prove

condition (16). By definition of κ1, τ∗ (κ1) > τ∗ (κ1 + 1). Thus, it is feasible to decrease

τ∗ (κ1) by 1, so condition (16) must hold at κ1 + 1. That is,

S∑
s=1

Hs (κ1 + 1)

(
Fs (xκ1 + 1)

1− Fs (xκ1+1)

)τ∗(κ1)−1
(nβs (κ1 + 1)− τ∗ (κ1) + 1) ≥ 0.

Note that by likelihood ratio order, β1 (κ1 + 1) ≤ β2 (κ1 + 1) ≤ ... ≤ βS (κ1 + 1). Therefore,

in order for the above inequality to hold, it must be the case that

nβS (κ1 + 1)− τ∗ (κ1) + 1 ≥ 0.

By assumption βS (κ1 + 1) ≤ β1 (κ1), and by monotonicity of β, we have β1 (κ1) ≤ β1 (k).

These two inequalities imply that

βS (κ1 + 1) ≤ β1 (k) .

As a result,

nβ1 (k)− τ∗ (κ1) + 1 ≥ 0

Again by likelihood ratio order, β1 (k) ≤ β2 (k) ≤ ... ≤ βS (k) for all k, so we must have

nβs (k)− τ∗ (κ1) + 1 ≥ 0, for all s = 1, ..., S.

By definition of κ1, we have τ∗ (k − 1) = τ∗ (κ1), so

nβs (k)− τ∗ (k − 1) + 1 ≥ 0, for all s = 1, ..., S.

But this implies that condition (16) holds at k.

(ii) k ≥ κ2 + 1. Then τ∗ (k) = τ∗ (κ2) = 1 and condition (16) is trivially satisfied, and we

only need to prove condition (18). By definition of κ2, τ∗ (κ2 − 1) > τ∗ (κ2). So it is feasible

to increase τ∗ (κ2) by 1, which indicates that (18) must hold at κ2:

S∑
s=1

Hs (κ2 + 1)

(
Fs
(
xκ2+1

)
1− Fs (xκ2+1)

)τ∗(κ2)
(nβs (κ2 + 1)− τ∗ (κ2)) ≤ 0.

Since β1 (κ2 + 1) ≤ ... ≤ βS (κ2 + 1) by the likelihood ratio order, it must be the case that

nβ1 (κ2 + 1)− τ∗ (κ2) ≤ 0.

Since β1 (κ2 + 1) ≥ βS (κ2 + 2) by assumption, and βS (κ2 + 2) ≥ βS (k + 1) by monotonicity

of βS , we have

nβS (k + 1)− τ∗ (κ2) ≤ 0.

Again by the likelihood ratio order, β1 (k + 1) ≤ β2 (k + 1) ≤ ... ≤ βS (k + 1), so we must

have

nβs (k + 1)− τ∗ (κ2) ≤ 0, for all s = 1, ..., S.
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By definition of κ2, we know τ∗ (k) = τ∗ (κ2). Hence,

nβs (k + 1)− τ∗ (k) ≤ 0, for all s = 1, ..., S.

Therefore, condition (18) must hold at k.

(iii) k ∈ (κ1, κ2 + 1). Define k1 and k2 as follows:

k1 = max {m ∈ K : τ∗ (m) > τ∗ (k)} ,
k2 = min {m ∈ K : τ∗ (m) < τ∗ (k)} .

It’s clear that both k1 and k2 are well defined for all k ∈ (κ1, κ2 + 1), and k1 < k < k2. By

definition of k1 and k2, we have

τ∗ (k1) > τ∗ (k1 + 1) = ... = τ∗ (k − 1) = τ∗ (k) = ... = τ∗ (k2 − 1) > τ∗ (k2) .

Therefore, both conditions (16) and (18) hold at k1 + 1 and k2. In particular,

S∑
s=1

Hs (k2)

(
Fs
(
xk2
)

1− Fs (xk2)

)τ∗(k2−1)−1
(nβs (k2)− τ∗ (k2 − 1) + 1) ≥ 0,

and
S∑
s=1

Hs (k1 + 2)

(
Fs
(
xk1+2

)
1− Fs (xk1+2)

)τ∗(k1+1)
(nβs (k1 + 2)− τ∗ (k1 + 1)) ≤ 0.

Similar to what we argued previously for Case 1(i) and (ii), in order for these two inequalities

to hold, we must have

nβS (k2)− τ∗ (k2 − 1) + 1 ≥ 0, and nβ1 (k1 + 2)− τ∗ (k1 + 1) ≤ 0.

By definition of k1 and k2, we have τ∗ (k1 + 1) = τ∗ (k − 1) = τ∗ (k) = τ∗ (k2 − 1). Hence we

can rewrite the above two inequalities as

nβS (k2)− τ∗ (k − 1) + 1 ≥ 0, and nβ1 (k1 + 2)− τ∗ (k) ≤ 0.

Furthermore, by a similar argument as above, we can show that

βS (k2) ≤ β1 (k2 − 1) ≤ β1 (k) ≤ β2 (k) ≤ ... ≤ βS (k)

and

β1 (k1 + 2) ≥ βS (k1 + 1) ≥ βS (k + 1) ≥ βS−1 (k + 1) ≥ ... ≥ β1 (k + 1) .

Therefore, we must have

nβs (k)− τ∗ (k − 1) + 1 ≥ 0, and nβs (k + 1)− τ∗ (k) ≤ 0, for all s = 1, ..., S.

Therefore, conditions (16) and (18) must hold at k.
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Case 2: Neither κ1 nor κ2 exists. Then the argument of Case 1(iii) applies for all k with
τ∗ (k − 1) = τ∗ (k).

Case 3: κ1 exists but κ2 does not. Consider alternative k with τ∗ (k − 1) = τ∗ (k). If

k ≤ κ1, the argument of Case 1(i) applies. If k > κ1, the argument of Case 1 (iii) applies.

Case 4: κ2 exists but κ1 does not. Consider alternative k with τ∗ (k − 1) = τ∗ (k). If

k ≥ κ2 + 1, the argument of Case 1(ii) applies. If k < κ2 + 1, the argument of Case 1(iii)

applies.

Proof of Proposition 4. It remains to verify that the constructed τ is monotone. Note

that each function βs, s = 1, 2, ..., S is decreasing in k by Assumption B’. Moreover, it holds

that β1 (k) ≤ β2 (k) ≤ ... ≤ βS (k) for all k by the likelihood ratio ordering of the types across

states (see the proof of Proposition 2). Consider again the function

Tk (τ) =
S∑
s=1

Hs (k + 1)

(
Fs
(
xk+1

)
1− Fs (xk+1)

)τ
(nβs (k + 1)− τ) .

Let θk be the (possible real valued) solution to the equation Tk (τ) = 0. Define θks = nβs(k+1)

for each s = 1, 2, ..., S. Then θk1 ≤ θk2 ≤ ... ≤ θkS , and it must hold that θ
k
1 ≤ θk ≤ θkS .

Similarly, we must have θk−11 ≤ θk−1 ≤ θk−1S . The assumption βS (k + 1) ≤ β1(k) in the

proposition then implies that θk−11 ≥ θkS . It immediately follows that θ
k ≤ θk−1. Therefore,

we must have τ∗ (k) ≤ τ∗ (k − 1) for all k ≤ K − 1, given that τ∗(k) is the smallest integer

such that τ∗(k) ≥ θk.

Appendix B: Suffi cient Conditions for Assumption B

Note first that requiring of β (k) to be decreasing in k is equivalent to requiring

uk−1
x<xk

− uk
x<xk

uk
x>xk

− uk−1
x>xk

to be increasing in k. To derive suffi cient conditions for Assumption B, we let hk (x) denote

the utility difference for a type-x agent from two adjacent alternatives k and k − 1:

hk(x) = uk−1 (x)− uk (x) .

We claim that if the random variables {hk (x)}k∈K are ordered in terms of both hazard rate
order and reverse hazard rate order, that is, hk ≤hr hk+1 and hk ≤rh hk+1, then Assumption
B holds.45 To see this, note that we can write

uk−1
x<xk

− ukx<xk = E[hk(x) | x < xk] = E[hk(x) | hk(x) > 0]

45Note that conditions hk ≤hr hk+1 and hk ≤rh hk+1 impose restrictions on the shapes of both the distri-
bution F and the utility function u. Alternatively, if we assume F is uniform, we could explicitly derive the

required conditions for Assumption B only on function u. On the other hand, if we assume that the utility

function u is linear as in Section 4.1, the required conditions for Assumption B impose restrictions only on

the distribution F (see Assumption B’).
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where the second equality follows from the definition of cutoff xk and the single-crossing

property. By rewriting uk
x>xk

− uk−1
x>xk

analogously, we obtain

uk−1
x<xk

− uk
x<xk

uk
x>xk

− uk−1
x>xk

= −E[hk(x) | hk(x) > 0]

E[hk(x) | hk(x) < 0]
.

Note that hk ≤hr hk+1 implies that E[hk(x) | hk(x) > 0] is increasing in k, and hk ≤rh hk+1
implies that E[hk(x) | hk(x) < 0] is increasing in k. Therefore, β (k) is decreasing in k.
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