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Abstract

We study when the voting outcome is independent of the order of issues put up

for vote in a spacial multi-dimensional voting model. Agents equipped with norm-

based preferences that use a norm to measure the distance from their ideal policy vote

sequentially and issue-by-issue via simple majority. If the underlying norm is generated

by an inner-product —such as the Euclidean norm —then the voting outcome is order

independent if and only if the issues are orthogonal. If the underlying norm is a general

one, then the outcome is order independent if the basis defining the issues to be voted

upon satisfies the following property: for any vector in the basis, any linear combination

of the other vectors is Birkhoff-James orthogonal to it. We prove a partial converse in

the case of two dimensions: if the underlying basis fails the above property then the

voting order matters. Finally, despite existence results for the two-dimensional case and

for the general lp case, we show that non-existence of bases with the above property is

generic.

1 Introduction

Complex collective decision problems are often divided in simpler issues that are put to a

vote. In this paper we ask the following questions: How can the simpler issues be structured

such that the voting outcome is robust to manipulations of the voting order among the

issues? Is it always possible to find such robust procedures? We assume that the space of

alternatives is multi-dimensional and that voters have utility functions that measure the

distance of an outcome from their ideal point (which is their private information) according

to an arbitrary norm defined on the space of alternatives.
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Following Davis, DeGroot and Hinich [1972], “spatial”models have become ubiquitous

in Political Science, Economics and Operations Research: faced with policy bundles (or

locations, or attributes) voters are assumed to have a most preferred bundle — an ideal

point or “peak”—and utilities that decrease as one “moves away” from the peak. In one

dimension, the spatial approach reduces to the classical domain of single-peaked preferences

a la Black [1948] and choosing the median peak is a strategy proof mechanism, i.e., revealing

the true preferences is a dominant strategy for each agent.1 Moreover, the peak of the

median voter is then a Condorcet winner.

Unfortunately, in multi-dimensional collective decision problems a Condorcet winner

exists only under very restrictive symmetry conditions. As a result, voting cycles —where

the preference of the majority changes from one alternative to another and cycles back —lead

to equilibrium non-existence in spatial models (Plott [1967], Kramer [1973] and McKelvey

[1979]).

1.1 Tullock’s Puzzle: Institutional Stability

As Tullock [1984] famously noted, in real-life we observe considerable stability of complex

legislative outcomes, contrasting the inherent instability described above. How can this

puzzle be explained?

One avenue is the use of super-majorities to stabilize the status quo. Caplin and Nalebuff

[1988] famously showed that, for a large number of voters and for log-concave distributions of

peaks, the average of all peaks —viewed as status quo —cannot be displaced by any another

alternative if a reform requires a super-majority of at least 64% in favor. Super-majorities

are not neutral, and are thus best suited for special situations, e.g., the 2/3 majority needed

for a constitutional amendment in the US or in Germany. More importantly, choosing the

average peak is not a strategy-proof mechanism for a finite number of voters: extremists —

called “cranks”in Galton’s [1907] pioneering article which proposed the median as a better

opinion aggregator —can easily manipulate the outcome by significantly exaggerating their

position in order to pull the collective choice closer to their desired position.

Another prominent resolution of Tullock’s puzzle was offered by Shepsle [1979] who ar-

gued that the division of a complex decision into several different jurisdictions (which he

called germaneness), creates equilibria that would not be stable in a general, unconstrained

collective decision model.2 In Shepsle’s approach, the focus on the lack of equilibria in

spatial models of unconstrained voting is replaced by the study of particular strategic situ-

ations induced by the institutions governing proposal making, agenda formation, coalition

1Generalized medians that allow for the presence of additional “phantom”voters with fixed, known peaks

exhaust the set of DIC mechanisms in various settings where the preference domain is suffi ciently rich. The

first, fundamental result was obtained by Moulin [1980]. Gershkov, Moldovanu and Shi [2017] and Kleiner

and Moldovanu [2017] analyze the implementation of generalized medians via sequentially binary procedures

with varying majority requirements.
2See also Feld and Grofman [1988] and Kramer [1972], [1973].
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formation and so on.

The best known example of such an institution is “issue-by-issue” voting: a complex

policy problem is first divided into several one-dimensional issues, each possibly controlled

by a different committee or jurisdiction; then voting by majority takes place on each issue;

finally, the outcomes, one on each issue, are aggregated to yield a solution to the original

multi-dimensional problem —the so-called issue-by-issue or “coordinate-wise”or “marginal”

median.

Issue-by-issue voting guarantees equilibrium existence (Kramer [1972]): even if a Con-

dorcet winner does not exist, the stability of the issue-by-issue median is ensured by the

rigid institutional constraints put on the voting procedure.

Since the one-dimensional median is not a linear function of its inputs (thus contrasting

the mean), the issue-by-issue median varies with the underlying system of coordinates along

which voting takes place (see Haldane [1948]). Thus, the simpler policy issues into which a

complex, multidimensional decision can be possibly carved are endogenous, and their choice

matters! This simple insight is not too prominent in the spatial voting literature where it

is implicitly assumed that the issues on which voting proceeds are exogenously fixed (e.g.,

the standard Cartesian basis).

Consider, for example, a legislature that has to decide how much money to allocate to

two programs in a given fiscal year. One intuitive budgeting procedure, called “bottom-

up”, is to vote (say by simple majority) on each program separately, in which case the

total budget will be the sum of the individual budgets. Another intuitive alternative, called

“top-down”, is to vote on the total budget first, and then vote on how to divide the total

budget among the two items.3 ,4 It is clear that the “top-down”procedure determines the

expenditures on each program in an indirect way. The outcomes of these two procedures are

generically different, and thus conflicts may arise about which one to employ in particular

circumstances.

Assume that an agreement on what to put on the ballot —the issues —has been obtained.

Does the order in which issue-by-issue sequential voting proceeds matter? When is the

outcome independent of the order in which the policy issues are put on the ballot? In

this paper we show that this order-independent property is intimately connected to the

following one: when is it the case that truthful voting in a direct (and static) marginal

median mechanism forms an equilibrium outcome in dominant strategies? We also show

that the answer to both questions is determined by the geometry induced on the space of

multi-dimensional alternatives by the assumed utility functions (recall that here these are

norm-generated distances from given individual peaks).

Depending on the chosen coordinates (e.g., issues that are put to vote) and on the

3The U.S. Congress switched from bottom-up to top-down following the 1974 Congressional Budget and

Impoundments Control Act. See also Poterba and von Hagen [1999].
4Note that in this example there is no exogenous budget constraint: both the size and the allocation of

the budget are equilibrium outcomes of legislative voting.
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utility functions, the same voting procedure may, or may not be, strategy proof and order-

independent. Viewed in light of Shepsle’s “structure-induced”equilibrium theory, our goal

here is to endogenize the choice of issues (or jurisdictions) in order to induce strategically

stable and robust outcomes that are not subject to voters’manipulations nor to manip-

ulations of an agenda setter. We consider spacial preferences based on norms, and show

that the results obtained for general norms are related, but significantly different from the

relatively simple results obtained for inner product norms (such as the Euclidean norm)

We note that questions about the influence of order in sequential voting have been posed

before, e.g., by De Donder et al. [2012a] [2012b], in a model where the decision is multi-

dimensional while types are one-dimensional and preferences satisfy some single-crossing

conditions (these preferences are not norm-based). Their model is specially constructed in

order to incorporate famous examples such as the public good model in Alesina et al. [1999]

where voters have preferences over level and type. Alesina et al. only considered the order

of votes where size is determined first, while alluding to the top-down budgetary procedure.

1.2 The Euclidean Norm

The ubiquitous way of measuring distance from a peak in a multi-dimensional framework

is the standard Euclidean norm.5 The main reason behind this choice is technical: it allows

the use of basic geometric intuitions.

Euclidean preferences are relatively well-understood: for example, an issue-by-issue me-

dian procedure is strategy-proof if and only if the axes (i.e., the issues) along which it is

computed are orthogonal to each other (see Kim and Roush [1984] and Peters, van der

Stel, and Storcken [1992]).6 Intuitively, this says that a change in the voting outcome on

one issue does not influence the outcome on the other issues (because, by orthogonality, its

projections on the other axes does not change).

Our first result (Proposition 1) connects to the above insight and shows that, for any

normed space induced by an inner-product —such as the Euclidean norm —the outcome of

sequential, issue-by-issue voting is order independent if and only if the issues are orthogonal

to each other. We also explain how the outcome comes about if sequential voting is not

along orthogonal axes (Proposition 2).

5See, for example, the textbook by Austen-Smith and Banks [2005].For empirical methodologies see, for

example, Clinton, Jackman and Rivers [2004]).
6Gershkov, Moldovanu and Shi [2019] showed how to maximize utilitarian welfare over the class of issue-

by-issue medians (each corresponding to an orthogonal rotation of the axes) and illustrated when the top-

down budgeting procedure dominates the bottom-up one.
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1.3 More General Norms

The Euclidean norm is not suitable for most applications because its complete spherical

symmetry implies equal losses induced by deviations in a multitude of directions.7 A smaller

literature, both theoretical and empirical, has considered distances based on the “city block”

(or “Manhattan”) norm, or on the general class of lp norms, p ≥ 1 (where the city-block

norm is l1). Eguia [2013] offers a critical discussion of the Euclidean norm, and references

papers that empirically test alternative distance functions.

Since issue orthogonality —the main attribute behind of robust sequential voting — is

defined via the notion of an inner-product, it is not at all clear how to extend the above

insights to general distance functions that are not generated by inner-products (recall that

even within the standard lp class, only the Euclidean norm l2, admits an inner-product).

Does this mean that such spaces never admit strategy-proof or order independent issue-

by-issue medians? This would be a bit surprising since, for example, in two dimensions,

the issue-by-issue median according to the Cartesian coordinates is actually a Condorcet

winner if voters use the city-block l1 norm according to the Cartesian basis (see Wendell

and Thorson [1974])!

A first step towards obtaining strategy-proofness for more general two-dimensional pol-

icy spaces has been made by Peters, van der Stel, and Storcken [1993]: they showed that

marginal medians are strategy-proof if and only if majority voting takes place along two

coordinates that satisfy an extended notion of orthogonality, due to Birkhoff [1935], and

analysed by James [1947]. Peters, van der Stel, and Storcken also completely characterized

the class of strategy-proof mechanisms that satisfy anonymity and Pareto-optimality: these

must be issue-by-issue medians.

Unfortunately, Birkhoff-James (BJ) orthogonality lacks the symmetry and additivity

properties of the orthogonality defined by a zero inner product. As a consequence, the

results of Peters, van der Stel, and Storcken [1993] cannot hold in that form for higher-

dimensional spaces.

For general normed spaces with any number of policy dimensions, Gershkov, Moldovanu

and Shi [2020] showed that an issue-by-issue median is strategy-proof if and only if it

is computed with respect to a basis that satisfies a property called “left-additive mutual

orthogonality” (LAMO) (see Theorem 2 below). This property is stronger than requiring

the basis vectors to be BJ-mutually orthogonal. In fact, with three dimensions or more,

only a small, possibly empty subset of bases with BJ-mutually orthogonal basis vectors

satisfy LAMO.

This paper shows that, if the sequential, issue-by-issue voting is conducted according to

a basis that satisfies LAMO, then the voting outcome is order-independent and coincides

with the outcome of the corresponding static, issue-by-issue median (Proposition 3). If

7Some variants allow for different weights on different coordinates, but still embody a symmetry, for

example, among increases or decreases in the same direction.
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the associated basis fails to satisfy LAMO, then we show in the two-dimension case that

different voting orders may lead to different voting outcomes (Proposition 4).

1.4 The Existence Question

Given the above characterization, the following question becomes pertinent: Does there

always exist a system of one-dimensional policy issues such that issue-by-issue voting by

simple majority on these issues is strategy-proof or order-independent?

For two-dimensional spaces, the answer is positive by a classical theorem due to Auer-

bach (see Theorem 1 below). An affi rmative answer is also provided for the class of lp norm

(in any finite dimension) by Gershkov, Moldovanu and Shi [2020] who fully characterized all

LAMO bases for all p 6= 2 . The number of such bases is small and they do not depend at all

on p (unless p = 2). Thus, the outcome of sequential, issue-by-issue voting with respect to

these bases would remain order-independent even for situations where the norm is allowed

to vary across agents within the lp class, and is their private information.

Despite the partial existence results mentioned above, our final main result in this paper

is a generic non-existence result: for any arbitrary distance (utility) function derived from a

norm there exists a nearby distance defined from another norm such that the set of LAMO

bases for the latter norm is empty (Theorem 3).

2 Norm-Based Preferences

Throughout of the paper, the bold font is used to denote vectors in Rd. An odd number n
of agents collectively choose a decision v ∈ Rd where d is a positive integer. Agent i’s ideal
position is given by a “peak”ti ∈ Rd. The peak ti is agent i’s private information.

The utility of agent i with peak ti from decision v is given by

−‖ti − v‖

where ‖·‖ is a norm on Rd.8 Recall that a norm ‖·‖ is a real-valued function on Rd that
satisfies four basic properties associated with “length”of vectors:

1. ‖x‖ ≥ 0;

2. ‖x‖ = 0⇔ x = 0, ∀x ∈ Rd;

3. ‖ax‖ = |a| ‖x‖ , ∀x ∈ Rd, a ∈ R; and

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ , ∀x,y ∈ Rd.
8Since our analysis and results are purely ordinal, they immediately apply to all utility functions of the

form −∆ (‖ti − v‖) where ∆ is a strictly increasing function: all these cardinal utilities represent the same

ordinal preferences as the basic norm ‖·‖.
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We denote by {x1, ...,xd} a generic algebraic basis for Rd, where x1, ...,xd are linearly

independent, and by {e1, ..., ed} the standard Cartesian basis where, for vector ej , only the
j-th coordinate is different from zero, and equals one:

ej = (0, 0, ..., 1︸ ︷︷ ︸
j

, 0, ..., 0).

Fix a basis {x1, ...,xd} in Rd. Recall that we can represent each x ∈ Rd as

x =

d∑
j=1

αj(x)xj ,

where αj(x) is the j-th coordinate of x according to this basis. To simplify notation when

confusion cannot arise, we write

(x1, ..., xd) =
(
α1(x), ..., αd(x)

)
and identify x with the vector of coordinates (x1, ..., xd).

2.1 The Endogeneity of Issues

As we discussed above, equilibrium may not exist if voters vote on all issues simultaneously.

Equilibrium existence, however, is guaranteed under issue-by-issue voting. The approach

of modeling legislative procedures via issue-by-issue voting is justified by the structure of

committees and jurisdictions. Hence, we will focus on it and, for simplicity, we assume that

a simple majority is applied in determining the voting outcome for each dimension.

Due to the multi-dimensionality of the decision space, the dimensions on which voting

takes place are not uniquely defined. In other words, there are many different ways of fram-

ing the issues that are put on the ballot, and each feasible set of issues yields a potentially

different multi-dimensional median. We interpret different algebraic bases {x1, ...,xd} as
different ways of structuring the issues that are put to vote.

Example 1 (Issues and Bases I) Consider a legislature that decides how much money
to allocate to defence (D) and to everything else (E). The decision space can be represented

by R2
+ = {(D,E) : D ≥ 0, E ≥ 0}. One budgeting procedure, called “bottom-up”, is to vote

on D and E sequentially, in which case the total budget will be the sum of the individual

budgets, D+E. An alternative, called “top-down”, is to first vote on the total budget D+E,

and then vote on how to divide the total budget between D and E. Let e1 and e2 denote the

unit vector along the dimensions of D and E, respectively. Then the bottom-up budgeting

procedure can be represented by voting along the coordinates of the standard Cartesian basis{
e1, e2

}
with either e1 or e2 being voted first, while the top-down budgeting procedure can

be modelled by voting along
{
e1 + e2, e1 − e2

}
with e1 + e2 being voted first. Both bases

consist of orthogonal vectors, but their outcomes are generically different.
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Example 2 (Issues and Bases II) A community decides on the size (or level, or quan-
tity) of a public good Q and on the total charge to each member T.Members of the community

have preferences on bundles (Q,T ) —these are derived from considerations of this versus al-

ternative public goods, budget constraints, costs, etc.. The decision space can be represented

by R2
+ = {(Q,T ) : Q ≥ 0, T ≥ 0}. Suppose that instead of voting on quantity Q and on total

charge T , voting is on Q and on a “flat fee”F , with the understanding that T = F + pQ

where p is an exogenously given marginal price (this may reflect marginal cost, etc.).

In a sequential vote first on coordinate Q and then on F, then, naturally, the first vote

determines Q and the second fixes F , and thus T .9 This is equivalent to a vote on Q and

then on T. But, consider now the sequential voting in the opposite order, F and then Q.

This is equivalent to voting according to the “rotated issue”T−pQ and then according to

Q. Now the first vote does not fully determine T — it will be completely determined only

after the second vote on Q.

Note also each fixed marginal price p determines a different voting mechanism, where

p = 0 corresponds to a vote on T and then on Q. Even with standard Euclidean preferences,

if p 6= 0, the outcome in the order F and then Q need not be equivalent to the outcome in

the order Q and then F (or T), nor to the outcome of simultaneous voting.

Example 2 is illustrative for a common situation where voters have preferences in terms

of basic issues (say effi ciency, distribution, nature preservation, immigration, etc.) but

actual voting takes place partly on proxy instruments such as taxes and subsidies.

3 Sequential Issue-by-Issue Voting

Fix now the issues to be voted upon, i.e. an algebraic basis {x1, ...,xd}. Voters sequentially
report preferred points (for example, these could be the projections of their ideal peak) on

dimensions x1, ...,xd , in that order. When voters decide on dimension xk, they observe all

previous voting outcomes along dimensions (x1, ...,xk−1). Taking the medians of the voters’

reports on each dimension, and combining the obtained medians into a d-dimensional vector,

we obtain a sequential issue-by-issue median voting rule ψ with respect to basis {x1, ...,xd}
and order

(
x1, ...,xd

)
.

For the analysis of sequential voting procedures, we use as solution concept the ex-post

perfect equilibrium. An n-tuple strategy profile constitutes an ex-post perfect equilibrium

if at every stage, and for every possible realization of private information, the n-tuple of

continuation strategies constitutes a Nash equilibrium of the subgame in which the realiza-

tion of the agents’types is common knowledge. This is a robust equilibrium concept since

it does not depend on the voters’beliefs about each other.

For each fixed basis
{
x1, ...,xd

}
let Σd be the set of permutations on d elements. Each

permutation σ = (σ1, ...., σd) ∈ Σd of the elements in the set
{
x1, ...,xd

}
defines a poten-

9Here, as above, variables in bold are vectors.
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tially different sequential issue-by-issue voting procedure ψσ as above, where agents report

points in each coordinate, and where the median is computed along the respective coordi-

nates, one after the other, given the chosen permutation.

Definition 1 The set {ψσ}σ∈Σd of sequential issue-by-issue voting procedures with respect

to a basis
{
x1, ...,xd

}
is order independent if the voting equilibrium outcome is invariant

over all permutations of the basis’elements.

The goal of the paper is to characterize the bases —the issues —with respect to which

the equilibrium outcome sequential issue-by-issue median is order-independent, and to study

whether and when such bases exist. In other words, we seek to structure the endogenous

one-dimensional issues into which a complex multi-dimensional decision problem can be

divided so that incentives to manipulate the voting order are avoided. We also link the

property of order-independence to the incentive properties of sequential voting rules. In

particular, is sincere voting necessarily an equilibrium in sequential voting if the voting rule

is order-independent? Conversely, what incentive properties of a voting rule can guarantee

order independence?

To study the incentive properties of voting rules, we also introduce a simultaneous

version of the sequential issue-by-issue voting rule. A simultaneous issue-by-issue median

ψ (t1, ..., tn) with respect to basis {x1, ...,xd} is defined as

ψ (t1, ..., tn) =
d∑
j=1

med(αj(t1), ..., αj(tn))xj ,

where med(αj(t1), ..., αj(tn)) is the (one-dimensional) median of the j-th coordinates of the

agents’peaks. Under a simultaneous issue-by-issue median, voters are asked to report the

coordinates of their peaks on dimensions x1, ...,xd all at once. Alternatively, we can imagine

that the issue-by-issue voting still proceeds sequentially, but earlier voting outcomes are not

revealed.

The simultaneous issue-by-issue median is a (static) direct revelation mechanism ψ :

(Rd)n → Rd. That is, all agents report about their peaks, and an outcome is computed
based on the reports.

Definition 2 A direct revelation mechanism ψ is strategy-proof or dominant-strategy in-

centive compatible (DIC) if for any voter i and for any ti, t̂i and t−i, it holds that

‖ti − ψ (ti, t−i)‖ ≤
∥∥ti − ψ (t̂i, t−i)∥∥ .

In other words, if ψ is strategy-proof, any individual manipulation t̂i forces the social

choice to move weakly away from the true peak ti, as measured by the distance function

used by the manipulating agent.10

10The constraint for agent i only uses the norm considered by agent i, and hence the above definition

easily generalizes to situations where different agents use different norms.
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4 Order Independence under Inner-Product Norms

We start with preferences that are defined by the ubiquitous Euclidean norm, also known

as the l2 norm. This is the standard inner-product norm on the Euclidean space Rd. As
mentioned in the Introduction, almost all applied spatial voting models use this and other

related inner-product norms to measure the perceived distance between alternatives.

An inner product 〈·, ·〉 on Rd × Rd is a real-valued function that satisfies:

1. additivity 〈x+ z,y〉 = 〈x,y〉+ 〈z,y〉;

2. scalar multiplication 〈ax,y〉 = a 〈x,y〉 for all a ∈ R;

3. symmetry 〈x,y〉 = 〈y,x〉; and

4. non-negativity 〈x,x〉 ≥ 0, and 〈x,x〉 = 0 if and only if x = 0.

Definition 3 In an inner-product space, two vectors x and y are orthogonal (denoted by
x ⊥ y) if and only if 〈x,y〉 = 0. In an inner-product space, an algebraic basis {x1, ...,xd}
of Rd is an orthogonal basis if and only if all vectors in it are mutually orthogonal.

The above orthogonality relation is, by definition, symmetric: that is, x ⊥ y ⇔ y ⊥ x.
Moreover, again by definition, the orthogonality relation is additive from both sides: if

x ⊥ y and z ⊥ y, then (x+ z) ⊥ y; if x ⊥ y and x ⊥ z, then x ⊥ (y + z).

The standard Euclidean norm on Rd is defined via the inner product 〈x,y〉 =
∑d

i=1 xiyi as

‖x‖ =
√
〈x,x〉 =

(∑d

i=1
x2
i

)1/2

.

An arbitrary inner-product norm on Rd is generated by the inner product 〈x,y〉 = xTMy

where M is a positive semi-definite matrix. This yields

‖x‖ =
√
〈x,x〉 =

√
xTMx

For example, if d = 2 and if

M =

(
β1 0

0 β2

)
,

with β1 > 0 and β2 > 0, then

‖x‖ =
√
β1x

2
1 + β2x

2
2

is a weighted Euclidean norm.

It is relatively straightforward to see that, if the basis {x1, ...,xd} is orthogonal, then the
voting outcome of a sequential issue-by-issue median ψ is order independent. To illustrate,

let us return to the budgeting problem in Example 1.
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Example 3 (Euclidean Norm and Orthogonal Basis) Recall that the bottom-up bud-
geting procedure can be represented by voting along the standard and orthogonal Cartesian

basis
{
e1, e2

}
. There are two possible voting orders, σ =

(
e1, e2

)
and π =

(
e2, e1

)
. Con-

sider first voting order σ and suppose that the first-stage voting outcome is y1. In the second

stage, conditional on being pivotal, voter i with ideal point
(
xi1, x

i
2

)
chooses a report x̂i2 to

minimize (
xi1 − y1

)2
+
(
xi2 − x̂i2

)2
.

Hence, it is optimal for voter i to report truthfully in the second stage. It follows that

the second stage outcome y2 is independent of the first stage outcome. In the first stage,

anticipating that everyone reports truthfully in the second stage, voter i chooses report x̂i1,

conditional on being pivotal, to minimize(
xi1 − x̂i1

)2
+ E

[
xi2 −med

(
x1

2, ..., x
n
2

)]2
.

Hence, it is optimal for voter i to vote sincerely in the first stage. The same logic applies

to voting order π. Therefore, the voting outcome of a sequential issue-by-issue voting rule

with respect to this orthogonal basis is order independent.

The top-down budgeting procedure can be represented by voting with respect to basis{
e1 + e2, e1 − e2

}
with dimension e1 + e2 being voted first. The basis

{
e1 + e2, e1 − e2

}
is

also orthogonal, and the ideal point
(
xi1, x

i
2

)
of voter i can be represented as

xi1e
1 + xi2e

2 =
1

2

(
xi1 + xi2

) (
e1 + e2

)
+

1

2

(
xi1 − xi2

) (
e1 − e2

)
.

As above, it is optimal for all voters to sincerely report the projections of their idea points

on e1 + e2 and e1 − e2. The same is true when dimension e1 − e2 is voted first.

The above example illustrates that, if the associated basis is orthogonal, independently

of the voting order voters always vote sincerely in the sequential issue-by-issue median

voting rule. Therefore, for all possible voting orders, the voting outcome of the sequential

issue-by-issue median coincides with the outcome of the simultaneous issue-by-issue median

according to the respective basis.

We next present an example where the basis underlying sequential issue-by-issue voting

is not orthogonal.

Example 4 (Non-Orthogonal Basis) Consider the basis
{
e1 + e2, e1

}
and standard Eu-

clidean preferences. The basis is not orthogonal because
〈
e1 + e2, e1

〉
= 1. Let σ =(

e1 + e2, e1
)
and π =

(
e1, e1 + e2

)
denote the two possible voting orders. We will show

that these voting orders lead to different voting outcomes.

Fix first voting order σ and suppose that the first-stage voting outcome on dimension

e1 + e2 is y1. Consider voter i with ideal point xi1e
1 + xi2e

2. In the second stage of voting

(on dimension e1) conditional on being pivotal, voter i chooses r̂2 to minimize∥∥xi1e1 + xi2e
2 −

(
y1

(
e1 + e2

)
+ r̂2e

1
)∥∥2

=
(
xi1 − y1 − r̂2

)2
+
(
xi2 − y1

)2
11



It follows that, in the second stage, it is optimal for voter i to report r̂∗2 = xi1 − y1. Hence,

given the first stage outcome y1, the second stage outcome is med(x1
1, ..., x

n
1 ) − y1. Now

consider the first stage voting on dimension e1 + e2. Conditional on being pivotal, voter i

chooses report r̂1 to minimize

E
∥∥xi1e1 + xi2e

2 −
(
r̂1

(
e1 + e2

)
+
(
med(x1

1, ..., x
n
1 )− r̂1

)
e1
)∥∥2

= E
∥∥xi1e1 + xi2e

2 −
(
med(x1

1, ..., x
n
1 )e1 + r̂1e

2
)∥∥2

= E
[
xi1 −med(x1

1, ..., x
n
1 )
]2

+
(
xi2 − r̂1

)2
Hence voter i will report r̂∗1 = xi2 in the first stage. Therefore, the voting outcome under

order σ is

med(x1
2, ..., x

n
2 )
(
e1 + e2

)
+
(
med(x1

1, ..., x
n
1 )−med(x1

2, ..., x
n
2 )
)
e1

= med(x1
1, ..., x

n
1 )e1 +med(x1

2, ..., x
n
2 )e2,

which is the same as the one in sequential voting with respect to orthogonal basis
{
e1, e2

}
!

Next, consider the other voting order π and let y1 be the first-stage voting outcome on

dimension e1. It follows from a logic similar to the above that voter i will report r̂∗2 =
1
2

(
xi1 + xi2 − y1

)
on dimension e1 + e2 in the second stage, and report r̂∗1 = xi1 − xi2 on

dimension e1 in the first stage. Therefore, the voting outcome under order π is

med(x1
1 − x1

2, ..., x
n
1 − xn2 )e1

+
1

2

(
med(x1

1 + x1
2, ..., x

n
1 + xn2 )−med(x1

1 − x1
2, ..., x

n
1 − xn2 )

) (
e1 + e2

)
=

1

2
med

(
x1

1 + x1
2, ..., x

n
1 + xn2

) (
e1 + e2

)
+

1

2
med

(
x1

1 − x1
2, ..., x

n
1 − xn2

) (
e1 − e2

)
,

which is the same as the one in sequential voting with respect to orthogonal basis
{
e1 + e2, e1 − e2

}
!

In Example 3 — equipped with an orthogonal basis and with the standard Euclidean

norm —sequential issue-by-issue voting was order independent. In contrast, in Example 4,

sequential issue-by-issue voting with respect to a non-orthogonal basis is order dependent.

The following proposition generalizes these insights to higher dimensions and to any inner-

product norm.

Proposition 1 Let
{
x1, ...,xd

}
be a basis and let ‖·‖ be an inner-product norm on Rd.

The set {ψσ}σ ∈Σd of sequential issue-by-issue voting procedures with respect to the basis

{x1, ...,xd} is order-independent if and only if
{
x1, ...,xd

}
is an orthogonal basis.

Proof. That orthogonality yields order-independence follows from Proposition 3 for general
norms in Section 5. For the other direction, we prove the contrapositive: that is, if orthog-

onality fails, then the outcome of sequential issue-by-issue voting varies according to the

order in which issues are put to vote. Consider an inner-product norm ‖x‖ = 〈x,x〉1/2 and

12



a basis
{
x1, ...,xd

}
. The basis vectors can always be normalized so that

∥∥xi∥∥ = 1. Let γj,k
denote the “correlation coeffi cient”of basis vectors of xj and xk, that is, γj,k =

〈
xj ,xk

〉
.

If orthogonality fails, there must exist two basis vectors that are not orthogonal. Without

loss of generality, denote these two non-orthogonal vectors as xd−1 and xd. Hence γd,d−1 =〈
xd,xd−1

〉
6= 0.

Fix the profile of ideal points for the n voters, and consider the voting orders given by

the permutations σ = (x1,x2, ...,xd−1,xd) and π = (x1,x2, ...,xd−2,xd,xd−1).

Let (y1, ..., yd−1, yd) and (z1, ..., zd−1, zd) be the voting outcomes under these voting

orders, respectively. If yj 6= zj for some j ∈ {1, ..., d− 2}, then we are done. Hence, we
assume below that

(y1, ..., yd−2) = (z1, ..., zd−2) . (1)

We need to argue that either yd−1 6= zd−1 holds or yd 6= zd holds (or both hold).

Consider first the voting order σ = (x1,x2, ...,xd−1,xd) and the last stage voting in the

xd dimension. Look at a voter a with ideal point

ta = (xa1, ..., x
a
d) = xa1x

1 + ...+ xadx
d.

Given the voting outcomes (y1, ..., yd−1) that were determined in the previous d− 1 stages,

let x̂ad (y1, ..., yd−1) denote voter a’s optimal report in the xd dimension, i.e., the one that

maximizes this voter’s payoff conditional on being pivotal at this stage with this report.

That is, x̂ad (y1, ..., yd−1) must solve

min
x̂d

∥∥∥y1x
1 + ...+ yd−1x

d−1 + x̂dx
d − ta

∥∥∥2

= min
x̂d

∥∥∥∥∑d−1

j=1

(
yj − xaj

)
xj + (x̂d − xad)xd

∥∥∥∥2

= min
x̂d

〈∑d−1

j=1

(
yj − xaj

)
xj + (x̂d − xad)xd,

∑d−1

j=1

(
yj − xaj

)
xj + (x̂d − xad)xd

〉
For the derivations below we use the inner-product derivative formula:

d

dx
〈f (x) , g (x)〉 =

〈
f ′ (x) , g (x)

〉
+
〈
f (x) , g′ (x)

〉
,

where f and g are real-valued and differentiable functions defined on R.
The first-order condition for this maximization problem is

0 = 2

〈
xd,

∑d−1

j=1

(
yj − xaj

)
xj + (x̂d − xad)xd

〉
= 2

∑d−1

j=1

(
yj − xaj

) 〈
xd,xj

〉
+ 2 (x̂d − xad)

〈
xd,xd

〉
= 2

∑d−1

j=1

(
yj − xaj

)
γd,j + 2 (x̂d − xad)

which implies that

x̂ad (y1, ..., yd−1) = xad −
∑d−1

j=1

(
yj − xaj

)
γd,j . (2)
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For the second-to-the-last stage vote (in the xd−1 dimension), consider a voter b with ideal

point

tb =
(
xb1, ..., x

b
d

)
= xb1x

1 + ...+ xbdx
d.

Anticipating how his choice would affect voting in the xd dimension, if voter b is pivotal

with report x̂d−1, then this voter chooses x̂d−1 that solves

min
x̂d−1

E
∥∥∥y1x

1 + ...+ x̂d−1x
d−1 + xad (y1, ..., x̂d−1)xd − tb

∥∥∥2

= min
x̂d−1

E
∥∥∥∥∑d−2

j=1

(
yj − xbj

)
xj +

(
x̂d−1 − xbd−1

)
xd−1 + (xad (y1, ..., x̂d−1)− xad)xd

∥∥∥∥2

The associated first-order condition is

0 = 2E
〈
xd−1 − γd,d−1x

d,
∑d−2

j=1

(
yj − xbj

)
xj +

(
x̂d−1 − xbd−1

)
xd−1 +

(
xad (y1, ..., x̂d−1)− xbd

)
xd
〉

= 2
∑d−2

j=1

(
yj − xbj

)
γd−1,j − 2

∑d−2

j=1

(
yj − xbj

)
γd,d−1γd,j + 2

(
1−

(
γd,d−1

)2)(
x̂d−1 − xbd−1

)
which implies that

x̂bd−1 (y1, ..., yd−2) = xbd−1 −

∑d−2
j=1

(
yj − xbj

) (
γd,d−1γd,j − γd−1,j

)
1−

(
γd,d−1

)2 . (3)

The analysis for voting order π = (x1,x2, ...,xd−2,xd,xd−1) is similar. Let x̂bd−1 (z1, ..., zd−2, zd)

denote voter’s b optimal report in the xd−1 dimension (i.e., conditional on being pivotal

and given voting outcome (z1, ..., zd−2, zd) determined at the previous d − 1 stages). Then

x̂bd−1 (z1, ..., zd−2, zd) must solve

min
x̂d−1

∥∥∥z1x
1 + ...+ x̂d−1x

d−1 + zdx
d − tb

∥∥∥2

= min
x̂d−1

∥∥∥∥∑j∈{1,...,d}/{d−1}

(
zj − xbj

)
xj +

(
x̂d−1 − xbd−1

)
xd−1

∥∥∥∥2

The first-order condition is

0 = 2

〈
xd−1,

∑
j∈{1,...,d}/{d−1}

(
zj − xbj

)
xj +

(
x̂d−1 − xbd−1

)
xd−1

〉
= 2

∑
j∈{1,...,d}/{d−1}

(
zj − xbj

)
γd−1,j + 2

(
x̂d−1 − xbd−1

)
which implies that

x̂bd−1 (z1, ..., zd−2, zd) = xbd −
∑

j∈{1,...,d}/{d−1}

(
zj − xbj

)
γd−1,j . (4)

Next consider voter’s a optimal report at the the second-to-the-last stage voting on the xd

dimension. Conditional on being pivotal, given the voting outcome (z1, ..., zd−2) that was
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decided upon in the earlier d−2 stages, and anticipating how his choice would affect voting

in the last dimension xd−1, voter a chooses x̂d to solve

min
x̂d
E
∥∥∥z1x

1 + ...+ xbd−1 (z1, ..., zd−2, x̂d)x
d−1 + x̂dx

d − ta
∥∥∥2

= min
x̂d
E
∥∥∥∥∑d−2

j=1

(
zj − xaj

)
xj +

(
xbd−1 (z1, ..., zd−2, x̂d)− xad−1

)
xd−1 + (x̂d − xad)xd

∥∥∥∥2

The first-order condition is

0 = 2E
〈
xd − γd,d−1x

d−1,
∑d−2

j=1

(
zj − xaj

)
xj +

(
xbd−1 (z1, ..., zd−2, x̂d)− xad−1

)
xd−1 + (x̂d − xad)xd

〉
= 2

∑d−2

j=1

(
zj − xaj

)
γd,j − 2

∑d−2

j=1

(
zj − xbj

)
γd,d−1γd−1,j + 2

(
1−

(
γd,d−1

)2)
(x̂d − xad)

which implies that

x̂ad (z1, ..., zd−2) = xad −

∑d−2
j=1

(
zj − xaj

) (
γd,d−1γd−1,j − γd,j

)
1−

(
γd,d−1

)2 . (5)

From (5) we obtain that voter’s a equilibrium vote on the xd dimension under order π

is independent of the outcome zd−1 in the xd−1 dimension. In contrast, we obtain from (2)

that, in the equilibrium under the order σ, voter a’s vote on the xd dimension varies with

the outcome yd−1 in the xd−1 dimension if γd,d−1 6= 0. Therefore, the two voting orders

generate different voting outcomes if xd and xd−1 are not orthogonal. In other words, yd
depends on yd−1 but zd does not depend on zd−1. On the other hand, yd−1 does not depend

on yd but zd−1 depends on zd. Therefore, generically, the voting outcomes will be different

under the two voting orders.

Example 4 has shown that the voting outcome under the non-orthogonal basis
{
e1 + e2, e1

}
with voting order

(
e1 + e2, e1

)
is the same as the one under the orthogonal basis

{
e2, e1

}
,

and that the voting outcome under the non-orthogonal basis
{
e1 + e2, e1

}
with alternative

voting order
(
e1, e1 + e2

)
is the same as the one under the orthogonal basis

{
e1 − e2, e1 + e2

}
.

The following proposition generalizes this insight, which will be useful also for general

norms:11

Proposition 2 Consider the standard Euclidean norm and let d = 2. The voting outcome

of sequential issue-by-issue voting under any basis
{
x1,x2

}
with voting order

(
x1,x2

)
is the

same as the one under the orthogonal basis
{
x̂1,x2

}
.

Proof. Let x1 = αx̂1 + βx2 and consider the second stage voting given voting outcome y1

in the first stage. The set of feasible outcomes in stage two can be rewritten as

y1x
1 + r̂2x

2 = αy1x̂
1 + (y1β + r̂2)x2.

11 It is straightforward to generalize this insight to higher dimensions.
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Therefore, from the perspective of basis
{
x̂1,x2

}
, the coordinate in dimension x̂1 is fixed at

αy1 by stage-one voting, and stage-two voting is to determine the coordinate in the other

dimension x2. Therefore, voters’strategic consideration in stage-two voting under
{
x1,x2

}
is the same as in stage-two voting under

{
x̂1,x2

}
. Voter i with ideal point

xi1x
1 + xi2x

2 = αxi1x̂
1 +

(
xi1β + xi2

)
x2 (6)

will choose report r̂∗2 optimally to match the projection on x
2 in the representation (6):

r̂∗2 = xi1β + xi2 − y1β.

Now consider voter i in stage-one voting. If voter i is pivotal with report r̂1, then i chooses

r̂1 to minimize

E
∥∥αxi1x̂1 +

(
xi1β + xi2

)
x2 −

(
αr̂1x̂

1 +med
(
x1

1β + x1
2, ..., x

n
1β + xn2

)
x2
)∥∥2

which implies that

r̂∗1 = xi1.

Hence, the voting outcome under
{
x1,x2

}
with voting order

(
x1,x2

)
is

med
(
x1

1, ..., x
n
1

)
x1 +

[
med

(
x1

1β + x1
2, ..., x

n
1β + xn2

)
− βmed

(
x1

1, ..., x
n
1

)]
x2

= med
(
x1

1, ..., x
n
1

) (
αx̂1 + βx2

)
+
[
med

(
x1

1β + x1
2, ..., x

n
1β + xn2

)
− βmed

(
x1

1, ..., x
n
1

)]
x2

= med
(
αx1

1, ..., αx
n
1

)
x̂1 +med

(
x1

1β + x1
2, ..., x

n
1β + xn2

)
x2

which is the same as if the voting is cast with respect to
{
x̂1,x2

}
.

The intuition is as follows: since
{
x1,x2

}
are not orthogonal, voters know that the

outcome on the first issue that is put to vote, x1, is not final: the second stage vote on issue

x2 will have a non-zero effect also on issue x1. The only thing that can be determined at

the first stage is the outcome in dimension x̂1 that is orthogonal to x2 —this part cannot

be affected anymore by the second stage vote, and hence the projection of the ideal point

along the x̂1 dimension should be truthfully revealed.

5 Order Independence under General Norms

As mentioned in the Introduction, some applications are better captured by preferences

based on non-Euclidean norms. For example, an important class of norms that are not

generated by inner products is the lp class, p 6= 2. Fix any basis {x1, ...,xd}. Let x =

(x1, ..., xd) and p ≥ 1 and define

‖x‖p =

(∑d

j=1
|xj |p

)1/p

.

This is the class of ldp norms with respect to the given basis. The limit norm when p→∞ is

given by ‖x‖∞ = maxj |xj |.
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5.1 Birkhoff-James Orthogonality

The standard definition of orthogonality (i.e., zero inner-product) only applies if the norm

is generated by an inner product. We need here a more general notion, due to Birkhoff

[1935] and James [1947]: A vector x is Birkhoff-James (BJ) orthogonal to another vector

y if x has the smallest norm among all vectors on the line through x that is parallel to y.

Equivalently, the line through x that is parallel to y is tangent to the “ball”with radius

‖x‖ .

Figure 1: Vector x is BJ-orthogonal to vector y

Definition 4 (BJ-Orthogonality: Birkhoff [1935], James [1947]) Consider a general
norm ‖·‖.

1. A vector x is BJ-orthogonal to another vector y, denoted x a y, if ‖x+ λy‖ ≥ ‖x‖
for all real λ.

2. Vectors x and y are BJ-mutually orthogonal if x a y and y a x.

3. A vector x is BJ-orthogonal to a subspace M , denoted x aM, if x a y for all y ∈M .
A subspace M is BJ-orthogonal to a vector x, denoted M a x, if y a x for all y ∈M .

4. An Auerbach basis is an algebraic basis {x1, ...,xd} such that, for each j = 1, ..., d,

xj a X−j where X−j is the subspace spanned by all basis vectors except xj .

BJ-orthogonality reduces to the standard (symmetric and additive) definition of orthog-

onality if the norm is generated by an inner-product. But, the BJ-orthogonality relation

is generally not symmetric: x can be orthogonal to y but not vice-versa. Moreover, the
BJ-orthogonality relation is generally not additive, neither on the left, nor on the right:
y a x and z a x need not imply (y + z) a x, and also x a y and x a z need not imply x a
(y + z).
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Bases that consist of mutually BJ-orthogonal vectors always exist. In fact, a stronger

statement holds:

Theorem 1 (Day [1947], Taylor [1947]) In any normed space there exist at least two
distinct Auerbach bases.

5.2 Left-Additive Mutual Orthogonality (LAMO)

While Auerbach bases - that always consist of mutually orthogonal vectors - generalize the

orthogonal bases of inner-product spaces, they are not too useful for our purposes. Instead,

another concept takes center-stage. The main result in Gershkov, Moldovanu and Shi [2020]

connects another special subset of mutually BJ-orthogonal bases to strategy-proofness of

static marginal median mechanisms.

Theorem 2 (Gershkov, Moldovanu and Shi [2020]) Let ψ be a (static) issue-by-issue
median with respect to a basis {x1, ...,xd}, and denote by X−j ⊂ Rd the subspace spanned
by all vectors in the basis except xj. Let ||·|| be a norm on Rd. Then the following properties
are equivalent:

1. ψ is strategy-proof with respect to the utility function induced by ||·|| ;

2. The vectors in the basis {x1, ...,xd} are BJ-mutually orthogonal and the orthogonality
is additive on the left: X−j a xj for all j = 1, ..., d.

We shall call the property in the above theorem left-additive mutual orthogonality, ab-

breviated LAMO. A necessary condition for basis
{
x1, ...,xd

}
to be either Auerbach or

LAMO is that all vectors in the basis are BJ-mutually orthogonal. Auerbach bases correct

for symmetry of the BJ-orthogonally condition and for its additivity on the right, so they

are mirror images of bases that satisfy LAMO —the latter correct for symmetry and for

additivity on the left.

For the special case d = 2, additivity is mute, and LAMO is equivalent to mutual

orthogonality and the same is true for the property defining Auerbach bases. Therefore,

Theorem 1 implies that, in any normed, two-dimensional space, there exist at least two

distinct LAMO bases. The following example illustrates how LAMO can be verified and

how it is linked to the strategy-proofness of issue-by-issue median mechanisms.

Example 5 (LAMO Property and Strategy-Proofness) Let d = 2 and fix the Carte-

sian basis
{
e1, e2

}
. Consider the norm with unit ball defined as the parallelogram with
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vertices at ±(2, 2) and ±(1,−1).

Figure 2: LAMO bases with respect to the norm defined by the parallelogram.

Vectors e1 and e2 are not mutually BJ-orthogonal with respect to this norm, and hence basis{
e1, e2

}
is not LAMO. To see this, note that

2
∥∥e1 + e2

∥∥ = ||(2, 2)|| = 1 < ||(2, 0)|| = 2
∥∥e1
∥∥ ,

which implies for λ = 1 that ∥∥e1 + λe2
∥∥ < ∥∥e1

∥∥ ,
and hence e1 6a e2 by Definition 4. Similarly, we can argue e2 6a e1 by noting that

2
∥∥e2 + e1

∥∥ = ||(2, 2)|| = 1 < ||(0, 2)|| = 2
∥∥e2
∥∥ .

In contrast, the two vectors, z1 = (−1, 1) and z2 = (1, 1), are mutually BJ-orthogonal, and

hence the basis
{
z1, z2

}
is LAMO. This holds because, for all λ ∈ R,∥∥z1 + λz2

∥∥ = ‖(−1 + λ, 1 + λ)‖ ≥ 1 =
∥∥z1
∥∥ ,

and

2
∥∥z2 + λz1

∥∥ = ‖(2− 2λ, 2 + 2λ)‖ ≥ 1 = 2
∥∥z2
∥∥ ,

where the two inequalities follow from the fact that both points (−1+λ, 1+λ) and (2−2λ, 2+

2λ) lie outside of the parallelogram. One can similarly verify that the basis {(1, 3), (1, 1/3)}
is also LAMO.

Now suppose that three agents (A, B, C), with peaks at (0, 0), (2, 2) and (2,−2) re-

spectively, are asked to vote according to the Cartesian basis
{
e1, e2

}
. If all agents report

truthfully, the issue-by-issue median is M = (2, 0). If agent A deviates and reports instead

(2, 2), the median becomes (2, 2) and this deviation is clearly profitable (since ||(2, 2)|| = 1 <

‖(2, 0)‖). In contrast, if a marginal median is computed with respect to the dashed coordi-
nates defined by the basis {(−1, 1), (1, 1)} or by the basis {(1, 3), (1, 1/3)}, then by Theorem
2 this mechanism is strategy-proof.
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We are now ready to present the connection between LAMO and order independence in

sequential voting.

Proposition 3 Let
{
x1, ...,xd

}
be a basis and let ‖·‖ be a norm on Rd. If the basis

{x1, ...,xd} satisfies LAMO with respect to this norm, then the set {ψσ}σ ∈Σd of sequen-

tial issue-by-issue voting procedures with respect to this basis is order-independent, and all

their outcomes coincide with the outcome of the static and strategy proof issue-by-issue

median ψ.

Proof. Consider a sequential issue-by-issue voting procedure ψσ. We prove by backward
induction that all voters vote sincerely in all stages. Hence, by Theorem 2, the outcome

in any such mechanism coincides with the outcome in the static, strategy-proof marginal

median mechanism

Consider the decision of voter i at the last stage where the outcome in the xσd dimension

is determined. Let voter i’s ideal point be

ti =
(
xiσ1 , ..., x

i
σd

)
= xiσ1x

σ1 + ...+ xiσdx
σd ,

and let
(
y1, ...yσd−1

)
denote the voting outcome in earlier stages. This voter chooses a

reported peak x̂iσd in order to maximize his payoff, conditional on being pivotal. The

optimization problem is equivalent to

min
x̂iσd

∥∥∥∥∑j∈{σ1,....,σd−1}
yjx

j + x̂iσdx
σd −

∑
j∈{σ1,....,σd}

xijx
j

∥∥∥∥
= min

x̂iσd

∥∥∥∥∑j∈{σ1,....,σd−1}

(
yj − xij

)
xj +

(
x̂iσd − x

i
σd

)
xσd
∥∥∥∥

Note that ∑
j∈{σ1,....,σd−1}

(
yj − xij

)
xj ∈ X−σd .

If X−σd a xσd , then the definition of BJ-orthogonality yields that∥∥∥∥∑j∈{σ1,....,σd−1}

(
yj − xij

)
xj
∥∥∥∥ ≤ ∥∥∥∥∑j∈{σ1,....,σd−1}

(
yj − xij

)
xj +

(
x̂iσd − x

i
σd

)
xσd
∥∥∥∥ .

This means that truthful reporting x̂iσd = xiσd maximizes voter i’s payoff. Therefore, the

voting outcome in the last voting stage will be the median of all voters’ projections on

the xσj dimension. In particular, this outcome does not depend on the outcome of earlier

stages, and we denote it as x∗σd . Consider next voter i’s decision at the second to the last

stage, where the xσd−1 dimension outcome is determined. This voter chooses a reported

peak x̂iσd−1 in order to maximize his payoff, if the voter is pivotal with this report. Let(
y1, ...yσd−2

)
denote the voting outcome in earlier stages. Voter i chooses x̂iσd−1 to solve

min
x̂iσd−1

E
∥∥∥∥∑j∈{σ1,....,σd−2}

yjx
j + x̂iσd−1x

σd−1 + x∗σdx
σd −

∑
j∈{σ1,....,σd}

xijx
j

∥∥∥∥
= min

x̂iσd−1

E
∥∥∥∥∑j∈{σ1,....,σd−2}

(
yj − xij

)
xj +

(
x∗σd − x

i
σd

)
xσd +

(
x̂iσd−1 − x

i
σd−1

)
xσd−1

∥∥∥∥
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Note that ∑
j∈{σ1,....,σd−2}

(
yj − xij

)
xj +

(
x∗σd − x

i
σd

)
xσd ∈ X−σd−1 .

If X−σd−1 a xσd−1 , then the definition of BJ-orthogonality yields∥∥∥∥∑j∈{σ1,....,σd−2}

(
yj − xij

)
xj +

(
x∗σd − x

i
σd

)
xσd
∥∥∥∥

≤
∥∥∥∥∑j∈{σ1,....,σd−2}

(
yj − xij

)
xj +

(
x∗σd − x

i
σd

)
xσd +

(
x̂iσd−1 − x

i
σd−1

)
xσd−1

∥∥∥∥ .
This means that voting sincerely maximizes voter i’s payoff. Since voter i was chosen

arbitrarily, all voters vote sincerely in the second to the last stage voting. By successive

backward induction, we conclude that, as long as LAMO holds, all voters vote sincerely

under any order.

What is the equilibrium voting outcome if the chosen basis does not satisfy LAMO?

We conjecture that the outcome of sequential issue-by-issue voting is then necessarily order

dependent. To prove that, we would need to derive voters’optimal reporting strategy which

is rather diffi cult with general norms. Hence, the method we previously used to prove the

necessity of orthogonality in Proposition 1 is less feasible at this level of generality.

An alternative approach is to follow Proposition 2 and to show that the voting outcomes

in sequential voting with respect to a non-orthogonal basis under different voting orders are

equivalent to the voting outcomes under different LAMO bases. Since the marginal medians

associated with different LAMO bases are generically different (note that this is true even

for inner-product norms), we can conclude that the voting outcomes of sequential voting

with respect to a non-orthogonal basis is order dependent. The problem of this approach is

that the existence of a LAMO basis is not always guaranteed, as shown in the next section.

For the case of d = 2, we have, however, the following equivalence result that parallels the

insight of Proposition 2 for the Euclidean norm.

Proposition 4 Consider a two-dimensional normed space, and two distinct mutually BJ-
orthogonal bases

{
x1,x2

}
and

{
z1, z2

}
, whose existence is assured by Auerbach’s Theorem.

Suppose that the sequential issue-by-issue voting is carried out with respect to the non-

orthogonal basis
{
z1,x2

}
and according to voting order σ = {1, 2}. Then the voting outcome

is the same as that the outcome of issue by issue voting with respect to the orthogonal basis{
x1,x2

}
with the same voting order. Similarly, the voting outcome with respect to the

non-orthogonal basis
{
x2, z1

}
coincides with the one with respect to the BJ-orthogonal basis{

z2, z1
}
.

Proof. Let us write
z1 = αx1 + βx2.

Consider voter i′s decision at stage two, where the x2 dimension outcome is determined.

Let voter i’s ideal point be

ti = xi1z
1 + xi2x

2,
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and let y1 denote the voting outcome in stage one. This voter chooses a reported peak x̂i2
in order to maximize his payoff, conditional on being pivotal. The optimization problem is

equivalent to

min
x̂i2

∥∥y1z
1 + x̂i2x

2 −
(
xi1z

1 + xi2x
2
)∥∥

= min
x̂i2

∥∥(y1 − xi1
) (
αx1 + βx2

)
+
(
x̂i2 − xi2

)
x2
∥∥

= min
x̂i2

∥∥(y1 − xi1
)
αx1 +

(
x̂i2 − xi2 +

(
y1 − xi1

)
β
)
x2
∥∥

By assumption
{
x1,x2

}
is LAMO„so x1 a x2. The definition of BJ-orthogonality yields∥∥(y1 − xi1

)
αx1

∥∥ ≤ ∥∥(y1 − xi1
)
αx1 +

(
x̂i2 − xi2 +

(
y1 − xi1

)
β
)
x2
∥∥

This means that, when voting is with respect to basis
{
z1,x2

}
under order σ = {1, 2},

agent i would report at the last stage:

x̂i2 = βxi1 + xi2 − βy1.

The voting outcome in stage two is then

x∗2 (y1) = med
(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
− βy1.

Consider next voter i′s decision at stage one (this voter is not necessarily the pivotal

voter in stage two), where the z1 dimension outcome is determined. Voter i chooses to

report a peak x̂i1 in order to maximize his payoff, if i is pivotal with this report. If voter i

is pivotal in stage one, we have

y1 = x̂i1.

The optimization problem of voter i is equivalent to

min
x̂i1

E
∥∥x̂i1z1 + x∗2

(
x̂i1
)
x2 −

(
xi1z

1 + xi2x
2
)∥∥

= min
x̂i1

E
∥∥(x̂i1 − xi1) (αx1 + βx2

)
+
[
x∗2
(
x̂i1
)
− xi2

]
x2
∥∥

= min
x̂i1

E
∥∥(x̂i1 − xi1) (αx1 + βx2

)
+
[
med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
− βx̂i1 − xi2

]
x2
∥∥

= min
x̂i1

E
∥∥(x̂i1 − xi1)αx1 +

[
β
(
x̂i1 − xi1

)
+med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
− βx̂i1 − xi2

]
x2
∥∥

= min
x̂i1

E
∥∥(x̂i1 − xi1)αx1 +

[
med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
−
(
βxi1 + xi2

)]
x2
∥∥

By assumption
{
x1,x2

}
is LAMO, so we also have x2 a x1. The definition of BJ-orthogonality

yields ∥∥[med (βx1
1 + x1

2, ..., βx
n
1 + xn2

)
−
(
βxi1 + xi2

)]
x2
∥∥

≤
∥∥(x̂i1 − xi1)αx1 +

[
med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
−
(
βxi1 + xi2

)]
x2
∥∥ .
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In other words, it is optimal for voter i to report

x̂i1 = xi1.

Therefore, the voting outcome under order σ = (1, 2) with respect to basis
{
z1,x2

}
is

med(x1
2, ..., x

n
2 )z1 +

[
med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
− βmed(x1

2, ..., x
n
2 )
]
x2

= med(x1
2, ..., x

n
2 )
(
αx1 + βx2

)
+
[
med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
− βmed(x1

2, ..., x
n
2 )
]
x2

= med(x1
2, ..., x

n
2 )αx1 +med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
x2

If the sequential voting is carried out with respect to
{
x1,x2

}
in the order σ = {1, 2}, then

voters report truthfully since

ti = xi1z
1 + xi2x

2 = ti = xi1
(
αx1 + βx2

)
+ xi2x

2 = xi1αx
1 +

(
βxi1 + xi2

)
x2

The voting outcome is

med(x1
2, ..., x

n
2 )αx1 +med

(
βx1

1 + x1
2, ..., βx

n
1 + xn2

)
x2.

In other words, the voting outcome under order σ = (1, 2) with respect to the non-orthogonal

basis
{
z1,x2

}
coincides with the voting outcome under order σ = (1, 2) with respect to the

orthogonal basis
{
x1,x2

}
.

6 When do LAMO Bases Exist?

We conclude the paper with a discussion of the general existence question of LAMO bases —

the property that has proved crucial for both strategy-proofness and for order independence

of issue-by-issue medians.

We show that, beyond the two-dimensional case for which existence is always assured

by Auerbach’s theorem, the non-existence of LAMO bases is generic in a sense to be made

precise below. This means that for “almost all”norms on spaces with at least three dimen-

sions, it is impossible to find policy issues along which issue-by-issue voting by majority has

the desirable properties discussed above. Otherwise put, for generic preferences induced

by norms, it is impossible to decompose a multi-dimensional problem into simpler one-

dimensional issues such that the utility function becomes “separable”in those dimensions.

Theorem 3 Let X be a finite d-dimensional space with d > 2, and assume that agents’

utilities are induced by a norm ‖·‖. Then, for any ε > 0, there exists another norm ‖·‖ε
on X with

(1− ε) ‖x‖ ≤ ‖x‖ε ≤ (1 + ε) ‖x‖

for every x ∈ X, such that ‖·‖ε admits no LAMO basis.

For the proof of Theorem 3, we first need several abstract definitions
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Definition 5 (Projection and Operator Norm) Consider a closed subspace Y ⊆ Rd.

1. A linear operator P such that P 2 = P and such that P (Rd) = Y is called a projection

onto Y.

2. The norm of a linear operator P is defined by ‖P‖ ≡ supx∈Rd
‖P (x)‖
‖x‖ .

3. A subspace Y is 1-complemented if there exists a projection P onto Y such that ‖P‖ =

1.

Note that all subspaces of a finite dimensional inner-product space are 1-complemented.12

Definition 6 (Orthant Monotonicity: Gries [1967]) Consider an algebraic basis {x1, ...,xd}
for Rd and represent any x ∈ Rd by its coordinates (x1, ..., xd). A norm ‖·‖ on Rd is orthant-
monotonic with respect to this basis if

‖(x1, ..., xd)‖ ≤ ‖(y1, ..., yd)‖

whenever

xjyj ≥ 0 and |xj | ≤ |yj | for all j = 1, ..., d.

Lemma 1 (Johnson and Nylen [1991]) A norm is orthant-monotonic if and only if it

satisfies

‖(x1, ..., xj−1, 0, ..., xd)‖ ≤ ‖(x1, ..., xj−1, xj , ..., xd)‖

for all x ∈ Rd and all j.

Consider then algebraic basis {x1, ...,xd} and represent any x ∈ Rd by its coordinates
(x1, ..., xd). Let the natural projection Pj on X−j , the hyperplane spanned by the vectors

{x1, ...,xj−1,xj+1, ...,xd} be defined by:

Pj(x) = (x1, ..., xj−1, 0, xj+1, ..., xd) :=
(
0,x−j

)
.

If the norm is orthant-monotonic with respect to this basis, then Lemma 1 says that

‖Pj(x)‖ =
∥∥(0,x−j)∥∥ ≤ ‖x‖

for all x ∈ Rd and for all j. By the definition of the natural projection, we know that∥∥Pj (0,x−j)∥∥ =
∥∥(0,x−j)∥∥ . Hence, all the natural projections {Pj}dj=1 satisfy:

‖Pj‖ = sup
x

‖Pj(x)‖
‖x‖ = 1 for all j.

This yields:
12Kakutani [1940] and Lindenstrauss and Tzafriri [1971] related the existence of bounded-norm projections

on rich families of subspaces to the existence of an inner-product. The study of 1-complemented spaces in

infinite-dimensional spaces is deep and the 1988 Fields medal was awarded to Timothy Gowers for work in

this area.

24



Proposition 5 If the norm is orthant-monotonic with respect to the basis {x1, ...,xd} then
each hyperplane X−j , j = 1, ..., d is 1-complemented.

Finally, Gershkov, Moldovanu and Shi [2020] have established that a norm ‖·‖ is orthant-
monotonic with respect to a given basis if and only if the basis is LAMO. Thus, the non-

existence Theorem 3 follows now by an application of the following result due to Bosznay

and Garay [1986]:13

Theorem 4 (Bosznay and Garay [1986]) Let ‖·‖ be a given norm on a finite d-dimensional
space X where d > 2. Then for any ε > 0, there exists a norm ‖·‖ε on X such that

(1− ε) ‖x‖ ≤ ‖x‖ε ≤ (1 + ε) ‖x‖

and such that (X, ‖·‖ε) does not have any 1-complemented subspaces besides the whole space
itself and one-dimensional subspaces.14

The above Theorem implies that, for any normed space, there is a nearby normed space

without any LAMO basis. Hence, that latter space does not admit strategy proof issue-by-

issue medians and sequential issue-by-issue voting will be generally order dependent.

We stress that the above generic impossibility result is of a different type from most

classical results available in the literature, e.g., the celebrated Gibbard-Satterthwaite The-

orem. Classical results rely on a richness condition on preferences in order to create a large

set of possible strategical manipulations that eventually destroy strategy-proofness for any

non-trivial mechanism. This is also the basic approach in Border and Jordan [1983] and

Barbera, Gul and Stachetti [1993] who characterize the “small sets”of remaining strategy-

proof mechanisms in their multi-dimensional frameworks (these authors did not consider

norm-based utilities).15

It is relatively easy to also provide here counterparts to such “impossibility by richness”

results: consider, for example, a two-dimensional setting where agents can have any individ-

ually weighted Euclidean norm —all these norms have unit balls that are ellipses with axes

that are parallel to the Cartesian ones. Then, generically, there is exactly one strategy proof

issue-by-issue median: only the standard Cartesian coordinates are jointly orthogonal ones

for all the norms in this class. Introducing even the slightest degree of interaction among

the issues —by allowing utility functions derived from other, more general, inner-product

norms (where the units balls are tilted ellipses) yields an impossibility result.

13Bohnenblust [1941] already provided a counter-example to general existence. Theorem 4 shows that

non-existence is “generic”. See also Theorem 7.2 in the survey by Randrianantoanina [2001]).
14One-dimensional subspaces are always 1-complemented. This follows by the Hahn-Banach theorem.
15Barbera, Gul and Stacchetti [1993] assumed that the decision set is a product of lines and studied a rich

class of preferences called multidimensional single-peaked (m.s.p.). They showed that, on the class of m.s.p.

preferences, a mechanism is strategy-proof if and only if it is a generalized marginal median. Border and

Jordan [1983] considered a different rich domain of preferences which they called star-shaped and separable

and obtained results that generalize Moulin’s one-dimensional finding.
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What we did in Theorem 3 is different: the generic impossibility result is obtained

despite the fact that all agents share the same underlying utility function and they only

differ in the location of their peak.

We recall that existence is assured for any two-dimensional spaces, for any inner-product

spaces and for any lp space. As an application consider the two-dimensional budgeting

problem described in the Introduction, and assume that agents may use any lp norm (these

can be different across agents!) and that at least one agent uses an lp norm with p 6= 2.

Our results then imply that the “bottom-up”procedures where the budget is sequentially

determined on the two individual issues, and the “top-down”budgeting procedure where

first a total budget is determined followed by a division among the issues are the only
order-independent possibilities!
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