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Abstract

A vast theoretical literature shows that inefficient market structures may arise in free

entry equilibria. The inefficiency may manifest itself in the number, variety, or quality of

offered products. Previous empirical work demonstrated that excessive entry may obtain

in local Radio markets. Our paper extends that literature by relaxing the assumption

that stations are symmetric, and allowing instead for endogenous station differentiation

along both horizontal and vertical dimensions. Importantly, we allow station quality to be

an unobserved station characteristic. We compute the optimal market structures in local

Radio markets and find that, in most broadcasting formats, a social planner who takes into

account the welfare of market participants (stations and advertisers) would eliminate 50%-

60% of the stations observed in equilibrium. This finding is robust to whether we consider

horizontal differentiation only, or both horizontal and vertical differentiation. The rate of

elimination is similar for high quality and for low quality stations. In 80%-94.9% of markets

that have high quality stations in the observed equilibrium, welfare could be unambiguously

improved by converting one such station into low quality broadcasting. In contrast, it is

never unambiguously welfare-enhancing to convert an observed low quality station into a

high quality one. This suggests (local) over-provision of quality in the observed equilibrium.
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1 Introduction

A vast theoretical literature (e.g., Spence (1976)) shows that free entry equilibria may result

in inefficient market structures. The inefficiency may manifest itself in the number, variety, or

quality of offered products. In the Radio industry, various authors (Steiner 1952, Rogers and

Woodbury 1996) have argued that inefficient content duplication and excessive station entry may

be prevalent. Berry and Waldfogel (1999, hereafter BW99) demonstrated such excessive entry

empirically in a framework that did not allow for systematic station differentiation.

In this paper, we extend the literature by introducing observed and unobserved product-level

differentiation into the empirical study of excessive entry. To the degree that horizontal differ-

entiation is important, early estimates of excess entry may be overstated. Allowing for vertical

differentiation is also important, as it allows us to empirically address questions regarding quality

provision in an oligopoly equilibrium, an area in which obtaining theoretical predictions is diffi-

cult. Our empirical treatment of vertical differentiation is novel, allowing it to be an unobserved

station characteristic. From an econometric standpoint, we deal with product differentiation via

a particularly simple application of recently popular “bounds” methods for treating fixed costs

in the presence of multiple equilibria.

Excessive entry may obtain if firms incur substantial fixed costs, and offer products that

are close substitutes to one another (Mankiw and Whinston 1986). Firms continue to enter

the market as long as their private gains exceed fixed costs, ignoring the negative externality

associated with their entry, i.e., the reduction of rivals’ output. In the context of local Radio

markets, if stations offer similar content, entrants would mostly “steal business” from other

stations, while incurring additional fixed costs, resulting in excessive entry. On the other hand,

if stations offer differentiated content, additional stations may help expand the market, creating

positive externalities. Such positive externalities may offset the additional fixed costs, in which

case additional entry may be socially beneficial.

We find that a social planner who maximizes the joint surplus of stations and advertisers would

like to reduce the number of stations by about 50%. This finding is robust to the dimension of

differentiation considered, i.e., whether we allow for horizontal (format) differentiation only, or

for both horizontal and vertical differentiation. Our findings can be contrasted with the 74%

desired reduction in the number of stations reported in BW99. The smaller elimination rate

in our paper may imply that accounting for station differentiation softens, to some extent, the

excessive entry finding. Our findings also suggest that the elimination rate is quite uniform across

broadcasting formats, as well as across different station quality levels. Since listeners do not pay

for Radio content, quantifying their surplus in monetary terms is not possible.

Our framework also allows us to shed light on equilibrium quality choices and their properties.

The theories of quality choice are well developed for the monopoly case (Mussa and Rosen (1978),
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Maskin and Riley (1984)), but much less so for the oligopoly case.1 The difficulty of obtaining

theoretical results in oligopoly equilibria has motivated empirical work on this issue, such as

Mazzeo’s (2002) analysis of quality choices in the motel industry. Compared to a Mazzeo’s

motel data, the quality of a radio station is more difficult to ascertain from observed data. We

therefore pursue an approach that treats quality as an unobserved station characteristic, and

provide methods to identify and estimate a model with such unobserved vertical differentiation.

A striking result from our analysis is that, in 80%-94.9% of markets in which we determine

the presence of high-quality stations, welfare could be unambiguously improved by converting

one such high quality station into a low quality. In contrast, it is never unambiguously welfare-

enhancing to convert an observed low quality station into a high quality one. This analysis

suggests that over-provision of quality, in a local sense, characterizes free-entry equilibria in

radio markets.

Methodology. We base our analysis on a two-stage model. In the first stage, a large number

of (ex-ante identical) potential entrants decide whether to enter the market, and in which format

(or format-quality combination) to operate. The market structure determined in this first stage is,

therefore, a vector describing the numbers of stations operating in each format (or format-quality

cell). This can be contrasted to the market structure in the classic entry model of Bresnahan

and Reiss (1991) (hereafter BR91) and in BW99, which is a scalar: the total number of firms

that entered the market. The post-entry asymmetry implies that, unlike in BR91 or BW99, the

market structure in the current paper is not uniquely determined in equilibrium.

In the second stage, entering stations pay fixed entry costs and garner revenues. Our model

determines those revenues as follows: a discrete-choice model of listeners’ preferences determines,

given the market structure, how many listeners are captured by each station. Those listeners

are then “sold” to advertisers at a price which is determined from a simple model of advertisers’

demand for listeners. A station’s revenue is, then, the product of the per-listener price paid by

advertisers, and its total number of listeners.

Our discrete-choice model of listener choices builds on the nested logit model. We consider

two specifications: one that allows for horizontal station differentiation only (“base case”), and

one that allows, in addition, for quality differentiation in key formats: the largest music format,

and the popular “News/Talk” format. Estimation of the model in the “base case” is rather

simple, following a 2SLS strategy from Berry (1994) that accounts for endogeneity issues. The

estimated model suggests that horizontal differentiation is a key determinant of listeners’ utility.

In particular, utility coefficients on both format dummy variables, and on interaction terms

between format and demographic effects (e.g. the percentage of Hispanic population and the

“Spanish” radio format) have a strong and statistically significant effect.

Estimation of the listening model specification that allows for both format and quality differ-

1For an example of such work, see Rochet and Stole (2002).
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entiation is more complicated. We contribute to the literature by showing how to estimate such

a model, overcoming the following challenges: first, the fact that quality is unobserved requires

us to assign it within the estimation procedure. Second, quality choices are endogenous, an

issue that we address with fixed effects that control for unobserved taste shocks at the market-

format level. Third, the presence of these fixed effects complicates the estimation of the model

substantially, and we propose a two-step estimator that overcomes this complexity.

We also estimate advertisers’ demand for listeners, modeled by a simple constant-elasticity

specification in which the advertising price depends on the total “output” of listeners. This

model is estimated via 2SLS. The estimated model implies a downward-sloping demand curve

with a constant elasticity of about (−2), a similar value to that reported in BW99. Put together,

the estimated listening equation and the advertisers’ demand equation allow us to predict the

revenue garnered by each station given any counterfactual market structure.

These revenue predictions allow us to estimate fixed costs, relying on necessary equilibrium

conditions from the entry model described above. Suppose, for example, that three stations are

observed to operate in the “Rock” format in a given local market. For this to be an equilibrium, it

has to be the case that three stations are still profitable, while a fourth entrant would incur a loss.

The first condition places an upper bound on the fixed cost of operating a Rock station in this

market: the revenue of a Rock station in the observed market equilibrium. The second condition

places a lower bound on this fixed cost: the revenue of a counterfactual, fourth entrant into

the Rock format. Having estimated the listening equation and advertisers’ demand as explained

above, these revenue figures are easily computed and provide bounds on the relevant fixed cost.

The extant literature typically proceeds by utilizing these bounds on the fixed costs to estimate

the distribution of fixed costs across markets. In BW99, these bounds were utilized, along with a

parametric assumption on the distribution of fixed cost, to generate an ordered probit estimator

of the parameters of this distribution. This point-identification approach is more problematic

here since the potential non-uniqueness of equilibria prohibits us from writing down the likelihood

function. To address this issue, the literature offers the possibility of estimating bounds on the

parameters of the distribution of fixed costs using moment inequalities.2 These estimators are

often technically demanding and sometimes rely on strong parametric assumptions.

In this paper we take a different approach: instead of using the bounds on fixed costs of

operation in different markets to estimate the distribution of fixed costs across markets, we use

the market-specific bounds directly in our welfare analysis. This has two benefits: first, we do not

have to make parametric assumptions on the distribution of fixed costs across markets (nor do we

have to assume that costs are independent across such markets). Second, by not estimating the

distribution of fixed costs, we avoid the difficult task of making inference on this distribution.3

2Some examples include Ishii (2008), Ho (2009), Crawford and Yurukoglu (2011), Eizenberg (2013).
3See, for example, Chernozhukov, Hong, and Tamer (2007), Pakes, Porter, Ho and Ishii (2011), Andrews and Jia (2012).
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Our paper offers some additional methodological contributions that may be applicable in many

empirical studies of market structure. We develop an algorithm that computes the optimal

market structure in an environment where stations are discretely differentiated along horizontal

and vertical dimensions. Our modeling of station unobserved quality, and the two-step estimation

for the listening model that incorporates this quality differentiation, are also novel.

Relationship to previous literature on the radio industry. Several features make the

radio industry an attractive arena to study product positioning in an oligopoly equilibrium. First,

data is available from a large cross-section of local markets characterized by substantial variation

in market population and listener demographics. Second, the nature of horizontal differentiation

is easy to define and measure, since stations belong in well-defined broadcasting formats.

A couple of papers rely on reduced-form techniques to study the impact of mergers on broad-

casting variety. Berry and Waldfogel (2001) document that the merger wave that followed from

the 1996 Telecommunication Act reduced station entry but increased the variety of offered pro-

gramming. Sweeting (2010) uses playlist data to study how station merger decisions affect

positioning, and finds that, following a merger, owners of merging stations tend to push them

apart (in characteristics space) to limit cannibalization, but at the same time reduce the extent

of differentiation with respect to competitors.

Another line of research studies the market structure in the Radio industry via the estimation of

a dynamic oligopoly game (Jeziorski (2012, 2013a, 2013b), and (Sweeting 2013)). Dynamic mod-

els are obviously better when considering explicitly dynamic questions. For example, Sweeting’s

(2013) dynamic analysis emphasizes the estimation of repositioning costs of existing stations. On

the other hand, the current state of estimation techniques for dynamic oligopoly requires many

strong assumptions. We view the static modeling pursued in our paper as complementary to

these dynamic models, especially when the questions at hand are not explicitly dynamic.

The static approach determines the cross-section of equilibrium market structures as a function

of long-run conditions in each market, captured in our case by the local market’s population and

its socioeconomic and demographic makeup. This leads to a simple and transparent setup to

study the possibility of excessive entry, a question motivated both by theory, and by previous

studies of the radio industry cited above. Pursuing a static model has a couple of additional

benefits in our setup: first, it makes our analysis conceptually comparable to BW99’s analysis,

allowing us to explore the impact of relaxing symmetry assumptions and admitting multiple

equilibria. Second, we are able to avoid making a parametric assumption on our key primitive,

the distribution of fixed costs.4

The remainder of this paper is organized as follows: Section 2 describes the data and station

4Smith and O’Gorman (2008) study (independently from our work) the distribution of fixed costs in the radio industry
relying on a static model and a partial identification approach. That paper pursues very different questions compared to
our paper. In particular, we focus on questions that pertain to product variety, develop tools that compute optimal market
structures, and address unobserved vertical differentiation issues.

4



format classifications. Sections 3, 4, and 5 describe the various components of our estimated

model. Section 6 uses the estimated model to analyze the discrepancy between the free-entry

equilibrium and the optimal market structure, and Section 7 concludes.

2 Data

The data used in this study cover a cross-section of metropolitan Radio markets in 2001. Market

definitions follow those of Arbitron, a media marketing research firm that tracks activity and

trends in the Radio industry. While some of Arbitron’s 286 Radio markets coincide with Census

MSA definitions, others do not.

Data regarding stations and listenership in these markets is obtained from the Spring 2001

edition of American Radio, by Duncan’s American Radio. Rich information regarding individual

stations is available from this source. We observe each station’s “AQH-listeners,” i.e., the number

of listeners of age 12 and above who listened to the station during the average quarter-hour in

Spring 2001.5 These listenership figures are provided by Arbitron based on diaries retrieved from

surveyed individuals in each market. We also observe whether the station is considered “home to

the market,” and its broadcasting format, which plays a key role in our analysis. At the market

level, we observe the market’s 12+ market population, and the total number of diaries retrieved

by Arbitron. The number of retrieved diaries is related to the accuracy of the listenership data.

In one of our empirical specifications reported below, we use this information to take into account

the potential measurement error in stations’ reported market shares.

We compute the market share of each station by dividing the number of its AQH-listeners by

total market 12+ population. The share of the “outside option” of not listening to commercial

Radio is computed as 1 minus the sum of stations’ individual shares. Non-commercial stations

(e.g., public Radio), as well as commercial stations not listed by Arbitron (e.g., due to very low

listening, or due to violation of Arbitron’s rules), are included in this outside option.

Additional market-level data were obtained from Duncan’s Radio Market Guide. The 2002

edition provides estimates of each market’s total revenue in 2001 (i.e., the combined annual

revenue of all stations in the market). These figures are derived from a variety of sources. While

some estimates are based on actual information provided by Radio stations to their accounting

firms (or directly to Duncan’s Radio Market Guide), other estimates are based on Duncan’s

assessments. Similarly as in BW99, we compute the market’s ad price, i.e., the average price

paid by advertisers for an AQH-listener, by dividing total market revenue by the total number

of listeners to in-metro stations.6

5This average is computed over all quarter-hours in the standard survey week: Monday-Sunday, 6AM - 12 Midnight.
6This calculation assumes that all of the market’s revenue is garnered by in-metro stations, i.e., stations that are home

to the market. This assumption could be put into question in markets where substantial listenership is enjoyed by out-
metro stations. For example, the extreme ad price of �2691 reported in Table 1 below occurs at Bridgeport, Connecticut,
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An alternative approach to using total market revenue data, pursued recently by Sweeting

(2013) and Jeziorski (2012, 2013a, 2013b) utilizes station-specific data obtained from different

sources than those we use here. These station-specific revenue data are computed using various

assumptions based on proprietary methodology of the data provider. Our approach has both

advantages and disadvantages: while it forces the ad price to be identical across different formats,

it also avoids the potential measurement error stemming from the methodology used to assign

station-specific revenue numbers. Ultimately, we stick with the total market revenue figures, in

part because of our interest in staying conceptually close to the methodology used in BW99.

The 2001 edition of Duncan’s Radio Market Guide provides market-level demographic informa-

tion for the year 2000. In particular, the market’s percentage of Black and Hispanic population,

average income, and percentage of college-educated is available. We have full data (including

revenue and demographic information) for 163 of Arbitron’s 286 markets, and we restrict our

analysis to those 163 markets. After dropping observations (stations) with reported zero listen-

ership, the data we use cover 4,362 stations in the included markets. Finally, we classify markets

into geographic regions (Northeast, Midwest, South, and West) based on Census definitions.

Summary statistics on some of the market-level variables are available in Table 1. The mean

listenership share (i.e., the share not choosing an outside option) is about 12%. The average

market has 19.6 in-metro stations, and 7.2 out-metro stations. The average ad price is 570

Dollars. Since annual revenue was used to compute this price, as explained above, this number

pertains to the average price paid for one listener over the course of one year.

Format classification. Stations’ broadcasting formats represent horizontal differentiation

and, therefore, play an important role in our analysis of variety in Radio markets. The number of

different formats in the data is close to 70, motivating an aggregation into higher-level categories.

We classify formats into ten such categories, based on intuition gained from a large number of

sources about the nature of the formats. The ten format categories are described in Table 2.

Some idea on the performance of these format categories is provided in Table 3. The “Fre-

quency” column describes the share of markets where a given category is represented by at least

one (in-metro or out-metro) station. Three format categories raise potential selection issues:

“Religious” stations are present in about 80 percent of the markets, while “Urban” and “Span-

ish” are present in 74 and 40 percent, respectively. Econometric implications of this issue are

addressed below. Additional columns of Table 3 reveal that the most popular format (in terms

of total format listening share, on average across markets) is “Mainstream”, followed by “Rock”,

“Country” and “News/Talk.”

a market heavily served by out-metro stations. This assumption, however, may be justified even for such markets: it may
be costly for a local advertiser to reach the local audience when the market is heavily served by out-metro stations, and
the relatively high ad price may reflect that.
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3 Listening Model

The model has three components. The first component, described in this section, is the listening

equation which determines stations’ market shares as a function of listeners’ tastes, conditioning

on a given market structure. The second component, described in the following section , models

the other side of this media market: advertisers’ demand for listeners. Together, the listening

function and the advertisers’ demand function determine stations’ revenues given any fixed mar-

ket structure. The market structure itself is determined by the third component of the model:

the entry game, described in its own section.

The listening equation builds on a nested-logit specification. We estimate two listening models:

the first, described in subsection 3.1, allows for horizontal (format) differentiation only. The

second model, described in subsection 3.2, extends this analysis by incorporating unobserved

quality differentiation in two important formats.

3.1 A listening equation with horizontal differentiation

Our first listening model captures format horizontal differentiation in a standard nested logit

model. The model has 11 nests: a single nest for each of the ten format categories, and an

additional “outside option” nest. Listener i’s utility from listening to station j, which belongs

to format category g, in market t, is given by:

uijt = δgt + νigt(σ) + (1− σ)εijt, with δgt = xgtβ + ξgt (1)

where xgt is a vector of format and market characteristics, and includes the average income, the

share of college educated, the shares of Black and Hispanic population, dummy variables for

geographic regions and for format categories, and some intuitive interaction terms (for instance,

an interaction between the share of Hispanic population and the Spanish broadcasting format).

The unobserved term ξgt shifts the mean taste toward format g in market t, while νigt(σ) is an

idiosyncratic taste of listener i toward format g, and has a unique distribution derived by Cardell

(1997), which depends on the parameter σ. The shock εijt is an idiosyncratic taste of listener i

toward station j in market t, assumed to follow a Type-I Extreme Value distribution.

Note that the “mean utility” component, δgt, is restricted to be identical within a given market-

format data cell. This restriction is not dictated by estimation considerations: the appendix

reports a robustness check in which this symmetry assumption is relaxed. Rather, this symmetry

assumption simplifies counterfactual analyses in which stations enter and exit a particular format,

since it allows one to compute a well-defined mean utility for any such station.

In practice, the within-format symmetry is modified slightly to account for an important

feature of the data: stations’ “in-metro” vs. “out-metro” status. Our results indicate that this
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feature is an important determinant of market shares. To account for this, we assume symmetry

among all in-metro stations in the format, as well as among all the out-metro stations in the

format. We therefore have two distinct mean utility levels within the market-format: δgt,in−metro

and δgt,out−metro. We also include an in-metro (or, “home”) dummy variable in the x covariate

vector. For simplicity, the notation above (as well as in other parts of the paper) does not reflect

the distinction between in-metro and out-metro stations.

While mean-utilities are symmetric, individual stations within the format are still allowed to

bring unique benefits via the εijt term. The extent of such effects is determined by the estimated

parameter σ, which captures the degree of within-nest correlation in unobserved individual tastes.

As σ approaches 1, the unobserved tastes of any individual listener toward stations within the

same format become near-perfectly correlated, leading to strong “business stealing” within the

format. In contrast, Cardell’s unique distribution guarantees that, as σ approaches 0, νigt ap-

proaches zero as well, implying no correlation in unobserved tastes within the format and a

convergence to the simple logit model. This extreme case corresponds to maximal diversity in

the content provided by stations within the format.

Estimating σ, therefore, is a key task for our empirical framework: in light of the discussion

in the introduction, the value of σ informs us about the scope of business stealing and poten-

tial excessive entry. The simple association of the σ parameter with “business stealing” is an

advantage of the nested logit framework in this context.

Estimating the listening equation Following Berry (1994), the nested logit specification

leads to a linear estimation equation for station j, operating in format g in market t:

ln(sjt)− ln(s0t) = xgtβ + σln(sj/g,t) + ξgt (2)

where sjt is the market share of station j, sj/g,t is the share of this station as a fraction of the

total listening share to format g in market t, and s0t is the share of the outside option. The

within-nest symmetry in mean-utility levels implies that stations of a given format are predicted

to garner identical market shares. This means that sjt should be calculated as Sgt/Ngt, where

Sgt and Ngt are the observed total market share and total number of stations in the market-

format cell, respectively. Similarly, the fraction sj/g,t should equal (1/Ngt). In practice, however,

the differentiation of in-metro vs. out-metro stations leads to slightly different calculations: for

example, we obtain the share of a typical in-metro station in format g by dividing the total

observed share of in-metro stations in format g by the total number of such in-metro stations.

The symmetry assumption further implies that we only retain (at most) two observations

for each market-format data cell: an observation pertaining to the typical in-metro station in

this format-market, and an observation pertaining to the typical out-metro station. Since it is

possible that there are no in-metro stations, or out-metro stations, in the format-market cell, the

number of observations pertaining to this format-market may in fact be zero, one or two.
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Challenges: Endogeneity and Selection The term multiplying the correlation parameter

σ in (2) is endogenous, motivating estimation via two-stage least squares. Three excluded in-

struments are used: the market population, the number of out-metro stations in the market, and

the number of out-metro stations in the market-format cell. The presence of out-metro stations

is assumed to be exogenous to market conditions, and, in particular, to be uncorrelated with the

taste shock ξ. At the same time, their number does affect market shares, and so it is correlated

with the endogenous variable. As in BW99, market population affects entry decisions, making

it an effective instrument for market shares.

A more difficult challenge is sample selection, which, as discussed above, is a relevant concern

for the Urban, Spanish and Religious formats. One may suspect that we only observe such

stations in markets where the unobserved taste for such broadcasting is sufficiently strong, leading

to an upward bias in the estimates of the coefficients on the relevant format dummy variables.

Addressing such selection problems in the context of a product-choice model with complete

information is quite complicated, since the selection mechanism depends on the error terms of

all products (rather than on the error of the specific product), and is not uniquely determined

in equilibrium. Following traditional selection-correction mechanisms, such as Heckman (1976,

1979), is infeasible.

Eizenberg (2013) offers a partial-identification strategy to formally address the product selec-

tion issue in a study of product choices in the PC industry. In contrast, we do not formally

address the selection issue within the estimation procedure. Instead, we offer in the appendix

several analyses of the robustness of our results to the selection issue. First, we demonstrate that

the presence of stations in the Urban and Spanish formats is very strongly driven by observables

for which we control—namely, the demographic makeup of the market’s population. Second, we

re-estimate our model using a sub-sample of markets that are predicted to have stations in the

relevant format (e.g., Urban) with a very high probability. This subsample should be viewed

as selection-free to a large extent. Our results indicate, reassuringly, that the estimates do not

change in a way that is consistent with sample selection bias (though the evidence is consistent

with some degree of selection bias in the case of the Spanish format).

Estimation results Table 4 provides the results of estimating the listening model described

above. The variables that have the strongest impact on a station’s listenership are the dummy

variables for in-metro status and for format categories, and the interactions of the format and the

demographic effects. These effects are very precisely estimated. As expected, popular formats

such as Mainstream or Rock have large estimated coefficients in this specification. Also expected

is the strong and significant effect of the interactions between the fraction of Black population

and the Urban format, the interaction between the fraction of Hispanic population and the

Spanish format, and the interactions of the South region dummy with the Religious and Country

formats. The fraction of the market’s population with college education is negatively related to
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listenership. Finally, the correlation parameter σ is estimated at 0.519.

3.2 Horizontal and vertical differentiation

Our second listening model augments the dimension of the discrete product space: in addition to

horizontal format differentiation, stations are now allowed to vertically differentiate by choosing

their broadcasting quality. To maintain a discrete entry space, we model quality as discrete. This

creates a set of horizontal/vertical cells into which stations can enter. Although our arguments

generalize to a larger number of discrete quality levels, we use only two levels for the unobserved

discrete station quality of in-metro stations,“high” and “low.”

How should one define and measure station quality? Our data offer, at best, some imperfect

proxies for quality, such as the station’s broadcasting wattage. A station’s actual quality is likely

to depend primarily on the quality of the content provided, a feature which is inherently difficult

to quantify. As a consequence, we choose to model quality as an unobserved station characteristic

that shifts listeners’ mean utility. Stations’ quality classifications are treated as discrete param-

eters to be estimated along with the other parameters of the model. An additional challenge is

the endogeneity of quality: a station’s quality choice may depend on the unobserved taste for its

broadcasting format in the relevant market. We address this by including market-format fixed

effects in the empirical specification. As a consequence of those challenges, estimation becomes

more complicated compared to the base model where only horizontal differentiation is allowed.

The utility for listener i from listening to station j in format g, in market t is assumed to have

the usual nested logit structure we defined before,

ui,j,t = δjt + νigt(σ) + (1− σ)εijt, (3)

with “mean utility” for station j now given by

δjt = γq · qjt + γh · hjt + ψgt. (4)

In the mean utility, qjt is the quality level of a station, hjt is a “home” dummy variable for

in-metro stations and (γq, γh) are parameters to be estimated. As noted, the quality levels are

for simplicity assumed to take on only two values: 0 (“low”) and 1 (“high”). The term ψgt is a

format-market fixed effect, capturing the mean taste for format g in market t. This depends in

turn on both observed and unobserved components,

ψgt = dgtλ+ ξgt, (5)

where dgt is a vector of observed variables, λ is parameter to be estimated and ξgt is still the

unobserved listener taste for format g in market t.
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Since quality is unobserved, the values of the high-quality dummies qjt are also parameters

of the model. For simplicity, we impose the restriction that quality differentiation only applies

to in-metro stations in the market, so that qjt = 0 whenever hjt = 0. We thus have three

cells of stations within each format-market pair: out-metro, in-metro low-quality, and in-metro

high-quality stations, with respective quality levels of 0, γh and (γh + γq). Mean utilities, and

hence expected market shares, are predicted to be identical within each of these three cells.

The restriction that out-metro stations offer low quality has empirical implications: it orders

predicted market shares such that, as long as γh and γq are positive, out-metro stations have

lower predicted shares than in-metro low-quality stations, which in turn have lower shares than

in-metro high-quality stations. Since out-metro stations do typically have lower shares than

in-metro stations, we view this as a reasonable and useful simplification.

3.2.1 Identification of the Horizontal-Vertical Model

We begin by considering identification when the expected market shares are perfectly observed

– that is, there is no sampling error due to the Arbitron listener diaries. We can think of this

as an approximation to the case where there are very many sampled listeners in every market.

We assume throughout that γh and γq are positive and so the shares of high quality in-metro

stations are higher than low quality. Thus, in any market where we see two distinct market share

values for in-metro stations, the higher market share implies high quality and the lower share

implies low quality.7

When market shares are equal for all in-metro stations, identification is harder. The reason

is the confounding effect of the market-format taste terms ψgt. Consider a market where all the

in-metro stations have the same market share within some format. For any guess at the quality

level of stations in the market, there is a value of ψgt that explains the observed common level

of shares.

Because the market-format taste does not effect the within format shares, we can avoid this

potential problem of non-identification if we focus on the within format shares. This is similar

to the idea of “differencing out” a fixed effect to deal with endogeneity. To proceed, let

κ1 ≡ γq/(1− σ), (6)

κ2 ≡ γh/(1− σ),

and let the vector κ ≡ (κ1, κ2). The nested logit then implies that conditional on choosing format

g the expected probability of choosing station j in market t (the “within format share”) is given

7If we could perfectly observe in-metro expected market shares and we found these took on more than two levels, then
we could reject the model with only two qualities for in-metro stations.
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by

pj/gt(κ, q) =
exp(κ1 · qjt + κ2 · hjt)∑
`∈g exp(κ1 · q`t + κ2 · h`t)

, (7)

where q is notation for the long vector of quality levels for all markets’ stations. Of course, the

expression in (7) depends only on the quality levels in the given market-format.

This expression for within format shares allows us, first, to identify κ using data on markets

where differences in shares identify quality levels. We can then use κ, together with out-metro

shares, to identify quality levels in additional markets. In particular, we can identify κ from a

single market t with two in-metro stations (j,k) in format g such that sjt > skt. Because the

shares are different, we know that qjt = 1 and q`t = 0. A simple manipulation of the nested logit

share equation then identifies κ1 as

κ1 = ln(sjt)− ln(skt).

Performing a similar exercise with two stations such that qjt = 0, hjt = 1, h`t = 0 (i.e., j is known

to be a low quality in-metro station, while ` is an out-metro station), identifies κ2:

κ2 = ln(sjt)− ln(s`t).

Given κ, we can then identify the quality level for in-metro station j in format g in any market

t that has an out-metro station, denoted `, in that same format. As usual, the nested logit

structure delivers the following equation for station j:

ln(sjt)− ln(s0t) = γqqjt + γhhjt + ψgt + σln(sj/g,t).

Writing the same expression for station ` and subtracting one from the other leads to:

qjt =
1

κ1
ln
(
sjt/s`t

)
− κ2
κ1
.

This gives us identification of quality whenever there is an out-metro station. Since we treat the

presence of out-metro stations as exogenous, we have an exogenously chosen sample of markets

where station-level quality is identified.

Since we trivially have identification of quality whenever in-metro stations have different shares,

this leaves us with one remaining case of partial identification: market/formats with no out-metro

station and identical shares for in-metro stations.8 In these market/formats, we know that either

[i] all stations are high quality or [ii] all stations are low quality. In the sections on estimation and

counterfactual simulation below, we discuss how we approach this issue of partial identification

8The case of “identical shares” obviously includes the case where there is only one in-metro station in the market/format.

12



in some market/format pairs.

Note that having identified qualities, we move back to the usual case of Berry (1994) with a

nested logit where all characteristics are observed (although recall that the unobservable taste

variable ξgt is at the level of the format, not station.) Thus, the remainder of the demand iden-

tification problem is standard and we will continue to need an instrument variables approach to

identify (γq, γh, σ) separately, as opposed to the composite parameters (κ1, κ2) that are identi-

fied from the within format choice problem. The procedure that implements this approach in

practical estimation is reviewed in the next subsection.

3.2.2 Estimation of the Horizontal/Vertical Model

Analogous to the identification argument, we consider estimation in two steps. First, we estimate

(κ, q) from the within group shares. Second, we use a more classic IV method to estimate the

remaining parameters.

Step 1: estimating quality levels Moving from identification to estimation, we face the

problem that we do not observe expected market shares, but only sampled shares computed

from the Arbitron diaries. The sampling error means that we cannot directly observe whether

expected shares are equal or not. Indeed, even when expected shares are exactly equal, we are

exceedingly unlikely to observe sjt = s`t for two stations j and `. However, the observed Arbitron

shares are a draw from a multinomial distribution with known properties, so for estimation we

can employ a maximum likelihood approach. In particular, to estimate quality we consider

maximum likelihood estimation based on the within format shares where, since ψgt drops out,

the only sampling error is from the Arbitron diaries and the endogeneity problem of potential

correlation between quality and unobserved taste is not present.

Denote by njt the number of Arbitron diaries reporting listenership to a given station.9 The

log-likelihood for the within group choices, conditional on choice of format, is then

logL(κ, κ, q) =
1

N

∑
t

∑
g

∑
j∈gt

njt · log
[
pj/gt(κ, q)

]
(8)

To derive the asymptotic behavior of the ML estimates, we take the total number of Arbitron

diaries,

N =
∑
t

Jt∑
j=0

njt

to infinity, holding fixed the relative sample sizes in each market.

The discrete quality parameters q raise issues of both estimation and computation. There is

9Strictly speaking, this is the number of diaries reporting listenership to the station in the average quarter-hour, see
Section 2.
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one quality parameter per station, but this is not a problem since there are a large number of

diary responses per station. Our estimates are consistent, by usual arguments, as the number

of sampled diaries goes off to infinity. Indeed, since each quality parameter is discrete, taking

on only two values, by usual arguments the estimate of quality is super-efficient – it converges

faster than rate
√
N . In contrast, κ converges at the usual rate.

There is also the computational issue of maximizing the likelihood over the large number

of possible combinatoric assignments of quality. First note that, conditional on κ, the quality

assignment breaks up across market/formats—the assignment of quality in one market/format

does not affect the likelihood contribution of other market/formats. Second, as long as γq > 0, in

any market/format a high-quality station has a higher predicted market share than a low-quality

station. It is easy to show that if the maximum likelihood estimate of q assigns a high quality

to given station j, it also assigns high quality to all stations with observed sample shares larger

than j. Thus, the problem of estimating the quality vector for any market/format reduces to

the problem of choosing the threshold station: the station with the largest observed share that

still corresponds to a low quality station. We denote the index of this threshold station by the

discrete parameter j′gt. If j′gt = 0, all in-metro stations in the market-format pair offer high

quality. If this index is equal to the number of such in-metro stations, all those stations offer low

quality.10 If there are Jgt stations in market/format (g, t) then conditional on a value of κ we

have to compute the likelihood only Jgt + 1 times to choose the best value for the threshold j′gt.

The analog of the partial identification problem discussed above arises in the estimation context

for market/format pairs that have no out-metro stations. In all of these market/formats, and

for each value of κ, setting j′gt equal to either zero (implying that all stations offer high-quality)

or to the number of in-metro stations (implying that all stations offer low-quality) yields the

same value for the log-likelihood contribution of the market-format. If that is also the value

that maximizes the likelihood, then we have a set estimate of the qualities of stations in this

market-format pair: the maximized likelihood is generated by the case where the stations are all

of high quality and by the case where all are of low quality.

Importantly, because the ML objective function obtains the same value whether we assign the

unclassified stations to be of high quality, or of low quality, our ML estimates for κ are unaffected

by the set estimates of quality. However, the “IV” estimates of (γq, γh, σ, λ), discussed below, will

be affected by the allocation of all stations to either high or low quality. We discuss strategies

to deal with this below.

Step 2: estimating the remaining parameters via a restriction on the distribution

of ξ. Having obtained estimates of (κ, q), we now hold these fixed and proceed with estimating

the remaining parameters of interest. Given κ and σ we can solve for (γq, γh) from (6) so we can

10Note the slight abuse of notation, made for convenience: here we use j to index stations within the market/format
pair, whereas elsewhere we use it to index stations in the entire market.
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treat the “business stealing” parameter σ, together with the format taste parameters λ in (5),

as the only remaining unknowns. As explained below, to ensure that we have point-estimates

of quality for all market/formats, our base case estimation allows for quality differentiation in

only a subset of formats and, for those formats, uses only the exogenously selected sample of

market/formats with out-metro stations.

As in the pure horizontal model, we assume that the unobserved format-level taste shifter in

equation (5) is mean-independent of a set of instruments,

E[ξgt|Zgt] = 0. (9)

In the empirical application, we let Zgt contain the market’s population, the number of the

market’s out-metro stations, and the number of out-metro stations in the same format, as well

as the d covariates.

A crucial step is to note that, given (κ, q, σ), there is a unique vector of fixed effects ψ that

maximizes the overall multinomial log-likelihood of the observed shares. Further, there is a closed

form solution for ψ. See Appendix C for a proof that

ψgt(κ, q, σ) = log(sgt)− log(s0t)− (1− σ)log[
∑
j∈g

e(κ1qjt+κ2hjt)]. (10)

This further suggests that, given candidate values for (σ, λ), and the fixed estimates (κ̂, q̂) ob-

tained in step 1, we can solve for the unobserved taste shifter ξgt as

ξgt(κ̂, q̂, σ, λ) = ψgt(κ̂, q̂, σ)− dgtλ

The mean-independence condition (9) now motivates estimating (σ, λ) by minimizing the follow-

ing classic GMM objective function:

J(σ, λ; κ̂, q̂) =
[
ψ(σ, κ̂, q̂)− dλ

]′
ZΦZ ′

[
ψ(σ, κ̂, q̂)− dλ

]
.

where κ̂ is the vector of the first-stage estimates which we hold fixed in this GMM estimation

procedure, d is a matrix whose rows are the dgt covariates, Z is the instrument matrix, and

Φ = (Z ′Z)−1 is a weighting matrix.

This objective function can be further simplified by noting that, conditional on σ, it is possible

to “concentrate out” the λ parameters11, allowing us to write down a GMM objective that can

be maximized by searching over values of the scalar parameter σ only:

J(σ; κ̂, q̂) =
[
ψ(σ; κ̂, q̂)− dλ(σ; κ̂, q̂)

]′
ZΦZ ′

[
ψ(σ; κ̂, q̂)− dλ(σ; κ̂, q̂)

]
(11)

11This is similar to the concentrating out of the “linear parameters” in Berry, Levinsohn and Pakes (1995) or Nevo
(2000)
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This second-step estimation yields the GMM estimates (σ̂, λ̂). Finally, estimates for the home

and quality effects are now easily computed by γ̂h = κ̂2 ·(1− σ̂) and γ̂q = κ̂1 ·(1− σ̂), respectively.

Dealing with set-estimates of qualities We here provide further details on how we deal

with the market/formats in which two different vectors of quality levels are equally consistent with

the data. Note that there are many formats that feature a small number of stations, including

a small number of out-metro stations. In these formats it is often not possible to point-estimate

quality levels. Importantly, then, we restrict our endogenous unobserved quality differentiation

to apply only to the main music format, Mainstream, and to the News/Talk format. Mainstream

has the highest listening share among all ten formats while News/Talk is the leading non-music

format. In these formats the quality assignment procedure seems to work robustly well. Stations

in the other eight formats continue to offer a single quality level, as in the base analysis.

Even in these two formats, there are still market-format pairs where in-metro stations could

not be assigned to a single quality level in step 1 of our estimation procedure. In particular,

quality in the Mainstream format was undetermined in 44 out of the 163 markets (27%). In

the News/Talk format, it was undetermined only in 17 markets (10.4%). It may be that quality

differentiation is particularly pronounced in News/Talk. In market/formats with set-estimates of

quality, we cannot compute the closed-form solution for ψgt and cannot therefore cannot properly

perform the GMM estimation step.

Our leading solution is a version of an “exogenous selection” procedure often used to overcome

sample selection problems. Recall from our discussion above that, in the presence of an out-metro

station, quality is assigned with probability 1. Eliminating from the GMM objective function

market-format pairs that have no out-metro stations, therefore, leaves us with observations in

which quality is always assigned. This approach leads to estimators that are robust to selection

bias.12 We therefore pursue this strategy as our leading specification. A total number of 180 out

of 1,433 market-format pairs are dropped in practice, leaving us with 1,253 observations. We

report below several robustness checks for this approach.

Computing standard errors. Standard errors for the first-step ML estimator of (κ̂, q̂) were

obtained using the usual ML formulae. In practice, we only computed standard errors for κ̂, and

not for the many threshold quality parameters ĵ′, which converge at a faster rate. Standard errors

for (σ, λ), estimated in the second step, were corrected for the error stemming from the first-

step estimation of (κ̂, q̂) using results for two-step estimation models (see Newey and McFadden

(1986)). Those results require deriving the joint distribution of (i) the second-step GMM moment

functions, and (ii) a linear expansion of the first-step ML estimator.13

12An alternative approach, which would remove only the market-format pairs where quality was actually unassigned,
would not be robust to selection bias.

13Additional details are available from the authors upon request. We are grateful to Donald Andrews for his feedback
on some aspects of these calculations. For simplicity, the computations were performed using all observations, rather than
excluding observations from the 180 market-format pairs discussed above. Given that estimation results were reasonably
robust to this exclusion, this issue is not likely to have a major impact on the estimated standard errors.
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Estimation results. Table 5 presents estimation results for the listening model that allows

for both horizontal and vertical differentiation. Panel A of this table presents the Maximum

Likelihood estimation results for the parameters κ. This procedure has 4,362 observations,

representing individual stations in the sample.

Panel B presents results obtained from the second step of our procedure, which holds fixed

the estimated values of (κ1, κ2, j
′) and estimates the parameters (σ, λ) via GMM. An estimate of

0.589 is obtained for the correlation parameter σ. As expected, both γh (the effect of in-metro

status) and γq (the effect of quality) are positively signed. The coefficients on the taste shifters

are highly intuitive, with popular formats (e.g. Mainstream, Country, Rock) obtaining larger

estimated coefficients than less popular formats. Also apparent is the natural role played by

interaction terms. These patterns are very much in line with the findings from the “baseline

specification” where quality differentiation was not allowed (see Table 4).

To examine robustness to our handling of the missing quality assignments, we consider three

alternatives to the exogenous selection approach which led to the elimination of 180 market-

format pairs that did not have an out-metro station. The first robustness check utilizes all 1,433

market-format pairs and sets all undetermined qualities to “low.” This yields a value for σ of

0.569, i.e., very close to the 0.589 from our leading specification. A second robustness check

also keeps all market-format pairs, but sets all undetermined quality to “high.” This yields

a somewhat higher estimate for σ: 0.702. Finally, the third robustness check eliminates all

observations pertaining to the Mainstream format. This leaves us with eight formats in which

quality assignments are assumed to be fixed, and one format—News/Talk—in which quality

assignment succeeds in close to 90% of markets. We set the unassigned cases to “low” quality.

This yields an estimate for σ of 0.503.

These robustness checks suggest that the estimates obtained from our baseline specification

are reasonable, in addition to being theoretically justified by the exogenous selection approach.

It is these estimates, therefore, that we carry forward to the remainder of the empirical analysis.

4 Advertisers demand for listeners

Having described the listeners’ demand for programming, we now describe the second component

of our framework: a model for advertisers’ demand for listeners. Here, we face similar data issues

to BW99 and we closely follow their approach. This model relates the price of advertising to the

share of the population listening to in-metro stations, as well as to market characteristics such

as demographic and regional effects. This model assumes that a station’s revenue is proportional

to the number of its AQH-listeners. Stations “produce” listeners and sell them to advertisers at

a price, determined from an inverse demand curve that reflects advertisers’ willingness to pay

for listeners. The market-t price is denoted pt. Market t’s inverse demand curve is given by the
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following constant-elasticity specification:

Pt = αt × (S1
t )
−η (12)

where αt is a market-specific constant, and S1
t is the total listening share to in-metro stations

in market t. We further parameterize the log of αt by ln(αt) ≡ ktγ + ωt, where kt is a vector of

market characteristics, and ωt is an additive error term. Taking logs, and replacing the model’s

predicted ad price Pt by its empirical counterpart, pt (computed from data as explained in section

2 above), we obtain the following estimation equation:

ln(pt) = ktγ − ηln(S1
t ) + ωt (13)

Estimation of this equation must take into account the endogeneity of the total in-metro share

S1
t : a high value for ωt induces entry, which in turn increases this share. We instrument for

this share using the market’s population and its number of out-metro stations. Table 6 provides

the results of estimating the model in equation (13) via 2SLS. Since the elasticity of demand is

−(1/η), the estimate of η implies an elasticity of about (-2), a similar result to that in BW99.

As can be expected, the ad price is positively correlated with higher metro income and education

levels, implying that advertisers are willing to pay more for more affluent listeners.

Ideally, one would like to allow the ad price to vary not only across markets, but across listening

formats as well. This would make sense since advertisers (and stations) are likely to internalize

the fact that different formats target different consumer types. Data limitations prohibit us from

pursuing such an approach.

5 The entry game and estimation of fixed costs

The discussion of the listener’s utility model (subsection 3.1) and of advertisers’ demand for

listeners (subsection 3.2) was conditioned on a given market structure, that is: given numbers

of stations operating in each market-format (or, market-format-quality) cell. We now turn to

describing the third and final component of our framework: the entry game which determines

this market structure. We assume that a large number of (ex-ante identical) potential entrants

contemplate entry into each local Radio market. They engage in a two-stage game:

1. Potential entrants simultaneously choose whether to enter the market as an in-metro station

and, if so, in which format category to operate (or, in the case that allows for vertical

differentiation: in which format-quality combination to operate). Entering stations incur

fixed costs that are specific to their market-format (or, market-format-quality) cell.

2. Entering stations produce listeners as described by the listening model, and sell them to
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advertisers at a price which is determined from the inverse demand curve for listeners.

Notice that the only active decision modeled here is entry: once in the market, stations’

market shares are determined by the listening equation, while the ad price charged to advertisers

is determined from the inverse demand curve (12). The solution concept employed is complete

information Nash equilibrium. Importantly, this is a “once-and-for-all” model in which stations

make the correct decision of being in or out of the market (and, when in the market, in which

format to operate).

The entry decisions determine market t’s structure, Nt. In the base analysis that only allows

for horizontal differentiation, this is a ten-vector describing the number of in-metro stations in

each of the ten formats. In the case that allows for horizontal differentiation as well, this could

potentially be a 20-vector, but since we only allow quality differentiation in two formats, this is

a 12-vector instead.14

A key feature of models where agents make simultaneous entry decisions into discrete market

segments is that uniqueness of equilibrium is not guaranteed. Intuitively, the market may have

one equilibrium in which two stations operate in format A and a single station operates in

format B, and another equilibrium in which these numbers are reversed. The non-uniqueness

implies that fixed costs of operation are only partially identified. We next explain how necessary

equilibrium conditions provide such partially-identifying information.

Bounds on fixed costs: the case of horizontal differentiation. Let us begin by consid-

ering the base case where only horizontal differentiation is allowed. Our goal is to compute upper

and lower bounds on fgt, the fixed cost of operating a station in market t and format g. We do not

specify an equilibrium selection mechanism. We do assume, however, that the observed market

structure constitutes some equilibrium outcome of the game described above. As a consequence,

the following necessary conditions must hold: (i) no station operating in the market is making

variable profits that are lower than its fixed operating costs, and (ii) no additional entrant could

garner variable profits in excess of the operating fixed costs.

Note that the variable profit predicted by the model for a station operating in format g and

market t is given by:

Vgt(Nt, dt, θ0) = Sgt(Nt, dt, θ0)× popt × Pt(Nt, dt, θ0)

where θ = (β′, σ, η)′ are the model’s parameters, θ0 denotes their true value, and Sgt(Nt, dt, θ0)

is the market share function which determines the share of a station in format g, market t

as a function of the market structure vector Nt, and of the market level variables dt (such as

income, education and other demographics). This function is given by the nested-logit market

14While not reflected by this notation, recall that the actual market structure also includes the numbers of out-metro
stations in all formats, which are taken to be fixed and exogenous.
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share formula. The market’s population is given by popt. The market’s ad price, predicted from

equation (12), is denoted Pt(·).
We now compute bounds on fgt using necessary equilibrium conditions. Condition (i) implies

that an upper bound is given by the variable profit actually garnered by stations operating in

this format. This upper bound can be computed directly:

fgt ≤ sgt × popt × pt ≡ f gt (14)

where sgt is the observed share of an in-metro station operating in format g, market t, and pt is

the observed ad price.15 A lower bound can be computed from the necessary condition (ii):

fgt ≥ Sgt(Nt + eg, dt, θ0)× popt × Pt(Nt + eg, dt, θ0) ≡ f
gt

(15)

where eg is a ten-vector with zeros everywhere and the gth entry equal to 1. This necessary

condition implies that an additional in-metro entrant into format g would not be able to recover

its fixed costs of operation. Notice that computing this bound requires predictions for both the

counterfactual market share enjoyed by such a potential entrant, Sgt(·), and for the counterfactual

market ad price Pt(·). The latter prediction requires computation of the counterfactual total

market share of in-metro stations, and application of the inverse demand curve in (12).

In the event that no stations are observed in the (t, g) market-format cell, one cannot compute

these bounds. Clearly, there is no information that provides an upper bound on fixed costs.

Moreover, we do not have an estimate of δgt, the mean utility level associated with such stations,

so computation of a lower bound is also infeasible.16 As a consequence, we set f
gt

= 0, f gt =∞
in this case.

For a given format g, we can use the cross-section of estimated intervals [f
gt
, f gt] across markets

to obtain upper and lower bounds on the Empirical Distribution Function (EDF) of format g’s

fixed costs across markets. Denoting the total number of markets by Nm (where Nm = 163 as

discussed in Section 2), we have, for each constant c > 0:

1

Nm

Nm∑
t=1

I{f gt ≤ c} ≤ 1

Nm

Nm∑
t=1

I{fgt ≤ c} ≤ 1

Nm

Nm∑
t=1

I{f
gt
≤ c} (16)

That is, the EDF of the lower (upper) bounds on fixed costs in format g is an upper (lower)

bound on the EDF of these costs. If one assumes, in addition, that fgt are independent (over

markets) draws from the true CDF of fixed costs in this format, then the EDFs of the bounds in

15Recall that, due to the within-format symmetry, sgt is computed by dividing the total listening share of in-metro
stations in format g by the number of such stations. Also, note the difference between the variables sgt and pt, that are
computed directly from data, and Sgt(·) and Pt(·), that are predicted by the model.

16One can compute the systematic portion of this utility level xgtβ, but, without an actual observation, no estimate is
available for the unobserved taste shifter ξgt.
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(16) converge to lower and upper bounds on this true CDF as Nm →∞. Importantly, however,

we will not rely on such an IID assumption, and will not use the bounds from (16) in our analysis.

We shall merely present graphs of the estimated EDFs for illustrative purposes. What we do

employ in our welfare analysis are the intervals [f
gt
, f gt] for each market-format cell.

Bounds on fixed costs with both horizontal and vertical differentiation. Inference on

fixed costs proceeds along similar lines as in the base case in which only horizontal differentiation

was allowed. The estimated threshold parameters j′gt allow us to classify observed stations into

market-format-quality cells. The estimated mean-utility levels for each such cell allow one to

compute revenues under the observed equilibrium, and under entry counterfactuals, that provide

the desired upper and lower bounds on fixed costs in such cells. We need to deal with the fact

that the values of j′gt were not assigned in some cases, as discussed in subsection 3.1.2 above. We

defer discussion of this issue to Section 4.

A challenge to the estimation of bounds on fixed costs under quality differentiation concerns

the computation of the market’s ad price. In our base-case analysis we compute the observed ad

price by dividing the market’s observed total revenue by the observed total number of listeners

to in-metro stations. In that analysis, the model-predicted share of listeners to in-metro stations

matched the share observed in the data. This is no longer true in our vertical-differentiation

model: the predicted total listenership to in-metro stations no longer matches the data, a fact

rationalized by measurement error. Since upper bounds are computed from observed revenues,

whereas lower bounds are computed from counterfactual (predicted) revenues, this issue can

create an artificial wedge between the two. To overcome this issue, we compute the “observed”

ad price by dividing total revenue by the number of listeners to in-metro stations that is predicted

by the model given the observed market structure, rather than by the number of listeners observed

in the data. If the observed listening data is indeed subject to measurement error, this approach

is appropriate, and allows for a consistent analysis.

Bounds on the empirical distribution of fixed costs: descriptive evidence. Beginning

with the base case where only horizontal differentiation is allowed, for illustrative purposes, we

provide graphs of bounds on the EDF (or, under an IID assumption, CDF) functions of fixed

costs in the various formats in Figures 1-2. The bounds are tight except for formats where

selection is an issue: Religious, Urban, and Spanish. This happens since empty market-format

cells reveal no information on the relevant fixed cost. The CDF graphs for the leading formats

are quite steep. In the Mainstream format, 21%-31% of stations have costs lower than �1M,

54%-64% have costs lower than �2M , and 81%-84% have costs lower than �5M .

Comparing the graphs for the leading formats, it does not appear that there are striking

differences in the distribution of costs among such formats. As discussed below, there are some

reasons why such distributions could differ across formats, which is why we do not want to impose

that they are identical. In any event, what we end up using in our welfare analysis is not format-

21



specific distributions but the market-format-specific bounds on fixed costs. As a consequence,

making (or not making) assumptions on variation of fixed costs across formats does not affect

our welfare analysis.

Considering next the case where vertical differentiation is allowed in the Mainstream and

News/Talk formats, Figure 3 shows bounds on the EDFs of fixed costs in those formats, for

high-quality stations and for low-quality stations separately. The costs of operating a high-

quality station appear to be higher, in a distributional sense. This is not surprising: given that

our estimate of γq is positive, high-quality stations are predicted to enjoy higher mean utilities,

and so higher revenues, than low quality stations. This implies that both the lower bound and

the upper bound on fixed costs should be higher for high-quality stations.

Discussion: sources of fixed costs. Our model allows for different distributions of fixed

costs for different formats. It is worth discussing what might drive such heterogeneity. Our

approach assumes away marginal costs, as the non-rival nature of Radio signals makes it seem

inappropriate to model the cost of serving a marginal listener. All the costs of operating a Radio

station, therefore, are considered here to be fixed. These include the cost of equipment, employee

salary, licensing fees and royalties paid for content.

While equipment costs need not, a-priori, diverge across formats, the cost of the content

provided can vary substantially. A station that operates in a niche segment such as Jazz may

need to physically possess thousands of records or music CDs, while a “big hits” station need

not incur such costs.17 Another example is that some formats (most notably, News/Talk) may

hire Radio “personalities” while other formats would spend mostly on music content. In light of

the above, we allow the distributions of fixed costs to diverge across formats, leaving it to the

data to inform us about such potential divergence.

6 Socially-optimal market structures and welfare analysis

In this section, we use the estimated model to calculate, in each market, the market structure

that would have been chosen by a social planner. The planner takes into account the surplus

available to Radio stations and advertisers, on the one hand, and the fixed costs of operation,

on the other hand. Similarly as in BW99 we cannot take into account listeners’ surplus, since

listeners do not pay for tuning in to a Radio broadcast. As a consequence, it is not possible to

evaluate their willingness to pay for Radio broadcasting, or their surplus. As explained below,

however, we are able to gain some perspective on the issue of listeners’ surplus. While it is

difficult to make strong statements on this issue, the analysis provides some suggestive evidence

that the losses to listeners may not be so large as to outweigh the gains to market participants

from station elimination.
17See, for example http://www.ehow.com/how 2316008 calculate-startup-costs-Radio-station.html.
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The next two subsections proceed by discussing separately the optimal market structures in

the base case, where only horizontal station differentiation is considered, and in the case where

discrete, unobserved quality differentiation is allowed.

6.1 Base analysis: horizontal station differentiation

Under the base case, a market structure is a vector N , describing the numbers of in-metro stations

in each of the formats. Let Nf denote the dimension of this vector. In our case, it is equal to

ten since we have ten format groups. Conditional on the market structure, welfare is given by:

W (N) = pop

∫ S1(N)

0

p(x)dx−
Nf∑
j=1

Nj × fj (17)

where pop is market population, S1(N) is the total listening share to in-metro stations, Nj is

the jth component of N , and fj is the fixed cost associated with operating an in-metro station in

format j in the given market.18 Advertisers’ inverse demand function is given by p(·). Searching

for an optimal market structure involves solving a Nf -dimensional discrete (in the sense that

numbers of stations must be integers) problem in each market. The algorithm which performs

this task is described in Appendix A. Importantly, if a given market-format cell has no observed

stations in the observed sample, we fix the number of stations in that market-format to zero when

computing the optimal market structure. Thus, we do not capture under-provision situations

where the market outcome leads to zero stations in the market-format cell, whereas the social

planner would have chosen a positive number of such stations. We can, however, capture under-

provision situations where, say, one station is observed, and the social planner would prefer to

have two.

The analysis is complicated by the fact that we do not have a point estimate of the fixed

costs fgt for stations in market t, format g, but rather an estimated interval [f
gt
, f gt]. In our

analysis, we simply set the fixed cost at the middle of this estimated interval. These intervals are

typically rather small, suggesting that the bias resulting from this approach should be minimal.

To strengthen this claim, we provide below a robustness check that uses the estimated bounds

themselves, rather than the middle of the estimated interval.

The results of applying this “middle-of-interval” approach are given in Table 7. The table

averages over the numbers of stations in each format in all 163 markets. Excessive entry, on

average across markets, is apparent in all ten formats. In total, the average market has 19.58 in-

metro stations, whereas the optimal number of such stations is 50% lower: 9.79. The discrepancy

between the observed and optimal numbers seems to be split quite evenly among the various

formats. In most formats, an average reduction of about 50%-60% in the number of in-metro

18Once again, it is understood that market shares also depend on the presence of out-metro stations.
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stations is optimal. The least amount of excessive entry occurs in the CHR and Oldies formats,

where the average optimal reductions are 20% and 14%, respectively. Notice that these formats

tend to have very few stations in the typical observed market, so the scope for excessive entry is

a-priori rather limited.

As a robustness check for the validity of the “middle-of-the-interval” approach, we consider an

alternative strategy: fixing a format g, we set fixed costs in that format to their lower bound,

f
gt

, and set fixed costs in all other formats m 6= g to their upper bounds, fmt. Then, we compute

the optimal number of in-metro stations in format g. This quantity can be interpreted as an

upper bound on the true optimal number. Analogously, a lower bound on this optimal number

can be achieved by setting fixed costs in format g to their upper bound, and fixed costs in all

other formats to their lower bounds.19

The results of this approach are given in Table 8. The mean optimal total number of in-

metro stations in a market is bounded by 9.2 from below, and by 10.75 from above, implying an

excessive entry rate which is bounded between 47% and 55%, compared to the rate of 50% found

using the “mid-interval” approach. A similar pattern is observed at the level of the individual

format: the results obtained using the “mid-interval” approach tend to lie between the bounds

on the optimal numbers. For example, as can be seen in Table 8 for the Mainstream format,

the mid-interval approach yields a mean optimal number of 1.38 in-metro stations, which lies

between the bounds 1.29 and 1.60. Moreover, in 81% of the format-market cells that have at

least one observed in-metro station, the upper and lower bounds on the optimal numbers of

stations coincide. All these facts are quite reassuring that our findings are not sensitive to the

exact manner in which we use the estimated fixed cost bounds.

The averages reported in Tables 7 and 8 suggest substantial excessive entry. It is worthwhile

to explore beyond average numbers and look at some particular examples that compare observed

and optimal station allocations (using the “mid-interval” approach). Interestingly, only two

markets (out of the 163 markets analyzed) display efficiency of the free-entry equilibrium, in

the sense that the optimal market structure vector coincides with the one observed in the data:

Bloomington, IL, and Lancaster, PA. Both are small markets where the number of observed

stations is small. Specifically, these markets never have more than one in-metro station in a

given format, and so the scope for potential excessive entry is small to begin with.20

Also important is that insufficient entry is hardly ever detected: in the entire sample, there

are only six market-format pairs in which the optimal number of stations exceeds the observed

19While this is an intuitive approach, it is difficult to formally prove that it generates bounds on the true optimal market
structures.

20To re-iterate, this finding implies that, in formats where at least one station is observed, there is no under-provision of
stations (e.g., a social planner would not like to have two Rock stations instead of one). However, as explained above, we
do not look into the possibility that a format with zero observed in-metro stations should (according to the social planner)
have a positive number of stations. As a consequence, we cannot rule out the possibility that these two markets suffer
from under-provision of stations in these “empty” formats.
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number. Three of these cases involve the News/Talk format. In the Radio market of Portsmouth-

Dover-Rochester (New Hampshire), the social planner would like to eliminate one Rock station

and one Country station—and add one Mainstream station and one News/Talk station instead.

Such re-allocation is very a-typical: in almost all markets, the social planner is interested in

(weakly) removing stations in all formats, rather than removing stations from some formats

while adding stations to other formats.

Table 9 reports additional information regarding the discrepancy of the observed and optimal

market structures. The results indicate that the welfare loss associated with free entry is about

�1.8 billion, or 13%. Under optimal market structures, which imply fewer in-metro stations,

the mean (across markets) total listenership to such stations drops substantially from 11.1%

to 8.15%. The cross-market average ad price under the optimal market structures is 662.54$,

compared to 570.48$ in the observed, free-entry equilibrium.

Listener welfare. The analysis thus far has ignored the positive externalities conferred upon

listeners from broadcasting. Simply put, the social planner’s elimination of stations reduces

total listening, and hence listener’s utility. Measuring the lost listener surplus is difficult on

account of the radio signal being non-rival and non-excludable. At the same time, observing

some benchmark figures can provide some idea about the lost listener surplus.

The first exercise we perform works as follows: the station elimination prescribed by the social

planner discussed above leads to a reduction in the total listening share to in-metro stations.

Multiplying the lost shares by the relevant market populations, and summing over all 163 mar-

kets, we obtain that a total of 6.02 million listeners are “lost” to the Radio industry.21 To offset

the welfare gains to advertisers and stations, totalling �1.8 billion, the average “lost” listener

would need to be willing to pay at least �299 for a year’s worth of radio listenership. While

learning about listeners’ willingness to pay for a free product is very difficult, we may derive a

useful benchmark from subscription fees to Satellite radio.

A monthly subscription to XM Sirius’s most basic satellite radio services cost �14.49 in August

2013, translating into an annual subscription cost of �173.8.22 We view this amount as an upper

bound on the true willingness to pay for the terrestrial radio broadcasting that we analyze in this

paper, given that satellite radio is a premium product. If that is the case, we may conclude that

the willingness to pay is much lower than �299. While this is clearly a very rough calculation, it

does suggest that the lost listener welfare may not be large enough to offset the combined gains

of the market participants (stations and advertisers).

21A subtle issue is that eliminating in-metro stations in one market also eliminates them as out-metro stations in another
market, and our count of lost listeners does not take that into account. Adjusting the analysis to account for this issue
would be quite demanding as it requires the mapping of each in-metro station in each market to all other markets in which
it is an out-metro station. Since our goal is to provide a back-of-the-envelope calculation only, and since listenership to
out-metro stations is systematically lower than listenership to in-metro stations to begin with, we ignore this cross-market
externality in our analysis.

22http://www.sirius.com/ourmostpopularpackages-sirius.
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As an alternative approach, we consider an exercise that involves listener’s expected utility,

as defined by the nested logit formulae. The benefit of this approach is that expected utility

is calculated from an “ex-ante” perspective (i.e. prior to the realization of the listener-specific

utility shocks), and takes into account some gains from variety which would be clearly reduced

if the social planner was to reduce the number of active stations in the market. Summing over

all 163 markets, we find that the total loss of expected utility of all listeners in all markets is

given by 6.56 million “utility units.”23 If this lost listeners’ utility is to exactly offset the �1.8

billion gains to the market participants (again, stations and advertisers), each utility unit must,

therefore, be worth �274.24

With this conversion rate at hand, we can try to evaluate its implications for listeners’ will-

ingness to pay. For concreteness, let us focus on the New York City Radio market. Beginning

with the observed set of stations, let us contemplate an elimination of all four stations in the

Rock format. We can calculate the impact of this elimination on the expected utility of the

representative member of NYC’s population (twelve years of age and above), and transform it

to monetary terms using the conversion rate computed above. Each such person would incur a

loss of 0.013 utility units, or, �3.62. A similar calculation would show that the monetary surplus

lost as a consequence of eliminating all the market’s stations would be �44.12.

What we learn from this exercise is that, if listeners’ willingness-to-pay for Radio is high enough

to offset the welfare gains from station elimination, it would have to be true that each person

living in NYC, prior to drawing her listener-specific utility shocks, would have to be willing to

pay about �44 per year to be able to access the Radio market. Given that the share of Radio

listenership in NYC is lower than 15%, this may seem like a large number. While it is hard to

draw strong conclusions from this exercise, it provides some suggestive evidence that listener’s

willingness to pay may not be high enough to offset the welfare gains from the station elimination

prescribed by our social planner (who cares only about the welfare of market participants, and

ignores externalities on listeners).

Another way to gain perspective of the issue is to use the conversion rate computed above

to compute the expected surplus loss to listeners if one were to remove a single Rock station

from the NYC market. This loss amounts to �5.3 million, which falls short of the combined

gains to advertisers and stations, amounting to �6.4 million. In other words, even if listeners’

willingness to pay is high enough to offset the gains to market participants from the massive

stations elimination prescribed by our social planner, it would still be true that removing one

Rock station would be optimal, i.e., the lost listener surplus from this modest station elimination

would not be large enough to offset the gains.

23Where expected utility is given by log

(∑
g exp(Ig)

)
with Ig being nest g’s “inclusive value.”

24The same caveat about ignored cross-market externalities involving out-metro stations, discussed with respect to the
previous analysis above, continues to apply to this analysis as well.
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To sum, we view the above analysis as providing some perspective on the issue of the negative

externalities on listeners’ welfare that would result from station elimination. Overall, we view this

evidence as consistent with there being at least some degree of excessive entry, even if one would

take into account the externalities on listeners. Ultimately, however, it is hard to draw strong

conclusions on the issue of listeners’ surplus, and in the remainder of the paper, we continue to

focus on a welfare analysis that takes into account the surplus of market participants: stations

and advertisers.

6.2 Optimal market structures with both horizontal and vertical differentiation

We next compute the optimal market structures in the case that allows, in additional to horizontal

differentiation, vertical differentiation in the Mainstream and News/Talk formats. The algorithm

that computes optimal market structures is employed once again, this time with N being a 12-

vector: eight elements of this vector describe the numbers of stations in each of the eight formats

where quality differentiation is not allowed, and four additional elements describe the numbers

of high quality and low quality stations in the Mainstream and News/Talk formats.

An issue that must be tackled is that quality was not determined in some format-quality

cells, as discussed in subsection 3.1.2 above. In those cases, all we know is that all stations

in the market-format pair offer identical quality - but we do not know which quality level it

is. The assignment of this quality affects the analysis of optimal market structures via two

channels. First, it affects stations’ revenues under both the observed equilibrium, and under

entry counterfactuals. As a consequence, this quality assignment affects the estimated fixed costs

bounds.25 In addition, since the quality assignment affects revenues and advertisers’ surplus, it

affects the computation of the optimal market structure conditional on fixed costs.

We address this issue using the following strategy: in markets where quality was undetermined

(in Mainstream, News/Talk, or both) we proceed by estimating fixed costs bounds and computing

market structures under each possible quality assignment. For example, in a market where quality

was unassigned in the Mainstream format, we consider two possible market structures: one in

which all observed Mainstream stations offer low quality, and one where they all offer high

quality. In each such scenario, we can compute bounds on fixed costs, and, using the “mid-

interval” approach as above, compute the optimal market structure vector. We then compute

upper (respectively, lower) bounds on the optimal number of stations in each component by

taking the element-by-element maximum (minimum) over these two vectors. We address similarly

markets where quality was undetermined in the News/Talk format (again considering two possible

scenarios and computing two optimal vectors), and markets where quality was undetermined in

25Interestingly, since the fixed effects ψ adjust to perfectly offset the effect of shifting all stations in the relevant format
from one quality level to another, the market shares and revenues of stations in other formats are actually not affected. Only
fixed costs in the particular format in which quality was unassigned, therefore, can be affected by the quality assignment.
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both Mainstream and News/Talk (leading to four possible scenarios and to the computation of

four optimal vectors).

Results from this analysis are offered in Table 10. Panel A displays findings for the eight

formats in which quality differentiation was not allowed. The left column presents the mean

(over markets) number of observed in-metro stations in such formats, while the middle column

presents the mean optimal number of such stations. The optimal number of stations in these

formats is unaffected by the issue of whether we identify the quality level of stations in the

Mainstream and News/talk formats. As a consequence, we point-identify the socially-optimal

mean number of stations in all of these eight formats. The right column reports the elimination

rates: very similarly as in the base case analysis, the social planner would choose to eliminate

about 50%-60% of in-metro stations in all formats, with the exception of the very small formats

CHR and Oldies where elimination rates of 20.2% and 16.2% are optimal.

Panel B reports findings for the two formats where we allow for quality differentiation. In

markets where the quality of observed stations was not determined, we get bounds on both

the observed and the optimal numbers of stations in these two formats. The table reports the

means (across markets) of the upper and lower bounds on these numbers of stations. In the

News/Talk format, the average number of observed low-quality stations ranges between 1.83 and

2.02. The average optimal number ranges between 0.79 and 0.89. This implies that the social

planner would like to eliminate, on average, 51.3%-61.2% of the low-quality News/Talk stations

that are observed in equilibrium. A similar picture emerges with high-quality stations in this

format: the mean observed number of such stations is bounded between 1.06 and 1.25, while

the mean optimal number is bounded between 0.40 and 0.51, implying an optimal elimination

rate of 51.7%-67.6%. Two points emerge from these numbers: first, the optimal elimination

rate is rather similar in both quality levels. Second, this is a similar elimination rate—50 to 60

percent— to that found in the base analysis where quality differentiation was not allowed.

In the Mainstream format, as discussed above, there is a higher incidence of cases where

the quality level of observed stations was undetermined. As a consequence, the bounds on the

optimal reduction in the numbers of stations are wider: 44.1%-81% in the low quality case, and

38.6%-74.2% for high quality stations. Just the same, those findings are in line with the overall

elimination rate of 50 to 60 percent which holds quite consistently throughout our analysis.

How often is quality misallocated in equilibrium? Having computed the optimal market

structure, we next wish to pay particular attention to the optimality of quality allocations in

the free-entry equilibrium. While the findings above suggest that, on average, the social planner

would like to eliminate high quality and low quality stations at similar rates, it is of interest

to ask whether—and how often— does the optimal quality level of stations differ from the one

observed in equilibrium.

We address this issue by asking the following question: beginning with the market structure
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observed in equilibrium, how often can welfare be improved by converting an observed low-

quality station into a high-quality one? And, vice versa, how often can welfare be improved by

converting an observed high-quality station into a low-quality one? In contrast to the analysis

offered above where the optimal market structure was computed, here we consider only “local”

changes to the observed market structure, holding the total number of stations fixed.

In practice, let us consider market t and format g, where g is one of the two formats in which

we allow quality differentiation. Let fgt`, fgth correspond to the true fixed costs associated with

operating a low quality station and a high quality station in this market-format cell, respectively.

Suppose that this format has low-quality stations present in the observed equilibrium. We ask

whether converting one such station into high-quality operation would increase social benefits

(the sum of stations’ revenue and advertisers’ surplus) by more than the difference f gth − f gt`,
where overlines and underlines correspond, as above, to upper and lower bounds, respectively. If

this condition is met, underprovision of quality prevails in this case, in a local sense. Analogously,

if high-quality stations are observed, we shall ask whether converting one of them to low quality

would decrease social benefits by an amount smaller than the difference f
gth
− f gt`.26

A challenge arises in determining the welfare consequences of converting a low-quality station

into a high-quality one, if no high quality stations are observed in the data: no estimate of f gth
is available. This happens since upper bounds on fixed costs are generated from the observed

revenue of stations in the relevant data cell. Importantly, however, since a low-quality station was

observed, an estimate for ψgt, the market-format fixed effect, is available, and so it is possible to

compute the mean-utility level of a hypothetical high-quality station as ψgt + γh + γq. With this

mean-utility level at hand, it is possible to compute the lower bound f
gth

from the hypothetical

revenue of such a hypothetical entrant, conditional on the observed market structure.

Our approach in such cases is to set the value of the unknown f gth equal to f
gth

+µh, where µh

is the maximum difference f gth−f gth taken over all market-t, format-g pairs in which high quality

stations were observed (so that the computation of both f gth and f
gth

is possible). Similarly,

when considering the conversion of a high quality station into a low quality one in a market-

format cell where no low quality stations are observed, we use as our estimate of f gt` the quantity

f
gt`

+ µ` where µ` is the maximum difference f gt` − f gt` taken over all market-t, format-g pairs

with observed low-quality stations.

The results of this exercise are quite telling: out of 90 markets with observed high-quality

Mainstream stations, in 72 cases welfare can be unambiguously improved by converting one of

those stations to low quality operation.27 In other words, overprovision of quality in the local

sense occurs at a rate of 80%. An even higher rate, 94.9%, applies to the News/Talk format (74

26Advertisers’ surplus unambiguously increases when higher quality is offered, since that generates higher listenership
and lower ad prices. The effect on stations’ total revenue, in contrast, is ambiguous.

27Markets in which quality was undetermined in either the Mainstream or News/Talk formats where excluded from this
exercise.
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out of 78 markets). On the other hand, there are no cases where a market has observed low-quality

stations—in either format—and converting one of them to high quality would unambiguously

improve welfare. Our analysis of local changes to quality offerings, therefore, reveals a highly-

asymmetric pattern: over-provision of quality appears to be widespread, whereas under-provision

is not encountered.

7 Concluding remarks

The goal of this paper is to introduce horizontal and vertical differentiation into the analysis of

excessive entry in local Radio markets. Introducing such systematic heterogeneity creates three

main challenges: first, we deal with the non-uniqueness of equilibrium and the resulting partial

identification of fixed costs. Second, we deal with estimating a model that allows for quality

as an unobserved station characteristic. Finally, we deal with the computational challenge of

computing non-scalar optimal market structures.

Notwithstanding these challenges, the results indicate that allowing for discrete station differ-

entiation is important. It appears to soften the excessive entry finding to some extent, placing

it at 50%-60%, compared to 74% in BW99, where such differentiation was not allowed. The op-

timal elimination rates are quite robust across different specifications of the model. The results

also demonstrate that the optimal elimination rate is quite uniform across horizontal formats

and vertical quality levels. Considering local changes to the observed equilibria, there is a very

high incidence of quality overprovision: welfare can be improved by converting a high quality

station into a low quality one.

To sum, extending traditional entry models to allow for horizontal and vertical differentiation

can create a rich framework in which various questions concerning the divergence of free-entry

equilibria and optimal market structures can be addressed. Such an agenda is particularly

attractive given that theoretical analyses of such questions often provide ambiguous predictions

that depend on specific parameter values. This motivates empirical work that attempts to

estimate such parameters (e.g., the magnitude of fixed costs).
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A Computing optimal market structures

Define ∆W j(N) as the change in welfare resulting from adding an in-metro station to format j,

1 ≤ j ≤ Nf , compared with a benchmark market structure N :

∆W j(N) = pop×
∫ S1(N+ej)

S1(N)

p(x)dx− fj

Let f be a known Nf -vector of fixed costs for the market’s format categories.28 The following

algorithm calculates the optimal market structure:

1. Let N ` be a lower bound on the optimal number of in-metro stations in format ` (initially

set N ` = 0 ∀`). Fix format j, 1 ≤ j ≤ Nf . We obtain an integer, N j, interpreted as an

upper bound on the optimal number of in-metro stations in format j, as follows: we set

N j = 0 if the following condition is met:

∆W j(N1, N2, ..., N (j−1), 0, N (j+1), ..., N (Nf )
) < 0 (18)

Otherwise, we set N j = Ñj where Ñj is the smallest positive integer that satisfies:29

∆W j(N1, N2, ..., N (j−1), Ñj − 1, N (j+1), ..., N (Nf )
) ≥ 0 (19)

∆W j(N1, N2, ..., N (j−1), Ñj, N (j+1), ..., N (Nf )
) < 0 (20)

We Repeat the above for j = 1, ..., Nf to obtain a vector of upper bounds, N = (N1, ..., N (Nf ))

2. Again fix a format j. We compute a new lower bound N j as follows: we set N j = 0 if the

following holds:

∆W j(N1, N2, ..., N (j−1), 0, N (j+1), ..., N (Nf )) < 0 (21)

Otherwise, we set N j = Ñj where Ñj is the smallest positive integer that satisfies:

∆W j(N1, N2, ..., N (j−1), N̂j − 1, N (j+1), ..., N (Nf )) ≥ 0 (22)

∆W j(N1, N2, ..., N (j−1), N̂j, N (j+1), ..., N (Nf )) < 0 (23)

We Repeat the above for j = 1, ..., Nf to obtain a vector of lower bounds, N = (N1, ..., N (Nf )
)

28Recall that, in practice, we have estimated only bounds on these costs. As explained in the text, one approach we took
was to use the middle of the estimated interval.

29It is easy to prove that Ñj exists, and is unique.
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3. Go back to step 1, unless the stopping rule in step 4 below is satisfied.

4. Stopping rule: Stop the process either when N = N (convergence to the optimal structure),

or after 20 iterations of steps 1 and 2. In the latter scenario, enumerate all possible Nf -

vectors N such that N ≤ N ≤ N (this is an inequality in vector sense), calculate welfare

in each of them, and set the optimal vector N∗ to the vector yielding the highest welfare.

In practical implementation, convergence to the optimal market structure was achieved in

144 of the 163 markets, typically very quickly within 2-4 iterations. In the remaining cases,

enumeration was used (as explained in Step 4 above) to determine the optimal market structure.

Theorem 1 establishes that this algorithm produces the optimal market structure for a given

market, if fixed costs are known. As discussed in the text, only bounds on fixed costs are available

in practice, and we take a couple of approaches to deal with this challenge.30

Theorem 1. Assume that the market has a unique optimal structure and that fixed costs are

known.31 The algorithm above recovers the optimal vector for the relevant market.

B Robustness: within-format symmetry and selection

In this section we investigate the robustness of the listening equation estimation in the base case

where only horizontal differentiation is allowed. As pointed out in section 3.1 above, we focus

on two issues: the symmetry assumption, and the potential selection bias.

The symmetry assumption. Our base-case analysis assumes that stations within a market-

format cell are symmetric, i.e., they have the same mean utility level.32 We investigate robustness

by estimating a listening equation which does not impose this restriction. Dropping this assump-

tion allows one to control for station-level variables such as an FM dummy variable, transmission

power (in 100 MHz units) and Antenna height (in thousand feet above average terrain). A com-

parison of the symmetric vs. non-symmetric specifications is provided in Table 11.

The left-hand column (“symmetric”) replicates the results of the baseline specification reported

in Table 4, while the right-hand column provides results for the non-symmetric specification.

Relaxing the symmetry assumption causes the key parameter σ to increase slightly, from about

0.52 to about 0.61. Also note that the regional and demographic effects appear very robust to the

symmetry assumption, although the “home” and some of the format effects do change. In total,

30A proof of this theorem is available from the authors upon request.
31The market may fail to have a unique optimal structure if, for example, at some optimal solution N∗, we have that

∆W j(N∗) = 0, i.e., the benefit to advertisers from an additional station is exactly offset by fixed costs. In this case,
N∗ + ej is also optimal. We effectively assume that this is a zero-probability event.

32As explained above, in practice we differentiated between in-metro and out-metro stations, and assumed that all
in-metro (out-metro) stations within such data cells are symmetric.

32



it appears that the symmetry assumption is reasonable, and, in particular, does not drive the

excessive entry results: imposing this assumption actually reduces the value of σ, thus pushing

the analysis away from the excessive entry finding.

Selection. As discussed above, three formats raise potential selection issues: “Religious,”

“Urban,” and “Spanish”. To be clear, the concern is that we may only observe an “Urban”

station, say, in markets where such a format is likely to be popular. If this likelihood is affected

by the unobserved ξgt, the format-market taste error, estimation of mean-utility parameters could

be biased, and, in particular, the estimate of the coefficient on the “Urban” dummy variable may

be expected to be biased upward.

To address this concern, we must look into the underlying selection mechanism that determines

whether a metro would have an “Urban” (or “Spanish”, or “Religious”) station. Both observed

(by the econometrician) factors, such as the size of the metro’s Black population, and unobserved

factors, such as the popularity of certain musical styles in the metro, can potentially be important

determinants of whether an “Urban” station would be observed. While selection on observables

would not cause a bias, selection on unobserved variables is a potential problem.

As a starting point, we estimate a probit model which relates the probability of observing the

format to market characteristics. The results are presented in Table 12. The size of the metro’s

Black population significantly increases the probability of observing an Urban-formatted station,

and the size of the Hispanic population has a similar effect on the probability of observing a

Spanish station. Total population seems to have no explanatory power (for the Urban format

case) or even a negative effect (for the Spanish format). Location of the metro in the South

region has a positive and significant effect on the probability of observing both Urban and Spanish

stations. The probability of observing a Religious-formatted station is increasing in the size of the

Black population, but is not significantly affected by other characteristics. In particular, location

in the “South” region has a positive, but insignificant, effect on the probability of observing a

Religious station.33

A non-parametric investigation of the relationship between Black (Hispanic) population and

the likelihood of observing an Urban (Spanish) station is available in Figure 4 (and 5). Figure 4

plots a dummy variable that takes the value 1 if an Urban station (either in-metro or out-metro)

is broadcasting to the metro, and zero otherwise, against the metro’s Black population. Figure

5 does the same for the Spanish format, and Hispanic population.34

Figure 4 shows that, when the Black population is small, the metro may or may not have an

Urban station. On the other hand, once the size of that population crosses a certain threshold,

33Since a Religious station is observed in almost 80% of the markets, it is difficult to estimate the probit parameters
with precision.

34In both cases, NYC is excluded from the graph, as it has large Black and Hispanic populations (4.2 million in the case
of Black population, 3.7 Million in the Hispanic case), and so excluding it allows for a clearer plot. In Figure 5, LA is
excluded on similar grounds.
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the metro always has an Urban station. This threshold can be characterized by the largest Black

population in a metro that does not have an Urban station, and this happens in the city of

Las Vegas, that has a Black population of about 110,000 persons. However, Las Vegas may be

somewhat of an outlier, and the “true” threshold may be lower.35

A possible conclusion is that, if selection on unobservables occurs in the context of the Urban

format, it is probably concentrated in those markets that have a small Black population. Figure

5 reveals similar patterns for the relationship between Hispanic population and the existence of

a Spanish station, and the “threshold” population, of 129,000, is observed in Seattle-Tacoma.

The probit models of Table 12, as well as Figure 4 and 5, imply that the probability of observing

an Urban (Spanish) station appears to be strongly driven by observables, i.e., the size of the main

target population in the metro. For the Religious format, it is harder to locate a demographic

“smoking gun” that would explain the probability of observing stations in this format, although

Black population again emerges as having explanatory power.

While the evidence above is encouraging, it does not rule out selection on unobservables,

and the resulting potential for selection bias. To further address this possibility, we perform

a robustness check, motivated by an “Identification at infinity” approach.36 The idea of this

approach is to restrict attention to those markets where the probability of observing, say, an

Urban station, as predicted by the probit specification in Table 12, is higher than, say, 99%. In

this group of markets, there should be virtually no selection problem, since only a huge negative

taste shock ξ could prevent an Urban station from broadcasting to this metro. As a consequence,

estimating the listening model using only observations from this restricted subsample of markets

should yield estimates that are robust to selection bias.

We, therefore, compare the estimates of the listening function obtained using the full sample,

with those obtained from subsamples that include only those markets in which the probability of

observing an Urban, Spanish, or Religious station is higher than 99%. The results are presented

in Table 13 below. Note the estimates which appear in bold text: these are the estimates that are

most likely to be biased by selection, i.e., those pertaining to the dummy variables for “Urban,”

“Spanish,” and “Religious,” as well as relevant interactions of these dummies with demographic

variables. If selection bias is important, these estimated coefficients would be lower when using

the restricted subsamples compared with the results obtained using the full sample.

Rather than offering a formal test, we simply examine the relevant coefficients in Table 13, and

ask whether these results are consistent with selection bias. The emerging picture appears to be

mixed; the estimated coefficient on the “Urban” dummy variable is (-0.40) for the full sample,

and actually increases to a statistically insignificant estimate of (-.17) in the “selection free”

subsample. The coefficient on the interaction of “Urban” with the percentage of the market’s

35Las Vegas is the most-right dot for which the “Urban Indicator” takes the value zero in Figure 4. Second-in-line is
Omaha-Council Bluffs, with a Black population of about 48,000 people, and no Urban-formatted station.

36See for example Heckman and Navarro (2007).
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Black population is decreasing very slightly, from 0.50 in the full sample, to 0.46 in the restricted

subsample. There seems to be little evidence, therefore, that estimates concerning the Urban

dummy variable are upward-biased due to selection.

In the case of the “Spanish” dummy, both the coefficient on this dummy variable itself, and

on its interaction with the percentage of the market’s Hispanic population, appear to drop when

we shift from the full sample to the restricted subsample (from (-1.16) to (-1.37) for the dummy

variable itself, and from .35 to .27 for the interaction term). This is consistent with a certain

degree of sample selection bias. Finally, the results for the “Religious” format do not appear

consistent with selection bias.

Summing up, for both the Urban and Spanish formats, there is both parametric and non-

parametric evidence that the selection is strongly driven by observed metro characteristics, for

which we control. Our robustness check does not indicate selection bias concerning the Urban

or Religious formats. However, some findings are consistent with selection bias in the case of the

Spanish format (remembering that this format is only present in 40% of the markets).

C A closed-form solution for the fixed effects

The multinomial likelihood function of stations’ market shares (as opposed to the likelihood of

within-format shares, presented in the text), can be written as:

logL(s, x; β, σ, ξ) =
∑
t

∑
g

∑
j∈g

njt ×
[
δjt

1− σ
− σlogDg(j)t − log(1 +

∑
m

D1−σ
mt )

]

Also note that:

Dgt = eψgt/1−σ
∑
j∈g

eκ1·qjt+κ2·hjt ⇒ ∂Dgt

∂ψgt
= Dgt/(1−σ), logDgt = ψgt/(1−σ)+log

[∑
j∈g

eκ1·qjt+κ2·hjt
]

Taking the FOC of the likelihood function with respect to ψkt yields:

0 =
∂logL

∂ψkt
=
∑
j∈k

njt

[
1− D1−σ

kt

1 +
∑

mD
1−σ
mt

]
−
∑
g 6=k

∑
j∈g

njt

[
D1−σ
kt

1 +
∑

mD
1−σ
mt

]
=
∑
j∈k

njt[1− skt]−
∑
g

∑
j∈g

njtskt =
∑
j∈k

njt − skt × nt ⇒ skt = skt

where the second equality utilizes the nested-logit formula for the share of nest (format) k, and

skt, skt are the observed and predicted shares of listening to format k, respectively. The above
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derivations show that the optimal (i.e., likelihood-maximizing) solution for the fixed effects sets

predicted and observed format shares to be equal. Taking logs on both sides of skt = skt yields:

log(skt) = (1− σ)log
[
Dkt

]
+ log(s0t)

⇒ log(skt) = ψkt + (1− σ)log

[∑
j∈k

eκ1·qjt+κ2·hjt
]

+ log(s0t)

⇒ ψkt = log(skt)− log(s0t)− (1− σ)log

[∑
j∈k

eκ1·qjt+κ2·hjt
]

The last step replaced the predicted share choosing the outside option s0t by its empirical

counterpart s0t. This is a valid replacement since all nests’ predicted shares are matched to their

empirical counterparts, including the nest which only element is the outside option.

36



D Figures

0 10 20 30
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "Mainstream" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

0 20 40 60
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "CHR" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

0 10 20 30
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "Country" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "Rock" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

0 10 20 30
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "Oldies" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "Religious" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "Urban" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
CDF for fixed costs − "Spanish" format

c (in M$)

P
r(

F
<

=
c)

 

 

Lower bound
Upper bound

Figure 1: Estimated bounds on the CDF of fixed costs, horizontal differentiation only, formats 1-8
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Figure 2: Estimated bounds on the CDF of fixed costs, horizontal differentiation only, formats 9-10
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Figure 3: Estimated bounds on the CDF of fixed costs, horizontal and vertical differentiation
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Figure 4: Presence of Urban Station Plotted against Black Metro Population, in 1000s (NYC Excluded)
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Figure 5: Presence of Spanish Station Plotted against Hispanic Metro Population, in 1000s (NYC, LA
Excluded)
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E Tables

Table 1: Description of Market-Level Data

Variable Units Mean Std. Deviation Minimum Maximum
Share in-metro % 0.111 0.026 0.030 0.151
Share Out-metro % 0.015 0.023 0.000 0.104
N1 (in-metro) integer 19.644 7.565 4.000 45.000
N2 (out-metro) integer 7.209 8.320 0.000 37.000
Population millions 1.016 1.687 0.075 14.481
Ad Price $ 570.480 237.653 258.222 2691.177
Income 10,000$ 4.584 0.860 2.482 8.010
College % 21.200 5.370 10.200 37.100

Computed using the 163 markets with full data, see text.
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Table 3: Format Category Performance

Format Group Frequency* Mean stations** Max stations** Mean format
share**

”Mainstream” 100.00% 4.48 11 2.31%
Rock 100.00% 3.42 9 1.88%
Country 99.39% 2.99 9 1.85%
News/Talk 100.00% 4.31 13 1.55%
Urban 73.62% 2.10 6 1.24%
CHR 93.25% 1.66 6 1.16%
Other 94.48% 2.80 9 1.09%
Oldies 98.16% 1.48 5 0.79%
Spanish 40.49% 1.63 15 0.40%
Religious 79.75% 1.88 6 0.37%

* Frequency with which a metro has at least one station (in- or out-metro) in format. ** Statistics computed over the 163
markets, both in- and out-metro taken into account.

Table 4: The listening equation - base case (horizontal differentiation)
Region Dummies northeast 0.122*** Interactions hispXspan 0.352***

(0.042) (0.036)
midwest 0.0974** blackXurban 0.506***

(0.041) (0.050)
south -0.0506 southXreligious 0.809***

(0.041) (0.095)
Demographics black -0.0681*** southXcountry 0.316***

(0.014) (0.072)
hisp -0.0233** Correlation parameter σ 0.519***

(0.0097) (0.063)
income -0.00258 In-metro dummy 0.639***

(0.017) (0.082)
college -0.0630** Constant -5.325***

(0.027) (0.15)
Format Dummies mainstream 0.595***

(0.058)
chr 0.431***

(0.056)
country 0.389***

(0.053)
rock 0.561***

(0.049)
oldies 0.0447

(0.061)
religious -1.264***

(0.072)
urban -0.406***

(0.098)
spanish -1.165***

(0.096)
nt 0.214***

(0.053)

Observations 1919
R-squared 0.72

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5: The listening equation - horizontal & vertical differentiation

Parameter Estimate SE

A. ”First step” estimates (4,362 obs)

κ1 1.472 0.0063

κ2 1.134 0.0077

B. ”Second step” estimates (1,253 obs)

σ 0.589 0.017

Constant -5.143 0.007

northeast 0.097 0.008

midwest 0.067 0.010

south 0.088 0.011

mainstream 0.450 0.007

chr 0.438 0.007

country 0.617 0.007

rock 0.642 0.011

oldies 0.067 0.006

religious -0.954 0.004

urban -0.473 0.006

spanish -1.235 0.007

nt 0.189 0.004

income/10 -0.092 0.003

college/10 -0.656 0.001

black/10 -0.712 0.002

hisp/10 -0.370 0.003

blackXurban/10 5.555 0.001

hispXspan/10 3.962 0.002

C. Quality and Home effects*
γq 0.604

γh 0.466

* Computed by κ1(1− σ), κ2(1− σ). See text.
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Table 6: Advertisers’ demand for listeners

OLS IV

northeast -0.0746 -0.0739
(0.064) (0.063)

midwest 0.0835 0.0799
(0.061) (0.059)

south 0.0148 0.0132
(0.060) (0.059)

income 0.0567* 0.0606**
(0.030) (0.029)

college 0.167*** 0.164***
(0.043) (0.042)

black -0.0231 -0.0242
(0.021) (0.020)

hisp -0.0120 -0.0124
(0.014) (0.013)

−η -0.541*** -0.510***
(0.062) (0.072)

Constant 4.492*** 4.554***
(0.17) (0.18)

Observations 163 163
R-squared 0.52 0.52

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

Table 7: Optimal and observed market structures, base case (horizontal differentiation only)

Format Observed Optimal % Difference

Mainstream 3.35 1.38 0.59
CHR 1.06 0.85 0.20
Country 2.10 1.05 0.50
Rock 2.33 1.09 0.53
Oldies 1.02 0.88 0.14
Religious 1.66 0.81 0.51
Urban 1.50 0.73 0.51
Spanish 1.34 0.60 0.56
News/Talk 3.08 1.35 0.56
Other 2.12 1.07 0.50
Total In-metro 19.58 9.79 0.50

Table 8: Bounding the optimal structures, base case (horizontal differentiation only)

Format Observed Optimal (low) Optimal (upp) Optimal (”mid interval’)

Mainstream 3.35 1.29 1.60 1.38
CHR 1.06 0.85 0.86 0.85
Country 2.10 0.99 1.10 1.05
Rock 2.33 1.01 1.21 1.09
Oldies 1.02 0.85 0.88 0.88
Religious 1.66 0.75 0.90 0.81
Urban 1.50 0.68 0.77 0.73
Spanish 1.34 0.54 0.67 0.60
News/Talk 3.08 1.22 1.56 1.35
Other 2.12 1.01 1.19 1.07
Total In-metro 19.58 9.20 10.75 9.79
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Table 9: Welfare analysis in the base case (horizontal differentiation only)

Observed Optimal

Welfare ($ millions) 11,977 13,779
Mean In-Metro Listening Share (%) 11.10% 8.15%
Mean Ad Price ($) 570.48 662.54

Table 10: Optimal and observed market structures, horizontal and vertical differentiation

A. Formats with a single quality level:

Mean number observed Mean number optimal Mean optimal reduction

CHR 1.06 0.85 20.2%
Country 2.10 1.02 51.3%
Rock 2.33 1.04 55.3%
Oldies 1.02 0.86 16.2%
Religious 1.66 0.77 53.5%
Urban 1.50 0.71 52.6%
Spanish 1.34 0.50 63.0%
Other 2.12 1.01 52.3%

B. Formats with quality differentiation:

Format: Mainstream News/Talk

Low quality High quality Low quality High quality

Mean number observed 1.18-1.95 1.40-2.17 1.83-2.02 1.06-1.25
Mean number optimal 0.37-0.66 0.56-0.86 0.79-0.89 0.40-0.51
Mean optimal reduction 44.1%-81% 38.6%-74.2% 51.3%-61.2% 51.7%-67.6%
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Table 11: Comparing Symmetric vs. Nonsymmetric Specifications

Symmetric Non-Symmetric Symmetric Non-Symmetric

northeast 0.122*** 0.139*** hispXspan 0.352*** 0.286***

(0.042) (0.027) (0.036) (0.018)

midwest 0.0974** 0.100*** blackXurban 0.506*** 0.460***

(0.041) (0.026) (0.050) (0.029)

south -0.0506 -0.0906*** southXreligious 0.809*** 1.034***

(0.041) (0.026) (0.095) (0.061)

black -0.0681*** -0.0467*** southXcountry 0.316*** 0.274***

(0.014) (0.0090) (0.072) (0.048)

hisp -0.0233** -0.0153** σ 0.519*** 0.614***

(0.0097) (0.0063) (0.063) (0.034)

income -0.00258 0.0233** FM 0.305***

(0.017) (0.011) (0.030)

college -0.0630** -0.0797*** power100 0.367***

(0.027) (0.017) (0.033)

home 0.639*** 0.325*** HAAT1000 0.0537***

(0.082) (0.031) (0.016)

mainstream 0.595*** 0.296*** FMXnt -0.237***

(0.058) (0.039) (0.064)

chr 0.431*** 0.0306 Constant -5.325*** -5.247***

(0.056) (0.038) (0.15) (0.094)

country 0.389*** 0.0939**

(0.053) (0.038)

rock 0.561*** 0.238***

(0.049) (0.033)

oldies 0.0447 -0.331***

(0.061) (0.042)

religious -1.264*** -1.336***

(0.072) (0.052)

urban -0.406*** -0.556***

(0.098) (0.062)

spanish -1.165*** -1.044***

(0.096) (0.058)

nt 0.214*** 0.320***

(0.053) (0.032)

Observations 1919 4362

R-squared 0.72 0.79

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 12: Probit Results for Formats

Urban Spanish Religious

Population (000s) 0.0005 -0.00251*** -0.0003

(0.00088) (0.00069) (0.00047)

income -0.121 0.628* 0.275

(0.27) (0.35) (0.23)

Black Population (000s) 0.0338*** 0.00319 0.0116**

(0.0095) (0.0023) (0.0046)

Hispanic Population (000s) -0.0022 0.0741*** -0.0004

(0.0019) (0.014) (0.0014)

college 0.0588 -0.501 -0.367

(0.36) (0.42) (0.28)

northeast 0.772 0.934 -0.212

(0.50) (0.72) (0.43)

midwest 0.243 1.322* -0.394

(0.48) (0.73) (0.40)

south 1.348*** 1.866** 0.369

(0.52) (0.79) (0.41)

Constant -0.855 -4.385*** -0.0618

(0.99) (1.60) (0.89)

Observations 163 163 163

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

46



Table 13: Restricting Attention to “Selection-free” Sub-samples

Full sample ”Urban Subsample” ”Spanish Subsample” ”Religious Subsample”

σ 0.519*** 0.656*** 0.390** 0.765***
(0.063) (0.11) (0.17) (0.19)

black -0.0681*** -0.0311 -0.0767 -0.0424
(0.014) (0.024) (0.051) (0.044)

hisp -0.0233** -0.0287 -0.0194 -0.0121
(0.0098) (0.019) (0.017) (0.025)

income -0.00258 0.00917 0.0680* 0.0588
(0.017) (0.026) (0.039) (0.064)

college -0.0630** -0.125*** -0.209*** -0.127
(0.027) (0.042) (0.073) (0.12)

home 0.639*** 0.432*** 0.699*** 0.328
(0.083) (0.16) (0.21) (0.30)

mainstream 0.595*** 0.803*** 0.150 0.887***
(0.058) (0.099) (0.095) (0.17)

chr 0.431*** 0.383*** -0.183 0.250
(0.056) (0.084) (0.23) (0.17)

country 0.389*** 0.163* -0.323** -0.408**
(0.054) (0.094) (0.15) (0.20)

rock 0.561*** 0.635*** -0.0104 0.616***
(0.049) (0.077) (0.097) (0.13)

oldies 0.0447 -0.0100 -0.380* 0.00510
(0.062) (0.099) (0.22) (0.20)

religious -1.264*** -1.238*** -1.627*** -1.244***
(0.073) (0.11) (0.23) (0.21)

urban -0.406*** -0.173 -0.458** -0.250
(0.099) (0.14) (0.23) (0.30)

spanish -1.165*** -1.311*** -1.369*** -1.226***
(0.097) (0.14) (0.17) (0.22)

nt 0.214*** 0.494*** -0.0702 0.669***
(0.054) (0.091) (0.096) (0.16)

hispXspan 0.352*** 0.550*** 0.271*** 0.564***
(0.036) (0.085) (0.055) (0.12)

blackXurban 0.506*** 0.461*** 0.345*** 0.554***
(0.051) (0.067) (0.13) (0.14)

southXreligious 0.809*** 0.982*** -0.0883 0.954***
(0.095) (0.14) (0.18) (0.24)

southXcountry 0.316*** 0.614*** 0.306** 1.108***
(0.072) (0.11) (0.14) (0.22)

Constant -5.325*** -5.031*** -5.195*** -5.161***
(0.15) (0.28) (0.46) (0.55)

Observations 1919 846 444 341
R-squared 0.72 0.72 0.73 0.66

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. Regional effects not reported for lack of space.
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