
Bioassay Example: Completing the Picture

In class we considered the bioassay where a compound was given at four
log-dosage levels (xi) to different groups of animals (ni animals for each dosage)
and where in each group yi animals died. We used θi to denote the probability of
death for log-dosage xi and after some discussion decided on a logistic regression
model

logit(θi) ≡ log
θi

1 − θi

= α + βxi

Assuming a binomial model given θi and independence of observations given
the parameters we have

p(y | α, β, n, x) =

k
∏

i=1

[

logit−1(α + βxi)
]yi

[

1 − logit−1(α + βxi)
]ni−yi

Choosing a uniform prior p(α, β) ∝ 1 (or a more complex one if we later deem
this too naive or have an informative prior), we now face the problem of com-
puting the posterior

p(α, β | y, n, x) ∝ p(α, β)p(y | α, β, n, x) (1)

To do so we will use the following computational (in contrast to analytical)
approach

1. Roughly estimate the effective range of α and β

2. Compute the unnormalized posterior distribution on a discrete grid

3. Approximate the posterior by normalizing over the grid

4. Draw 1000 samples from the posterior distribution

5. Use the 1000 samples to compute quantities of interest

I will now briefly describe each of these steps.

1. Rough estimate of the parameters. To obtain a rough estimate of
the parameters we note that by our choice of the model logit(E[yi/ni |
α, β]) = α+βxi. We can thus crudely estimate the parameters by a linear
regression (or a logistic regression) of logit(yi/ni) on xi on the four data

points. The linear regression estimate is (α̂, β̂) = (0.1, 2.9) with standard
errors of 0.3 and 0.5.
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2. Compute the unnormalized posterior distribution on a grid. Us-
ing the above rough estimate, we can start by constructing a discrete
200× 200 grid over the approximate range of two standard errors (α, β) ∈
[−1, 1] × [1, 5]. For each point on this grid we can easily evaluate the
unnormalized posterior using Eq. (1) and draw a contour plot (lines of
equi-probability) of the distribution as in the left-hand figure in the hand-
out given in class (there is also a link to it in the website). In fact, the first
attempt at doing this resulted in 5− 95% contour lines that were outside
of the crude range and so the graph is actually the result of expanding the
range to (α, β) ∈ [−5, 10]× [−10, 40].

3. Normalizing the distribution. We now use the grid values to approxi-
mate the normalized distribution. That is, we treat each point in the grid
as covering a d × d square centered around the grid point (where d is the
distance between points in the grid). To have the integral over the grid
sum to one we simply divide each value in the grid by the sum of all values
times d2. Similarly, if we want to compute the posterior distribution over
α alone, we first sum over the values of β and then divide by the sum of
all value times d.

4. Sampling from the posterior distribution. We start by computing
the marginal posterior distribution over α as described above and then cre-
ate 1000 samples by repeating the following steps for each l = 1, . . . , 1000:

(a) draw αl from the distribution p(α | y) we computed.

(b) draw bl from the discrete conditional distribution p(β | αl, y) (com-
puted using the same technique as above for each grid value of α).

(c) For both αl and βl add a uniform jitter centered at zero and with
width d. This makes the sampling distribution continuous.

The right-hand figure in the handout shows the 1000 samples created in
this manner. It is easy to see that its mass corresponds to the unnormal-
ized density of the left-hand figure.

5. Using the posterior samples. We can now easily use the 1000 to com-
pute quantities of interest. For example, the dosage level LD50 at which
the probability of death is 50% is often of interest in bioassay studies. In
our model, this means:

LD50 : E

(

yi

ni

)

= logit−1(α + βxi) = 0.5

from which we get that the LD50 is xi = −α/β. We compute this quantity
for all 1000 samples and show a histogram of these posterior LD50 values
on the bottom figure in the handout.
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