
Understanding the statement of

De-Finetti’s Theorem (1930)

Theorem 0.1: If x1, x2, . . . is an infinitely exchangeable sequence of 0-1 random
quantities with probability measure P , there exists a distribution function Q
such that the joint mass function p(x1, . . . , xn) for x1, . . . , xn has the form

p(x1, . . . , xn) =

∫ 1

0

n∏
i=1

θxi(1 − θ)1−xidQ(θ),

where
Q(θ) = lim

n→∞

P [Yn/n ≤ θ],

where Yn/n is a random variable that takes on the value yn = x1 + . . .+xn and
θ = limn→∞ yn/n.

Now let’s walk through the different components of the theorem so that we
understand what it actually says with regards to the prior distribution of θ.

1. Q(θ) is a distribution function not a density.
Notice that we have dQ(θ) ≡ Q′(θ)dθ unlike the (wrong) form I used in
class Q(θ)dθ. Thus, Q(θ) is a cumulative distribution function (or simply
a distribution function) and not the density function Q′(θ). This is the
source of the main mixup in class since we tried to think of Q(θ) as the
density function.

2. Form of P [Yn/n ≤ θ] for finite n.
Yn, the number of x’s that have a value of 1, is a random variable that can
take on the values 0, 1, . . . , n. In here I used yn to denote specific values so
as to avoid confusion between the random variable and its instantiations.
Thus, P [Yn/n ≤ θ] is a step function that is 0 for every θ < 0 and has
jumps of p(x1 + . . . + xn = yn) at θ = yn/n for yn = 0, . . . , n. This is the
place where its easy to get confused. By the law of large numbers θ =
limn→∞ yn/n. This just means that the value that the random variable
will take tends to the true value of θ as n grows. Given θ, even if n is very
large, Yn the random variable can still take on the random of values and
thus P [Yn/n ≤ θ] is simply a (cumulative) distribution function and true
to the requirements limθ→−∞ P [Yn/n ≤ θ] = 0 and limθ→+∞ P [Yn/n ≤

θ] = 1.
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3. The limit of P [Yn/n ≤ θ].
As we discussed above, for a given n, P [Yn/n ≤ θ] defines a distribution
function that is a series of steps and thus matches a discrete distribution.
Now we take n to ∞. Note that only n is taken to the limit and Yn is still
a random variable that can receive the values 0, 1, . . . , n. You now need to
envision how, as n grows, the steps in P [Yn/n ≤ θ] become finer grained
until it becomes a continuous distribution function (not a density!). It
is this limit to which Q(θ), the distribution function of the prior density
equals.

If you understand the above you are actually most of the way to understanding
the full proof of the theorem. If you are interested, it appears in pages 172−173
in the book title ’Bayesian Theory’ by Bernardo and Smith. That chapter also
has the statement and proof outline for more general cases than the binary one.
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