
Course 52558: Problem Set 1

Due March 31st, 2009

SOFTWARE NOTE: in some of the questions you will need to use Matlab or R for
computations and plotting. Examples in the course will generally be in Matlab but
these can easily be “translated” into R. If you prefer R (can be installed on your
own computer at no cost), you can definitely use it. To get started

• Install R and WinBUGS (that we will use later in the course) by following
the instructions in http://www.stat.columbia.edu/ gelman/bugsR (we will use
WinBUGS later so don’t worry if you don’t know what it is).

• Follow one of the many R tutorial that can be found on the web (e.g. from
http://www.cyclismo.org/tutorial/R), at least until the example below does
not look like Chinese

Now, take a look at the matlab example (NormalPriorPost.m) or R example (Nor-
malPriorPost.txt) that plots the normal prior and posterior. You should understand
what this code does before attempting the tasks below

1. A Thought Experiment. Let θ be the true proportion of men in Israel
over the age of 40 with hyper-tension.

(a) Though you may have little or no expertise in this area, use your
social knowledge and common sense to give an initial point estimate
(single value) of θ.

(b) Now suppose that in a properly designed survey, of the first 5 ran-
domly selection men, 4 are hypertensive. How does this information
effect your initial estimate of θ?.

(c) Finally suppose that at the survey’s completion, 400 of 1000 men
have emerged as hypertensive. Now what is your estimate of θ?

(d) What guidelines for statistical inference do your answers suggest?

2. Relationship between posterior and prior mean and variance.

(a) Show that for any continuous random variables X and Y

E(X) = E(E(X | Y ))

(Note that a similar proof can be used for the discrete case)

(b) Show that for any random variables X and Y

var(X) = E(var(X | Y )) + var(E(X | Y ))
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(c) Let y denote the observed data. We assume y was generated from
p(y | θ), where θ, the parameters governing the sampling of y are
random and distributed according to p(θ). Use the above and de-
scribe (i.e. understand the equation and then put into words) the
relationship between the mean and variance of the prior p(θ) and
and the posterior p(θ | y).

3. Posterior of a Poisson Distribution. Suppose that X is the number
of pregnant woman arriving at a particular hospital to deliver babies in
a given month. The discrete count nature of the data plus its natural
interpretation as an arrival rate suggest adopting a Poisson likelihood

p(x | θ) =
e−θθx

x!
, x ∈ {0, 1, 2, . . .}, θ > 0

To provide support on the positive real line and reasonable flexibility we
suggest a Gamma G(α, β) distribution prior

p(θ) =
θα−1e−θ/β

Γ(α)βα
, θ > 0, α > 0, β > 0

where Γ() is a continuous generalization of the factorial function so that
Γ(c) = cΓ(c − 1). α, β are the parameters of this prior, or the hyper-
parameters of the model. The Gamma distribution has mean αβ and
variance αβ2.

Show that the posterior distribution p(θ | x) is also Gamma distributed.
Determine its parameters α and β.

4. Posterior of the Poisson Model.

In this question we will use Matlab/R to explore the Poisson model with
the Gamma prior considered above.

(a) The Matlab (GammaPrior.m) R (GammaPrior.txt) files in the Code
directory of the course web page can be used to plot the Gamma prior.
Use this code to investigate different values for α and β. Describe the
qualitative behavior of this prior as a function of these parameters
and try to explain why they are called ’shape’ and ’scale’ parameters,
respectively.

(b) Continuing the previous question involving births, assume that in
December 2008 we observed x = 42 moms arriving at the hospital
to deliver babies, and suppose we adopt a Gamma(5,6), which has
mean 30 and variance 180, reflecting the hospital’s total for the two
preceding years. Use Matlab/R to plot the posterior distribution of
θ next to its prior. What are your conclusions?

(c) Repeat the above for different values of x. What are your conclusions.
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5. Extinction of Species. Paleobotanists estimate the moment in the re-
mote past when a given species became extinct by taking cylindrical, ver-
tical core samples well below the earths surface and looking for the last
occurrence of the species in the fossil record, measured in meters above
the point P at which the species was known to have first emerged. Letting
{y1, . . . , yn} denote a sample of such distances above P at a random set
of locations, the model

(yi|θ) ∼ Unif(0, θ)

emerges from simple and plausible assumptions. In this model the un-
known θ > 0 can be used, through carbon dating, to estimate the species
extinction time. This problem is about Bayesian inference for θ, and it
will be seen that some of our usual intuitions do not quite hold in this
case.

(a) Show that the likelihood may be written as

l(θ : y) = θ−nI(θ ≥ max(y1, . . . , yn))

where I(A) = 1 if A is true and 0 otherwise.

(b) The Pareto(α, β) distribution has density

p(θ) =

{

αβαθ−(α+1) θ ≥ β

0 otherwise

where α, β > 0. The Pareto distribution has mean αβ
α−1 for α > 1

and a variance of αβ2

(α−1)2(α−2) for alpha > 2.

With the likelihood viewed as a constant multiple of a density for
θ, show that the likelihood corresponds to the Pareto(n 1,m) dis-
tribution. Now let the prior for θ be taken to be Pareto(α, β) and
derive the posterior distribution p(θ|y). Is the Pareto conjugate to
the uniform?

(c) In an experiment in the Antarctic in the 1980s to study a particular
species of fossil ammonite, the following is a linearly rescaled version
of the data obtained: y = (0.4, 1.0, 1.5, 1.7, 2.0, 2.1, 3.1, 3.7, 4.3, 4.9).
Prior information equivalent to a Pareto prior with (α, β) = (2.5, 4)
was available. Plot the prior, likelihood, and posterior distributions
arising from this data set on the same graph, and briefly discuss what
this picture implies about the updating of information from prior to
posterior in this case.

(d) Make a table summarizing the mean and standard deviation for the
prior, likelihood and posterior distributions, using the (α, β) choices
and the data in part (d) above. In Bayesian updating the posterior
mean is often a weighted average of the prior mean and the likelihood
mean (with positive weights), and the posterior standard deviation
is typically smaller than either the prior or likelihood standard devi-
ations. Are each of these behaviors true in this case? Explain briefly.
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