
Course 52558: Problem Set 3

Due May 19th, 2009

1. Normal Approximation for the Bioassay example.

Consider the Bioassay example we encountered in class 3 (see the Handout
section in the website for the note and figures).

(a) Derive the analytic form of the information matrix and the normal
approximation variance for this example/

(b) In addition to performing a normal approximation to the joint pos-
terior, we can also approximate any posterior estimand using a nor-
mal distribution (this is often called the delta method). Expand
the posterior distribution of LD50, −α/β (see note), as a Taylor se-
ries around the posterior mode and thereby derive the asymptotic
posterior median and standard deviation. Compare to the normal
approximation figure in the website.

2. Echangeability and Mixture of iid distributions

(a) Suppose the distribution of θ = (θ1, . . . , θ2J ) can be written as a
mixture of iid components

P (θ) =

∫ 2J∏
j=1

P (θj | φ)P (φ)dφ

Prove that the covariances cov(θi, θj) are all non-negative.

(b) Suppose it is known a-priori that the 2J parameters are clustered
into groups with exactly half being drawn from N(1, 1), and the
other half being drawn from a N(−1, 1) distribution, be we have
do not know which parameter comes from which distribution. Are
θ1, . . . , θ2J exchangeable under this prior distribution?

(c) Use (a) to show that the distribution in (b) cannot be written as a
mixture of iid components.

(d) Continuing (b), why not take the limit as J → ∞ and get a counter-
example to De-Finetti’s theorem?

3. Discrete Mixture Models
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If Pm(θ) for m = 1, . . . , M , are conjugate prior densities for the
sampling model y | θ, show that the class of finite mixture prior
densities given by

P (θ) =

M∑
m=1

λmPm(θ)

is also a conjugate class, where the λm’s are nonnegative weights that
sum to 1.

(a) The above can provide a useful flexible extention of the natural conju-
gate family. As an example, use the mixture form to create a bimodal
prior density for the normal mean, that is thought to be near 1, with
a standard deviation of 0.5, but has a small probability of being near
-1, with the same standard deviation. If the variance of each observa-
tion y1, . . . , y10 is known to be 1, and their observed mean is −0.25,
derive your posterior distribution for the mean, making a sketch of
both prior and posterior densities. Be careful: the prior and posterior
mixture proportions are different.

(b) Is the above a hierarchical model? Explain.

4. Beta-blockers Meta Analysis

In this question we will perform a hierarchical Bayesian analysis aimed
at combining information from multiple experiment that try to estimate
the effectiveness of beta-blockers at reducing mortality rate from heart
attacks. The data appears in a handout in the webpage along with and
some results that you can use for comparison. For each experiment j, y0j

will denote the number of deaths out of n0j people in the control group
and y1j will denote the number of deaths out of n1j people in the treated
group. We will perform estimation on the log odds ratio parameter for
each experiment

θj = log
p1j

1 − p1j

− log
p0j

1 − p0j

where p0j is the probability of death in the control group and similarly for
p1j .

Relatively simple Bayesian meta-analysis (combination of experiments
from different sources) is possible using the normal hierarchical model
we used in class to analyze the SAT score improvements. Our approach
here will be based on empirical logits, where for each study j we use the
estimate

yj = log
y1j

n1j − y1j

− log
y0j

n0j − y0j

with approximate sampling variance

σ2
j =

1

y1j

+
1

n1j − y1j

+
1

y0j

+
1

n0j − y0j

(columns 4 and 5 in the data table in the handout).
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(a) Plot the posterior density of τ over an appropriate range that includes
essentially all of the posterior density.

(b) Produce graphs that display how the posterior means and standard
deviations of the θj ’s depend on τ .

(c) Produce a scatterplot of the crude effect estimates (each yj) vs. the
posterior median effect estimates of the 22 studies. Verify that the
studies with smallest sample sizes are ’shrunk’ the most toward the
mean.

(d) Draw simulations from the posterior distribution of a new treatment
effect, θJ+1. Plot a histogram of the simulations.

(e) Given the above simulations, draw simulated outcomes from replica-
tions of a hypothetical experiment with 100 persons in each of the
treated and control groups. Plot a histogram of the simulations of
the crude estimated treatment effect in the new experiment.
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