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Example

Mathew et al. (2004). Platelet-Derived Growth Factor
Receptor Inhibitor Imatinib Mesylate and Docetaxel: A
Modular Phase I Trial in Androgen-Independent Prostate
Cancer.
Doses: 20, 25, 30, 35, 40, 45 mg/m2 (docetaxel).
Subjects: Eight cohorts of six subject each.
Target: To find the the maximum tolerated dose (MTD);
i.e., the dose level of docetaxel in combination with oral
imatinib at 600 mg daily that achieved a dose-limiting
toxicity (DLT) rate closest to 30%.
Statistical design: The continual reassessment method
(CRM).
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The trial - first cycle

The first cohort was treated 30 mg/m2. 0/6 DLT’s.
The second cohort was treated 45 mg/m2. 3/4 DLT’s
(was not completed).
The third cohort was treated 35 mg/m2. 5/6 DLT’s.
The fourth cohort was treated 30 mg/m2. 3/6 DLT’s.
30 mg/m2 is declared the MTD.

David Azriel Optimal sequential designs



The formulation of the problem

David Azriel Optimal sequential designs



The formulation of the problem

Dose range: D := {d1, . . . ,dK}.
m(dj) denotes the probability of toxic response at dose dj .
m(·) is some unknown increasing function.
m∗ denotes a desired response level.
The Goal: to find the MTD.
MTD := dj∗ , j∗ := arg minj |m(dj)−m∗|.
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Adaptive design

xn ∈ D denotes the dose assigned to the nth subject ; the
sequence {xn}∞n=1 is called a design.
yn denotes the response of the nth subject.
x1 is arbitrary (typically = x1 = d1).
Fn := σ(x1, y1, . . . , xn, yn) denotes the available data at
stage n of the experiment.
xn = f (x1, y1, . . . , xn−1, yn−1) i.e., xn ∈ Fn−1.
We assume that yn|Fn−1 ∼ Bernoulli(m(xn)).
nj = nj(n) is the number of subjects treated dj among the
first n subjects.
Unlike regular statistics the main question is how to
collect the data such that the inference would be
efficient.
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The standard ’3+3’ design

The subjects are divided to cohorts of 3.
The first cohort is treated with d1.
If no severe toxicity is observed then the dose is escalated
to the next highest level.
Otherwise, an additional three are treated at the same
dose.
If fewer than 2 toxicities are observed amongst the 6, then
the dose is escalated to the next highest level.
Otherwise the trial is terminated. The dose in use at trial
termination is recommended as the MTD.
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The continual reassessment method

The CRM assumes the one parameter working model

P(y = 1|x = dj) = ξαj ,

where ξj (j = 1, . . . ,K ) are known constants and α is the
unknown parameter.
e.g., (ξ1, . . . , ξ6) = (0.07,0.16,0.30,0.40,0.46,0.53).
The CRM approach assigns the next dose according to the
maximum likelihood estimate of the MTD.

xn+1 = dj̃ , j̃ = arg min
j
|m∗ − ξα̂n

j |

where α̂n is the MLE.
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Adaptive design - statistical inference

Note, {yn}∞n=1 are not independent.
However, for each j = 1, . . . ,K ,
Mn :=

∑n
i=1 I(xi = dj){yi −m(dj)} is a martingale with

respect to Fn.

Lemma
ȳn(dj)→ m(dj) almost surely on {nj →∞}, j = 1, . . . ,K , where
ȳn(dj) := 1

nj

∑n
i=1 I(xi = dj)yi .
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Lemma - proof

Proof. The quadratic variation of Mn is

n∑
i=1

[I(xi = dj)]2 ·m(dj) · [1−m(dj)] = m(dj) · [1−m(dj)]nj

Therefore, by the strong law of large numbers for square
integrable martingales,

1
nj

n∑
i=1

I(xi = dj){yi −m(dj)} → 0 a.s. on {nj →∞}.

Since ȳn(dj) = m(dj) + 1
nj

∑n
i=1 I(xi = dj){yi −m(dj)}, the

lemma follows.
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The treatment vs. experimentation dilemma

Typically, dose-finding studies have two different purposes:
1 Treatment: ideally, treat each subject with the MTD; since it

is unknown, use the best available estimate of the MTD at
the time of treatment.

2 Experimentation: obtain a good estimate for the MTD at
the end of the study.

Usually the emphasis is on the first purpose. Shu and
O’Quigley (2008): “being optimal for anything other than
the best estimated treatment for the next patient, or group
of patients, to be included in the study is not acceptable".
Purpose 2 is the core of MTD studies, but may require to
treat subjects with high doses in order to find the MTD as
fast as possible.
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The treatment vs. experimentation dilemma (cont.)

In the case of a continuous response that follows a simple
linear regression model

y = α + βx + ε

and a continuous dose space, Lai and Robbins (1982) show
that this dilemma can be resolved asymptotically by treating
each subject with the estimated MTD based on a truncated
version of the least squares estimators.
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The treatment vs. experimentation dilemma (cont.)

Theorem

There exists no design that satisfies for all increasing functions
m:

P(∃N s.t . ∀n ≥ N : xn = dj∗) = 1,

or equivalently that P(xn 6= dj∗ i .o. ) = 0.

The idea of the proof is that a design that concentrates
eventually on one dose, say dj , can yield a consistent estimator
for m(dj), but cannot estimate well m(di) for i 6= j ; therefore,
such a design may miss the MTD.
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The treatment vs. experimentation dilemma (cont.)

Corollary

Let {M̂TDn}∞n=1 be any sequence of estimators of the MTD. If
for all n, xn+1 = M̂TDn then {M̂TDn}∞n=1 is not strongly
consistent.

The corollary has important implications for phase I studies
because many designs assign the estimated MTD to the next
subjects. Such designs cannot yield consistent estimation of
the MTD unless severe parametric assumptions on m are
imposed. Hence, in our framework, it is not obvious that the
aforementioned ethical requirement of Shu and O’Quigley
should be accepted.
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How to build a consistent design?

Let m̂n be the estimator for m at stage n. Typically,
m̂n(dj) ≤ m∗ ≤ m̂n(dj+1) for some j .

Choose xn = dj or xn = dj+1 such that if
m̂n(dj) ≤ m∗ ≤ m̂n(dj+1) is infinitely often then both are
infinitely often.
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Consistent design (cont.)

What should be the balance?
Mukerjee (1981) suggested equal balance but this is not
necessarily optimal.
Here is an option:

if m∗ ≤ (>)
m̂n(dj) + m̂n(dj+1)

2
then

xn+1 =

{
dj with probability 1− 1

k ( 1
k )

dj+1 with probability 1
k (1− 1

k ) ,

where k := k(n, j) is the number of times that
{m̂n(dj) ≤ m∗ ≤ m̂n(dj+1)} occurred among the first n subjects.
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Consistent design (cont.)

For practical purposes (small n), we found that the algorithm
performs better when the rate of choosing the estimated MTD
is reduced by replacing k with a · k + 2, where a is a (small)
constant.
Thus, the choice between dj and dj+1 is done with probability

1
a·k+2 which is ≈ 1/2 for small a.
This modification does not change the asymptotic behavior of
the estimator, while improving the learning rate of the response
curve in early stages of the experiment.
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Consistent design (cont.)

Theorem

Assume that m(dj ′) < m∗ < m(dj ′+1). The design satisfies
I P(∃N s.t . ∀n ≥ N : {m̂n(dj ′) ≤ m∗ ≤ m̂n(dj ′+1)} occurs) =

1.
II The sequence M̂TDn is strongly consistent.
III P(xn = dj∗)→ 1.

In other words, the probability of the event xn = dj∗ approaches
1. Such a design ‘almost’ resolves the treatment versus
experimentation dilemma.
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Simulations - experimentation

Green: up and down method. Blue: Mukerjee. Yellow:CRM. Purple:
a = (10− 2)/100. Pink: a = (10− 2)/50. Red: a = (10− 2)/30.
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Simulations - treatment.

Green: up and down method. Blue: Mukerjee. Yellow:CRM. Purple:
a = (10− 2)/100. Pink: a = (10− 2)/50. Red: a = (10− 2)/30.
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Different approach - experimentation

Consider only two doses, d1 and d2, with expected
responses m(d1) and m(d2), where m(d1) < m(d2) and
one aim at finding the treatment having probability of
response closest to m∗.
A natural criterion is to select d2 if
(m̂n(d1) + m̂n(d2))/2 < m∗ and to select d1 otherwise.
An optimal design may be defined as an allocation rule of
n = n1 + n2 subjects to doses d1 and d2 that maximizes
P((m̂n(d1) + m̂n(d2))/2 < m∗) if m(d2) is closer to m∗.
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Pitman approach

We look at a sequence of parameters mn(d1),mn(d2) and
mn,∗ such that (mn(d1) + mn(d2))/2−mn,∗ = K/

√
n for a

constant K , F n(d1)→ F (d1), F n(d2)→ F (d2).
Let Mn = Mn(F n(d1),F n(d2),pn,∗, α) be the minimal
number of observations required such that the probability
of error is smaller than α when the parameters are
F n(d1),F n(d2),pn,∗.
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Pitman approach (cont.)

Theorem

lim
n→∞

Mn

n
=
{z1−α

2K
}2

[
m(d1)(1−m(d1))

γ
+

m(d2)(1−m(d2))

1− γ
],

where γ is the limiting allocation in dose d1, i.e., n1
n → γ.

Therefore, the asymptotically optimal allocation rule is Neyman

allocation, that is, choosing γ =

√
m(d1)(1−m(d1))√

m(d1)(1−m(d1))+
√

m(d2)(1−m(d2))

minimizes the limit of mn
n .
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Bahadur approach

On the other hand, if the parameters are considered fixed, then
the CLT is not relevant, and a probability such as
P((F̂n(d1) + F̂n(d2))/2 < p∗) should be approximated by Large
Deviations theory, which is related to the notion of Bahadur
efficiency.
Assuming that m(d2) is closer to m∗, the experimenter wishes
to minimize the probability of choosing d1:
P[{m̂n(d1) + m̂n(d2)}/2 ≥ m∗].
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Bahadur approach (cont.)

Theorem

Let γn = n1/n, 0 < γ < 1, and assume that γn → γ. Then,

lim
n→∞

1
n

log P[{m̂n(d1) + m̂n(d2)}/2 ≥ m∗] = ψ(γ),

where, ψ(γ) = inft{γ log(1−m(d1) + m(d1)et/γ) + (1−
γ) log(1−m(d2) + m(d2)et/(1−γ))− t2m∗.
Moreover, let γ∗ = arg minψ(γ), and γ∗n be the value of the
allocation minimizing P[{m̂n(d1) + m̂n(d2)}/2 ≥ m∗]. Then
γ∗n → γ∗.
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Comparison of Bahadur and Pitman

Table: The optimal allocation γ∗ for different parameters compared to
Neyman allocation.

m(d1) m(d2) m∗ γ∗ (Bahadur) Neyman allocation (Pitman)
0.1 0.3 0.28 0.4201951 0.3956439
0.2 0.35 0.3 0.4600556 0.4561162
0.22 0.33 0.3 0.4711939 0.4683612
0.25 0.35 0.33 0.4786154 0.4758474
0.2 0.4 0.33 0.4553075 0.4494897
0.1 0.4 0.3 0.3998936 0.3797959
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Back to adaptive design

In practice, the optimal allocation depends on unknown
parameters and an adaptive allocation design should be
used.
The effect of this should be explored.
This will probably not change the allocation according to
Pitman type criterion, but may affect the allocation
according to Bahadur.
However, both approaches yield similar allocations.
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Finite horizon

Consider a sequential design of N stages, that is, N
subjects (N is small, typically ≤50).
The challenge is to find the optimal sequential design that
minimizes a certain loss function.
Leung and Wang (2002) suggest a dynamic programming
(DP) algorithm for this problem, but computational
complexities enforce them to use myopic policies.
An approximate DP algorithm is introduced by Bartroff and
Lai (2010).
But a full DP that assigns subjects to treatments in an
optimal way has yet to be developed.
In order to be able to find optimal design a specific
Bayesian model should be assumed.
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Dynamic Programming
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Back to our problem

At each stage of the experiment the optimal decision (i.e.,
the dose for the next subject) should be computed.
Each stage is associated with a state (r1,n1, . . . , rK ,nK ),
where nj and rj are the number of patients treated with
dose dj and the number of toxic reactions at that dose,
respectively.
DP algorithm: start with the last stage (

∑
nj = N) and then

go backwards.
The problem: there are too many possible states, typically
≈ 1011.
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The model

The model:

P(y = 1|x ,θ) = m(x ,θ) = 1/{1 + exp (−α− βx)},

where θ = (α, β), with the conjugate prior

π(θ) = C
K∏

j=1

m(dj ,θ)ρj{1−m(dj ,θ)}νj−ρj I{θ ∈ Θ}

where C is a normalizing constant, ρj , νj are parameters that
can be specified from a prior belief on the expected number of
toxicities, ρj out of νj subjects treated with dose dj
(j = 1, . . . ,K ), and Θ is the support of θ.
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The posterior

The posterior density of θ is

= C
K∏

j=1

m(dj ,θ)ρj+rj{1−m(dj ,θ)}nj+νj−(rj+ρj )I{θ ∈ Θ}

= Ceα
∑K

j=1(ρj+rj )+β
∑K

i=1(ρj+rj )dj

K∏
j=1

{1−m(dj ,θ)}νj+nj I{θ ∈ Θ},

The posterior density is updated at each stage; it depends on
the parameters of the prior and on

(
K∑

j=1

rj ,

K∑
j=1

rjdj ,n1, . . . ,nK ) =: (a1,a2,n1, . . . ,nK ).
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This model reduces dramatically the number of states

Our model enables the implementation of DP to states of
the form (a1,a2,n1, . . . ,nK ), which has only K + 1
dimensions.
A further simplification is obtained when the dose range D
is a lattice {d0,d0 + ∆, . . . ,d0 + (K − 1)∆}, as the number
of values that should be considered for a2 is relatively
small: KN + 1.
Furthermore, most practical designs require assignment of
doses to a cohort of patients rather than to a single
individual in each stage.
Leung and Wang (2002) consider 8 cohorts of 3 subjects
each and K = 6 dose levels; the total number of states in
the final stage is ≈ 106 which is computationally feasible
and is much less than ≈ 1011, the corresponding number
in Leung and Wang’s model.
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DP equations

The DP equations for cohorts of size H are:

J(a1,a2,n1, . . . ,nK ) =

=

{
Eπ[L1{ĝ(θ),g(θ)} | a1,a2,n1, . . . ,nK ]

∑
nj = N

min{J1, . . . , JK}
∑

nj < N,

Ji = Eπ[L2{di ,g(θ)}|a1,a2,n1, . . . ,nK ]

+
H∑

h=0

(
H
h

)
ph

i (1− pi)
H−hJ(a1 + h,a2 + hdi , . . . ,ni + H, . . .)

Ji is the expected loss when choosing dose di and following the
optimal strategy, g(θ) = logit(m∗)−α

β , ĝ is an estimate of g based
on the data in the final stage, pi = Eπ[m(di , θ)|a1,a2,n1, . . . ,nk ],
and L1 and L2 are loss functions.
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DP equations (cont.)

The loss function L1 corresponds to the estimation of the
MTD at the end of the trial.
L2 represents, for each cohort, the penalty for adverse
reaction to a dose that is too high or too low.
The DP equations can be solved by backwards induction.
The dose di where the minimum in is obtained is the
decision in state (a1,a2,n1, . . . ,nk ).
J(0, . . . ,0) is the expected loss under the optimal policy,
that is, the smallest possible expected loss.
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An example

Consier the following simple scenario: D = {1,2,3,4}, and
N = 16 patients that were divided to 4 cohorts with H = 4
patients in each. We used the prior with parameters
(ν1, ν2, ν3, ν4) = (1,0,0,1), and (ρ1, ρ2, ρ3, ρ4) = (0.1,0,0,0.5).
We considered two loss structures, representing the two
extreme aspects of the estimation vs. treatment dilemma:

(i) L1{ĝ(θ),g(θ)} = {ĝ(θ)− g(θ)}2 and L2 = 0

(ii) L1 = 0 and L2{di ,g(θ)} = {di − g(θ)}2,

where here the estimator ĝ(θ) is the posterior mean of g(θ).
the first loss targets estimation of the MTD at the end of the trial
without penalizing for inappropriate treatment, while the second
targets only optimal treatment of subjects during the trial.
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Results

We obtained J(0, . . . ,0) = 2.90 for the first loss and 35.76
for the second.
A “one step look ahead" approach for the first loss
structure yields expected loss of 3.03.
A myopic policy for the second loss structure yields
expected loss of 36.84.
The optimal policy under the first loss and calculated the
second loss obtained loss of 40.78.
Similarly, applying the optimal design under the second
loss and calculating the first yielded a loss of 3.97.
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Results - discussion

A design that treats in an optimal way does not estimate
well the MTD
and a design that focuses on estimating the MTD may
perform poorly in terms of treatment.
This finding is consistent with the asymptotic analysis.
The improvement of the optimal policy over the myopic
policy is small.
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