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Why Machine Learning

Inference:

explanations

Statistics and ML have many common goals:
models that fit data, prediction, probabilistic explanation, ways
to cope with uncertainty, discovering truths about the data...

“Exploratory data analysis is

John Tukey
an attitude, a flexibility...” (1980)

(“bit”,"software”)

- Learning = hypothesis exploration + estimation
= Algorithms cope with high-dimensional domains



Bayesian networks are everywhere
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Bayesian Networks

Independence
assumptions:

C LE,B,R|A




Bayesian Networks

Independence
assumptions:

X; 1 NonDesc, | Par.

——> P() :HP(Xi | Par.) =P(B)P(E)P(A|B,E)P(R|E)P(C| A)

What are the implications of this?



Example: “ICU Alarm” network

Domain: Monitoring Intensive-Care Patients
= 37 variables

= 509 parameters
...Instead of 2°%




Proof

= w.l.o.g. let X,,...,Xn be an order in which a parent
appears before a child (topological ordering)

= assume X. L NonDesc, | Par.

PO =[1POX X Xi)
{Topological ordering}: H |:>()(i | |:>ari USi)

S,cND,
= H P(X; | Par) Independence
| assumptions

chain rule]




Bayesian Networks

Independence
assumptions:

X; 1 NonDesc, | Par.

——> P() :HP(Xi | Par.) =P(B)P(E)P(A|B,E)P(R|E)P(C| A)

v' Compact representation of uncertainty

v Intuitive and interpretable representation

v’ Bidirectional inferences (prediction, explanation)
v Amenable to inference and learning algorithms




——> P() :HP(Xi | Par.) =P(B)P(E)P(A|B,E)P(R|E)P(C| A)

Bayesian Networks

Independence
assumptions:

X; 1 NonDesc, | Par.

?/—é

.

Formalism captures many common models:
mixture/clustering, hierarchical Bayes,
logistic regression, HMMSs, factor analysis...

~

_/
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Take Home Problems

1) Assume we are given valid {P(X, | Par,)}
Prove that P,()=] [P(X;[Par) is a distribution



Overview

ntroduction

nference

Parameter Estimation
Model Selection

12



Inference

= Posterior probabilities
= Probabillity of any event given any evidence

= Most likely explanation
= Scenario that explains evidence II Il
= Rational decision making
= Maximize expected utility
= Value of Information

= Effect of intervention
a why is this difficult?

P(X;)= ZP( {RELEE )

Xl XI 1
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Does Decomposition Help?

Let’s say we are interested in P(C)

P(C)= Z P(B)P(E)P(A|B,E)P(R|E)P(C|A)

be,a,r

=P(C|A)Y P(B)Y P(E)Y P(A|B,E)Y P(R|E)

[ Still difficult in general... ]
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Take Home Problems

1) Assume we are given valid {P(X, | Par)}
Prove that P,(-)=] [ P(X;|Par) is a distribution

2) Let Py(X,,... X,) =] | P(X; | X;,) be a distribution

represented by a ¢hain network. How many
operations (+,x) are required to compute P, (X,)
naively? By taking advantage of decomposition?
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Why learn from data?

Knowledge acquisition bottleneck
- Knowledge acquisition Is an expensive process
- Often we don’t have an expert

- Robust encoding Is often quite challenging
(hard for humans to estimate global effects)

Data Is cheap
- Amount of available information growing rapidly

- Learning allows us to construct
models from raw data
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Learning Bayesian networks
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Known Structure, Complete Data

E,B,A \

<Y,N,N>

<Y,N,Y>

<N,N,Y>

<N,Y,Y>

<N,Y,Y> E BP(A./FB,J

e bl .9 .1

£ aloaira &2 O £
. bl 2 > e bl .7 .3
S <« 2 bl .8 2
- ~ 5|.99 .01
=zl Y

= Network structure is specified
= |nducer needs to estimate parameters

= Data does not contain missing values
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Unknown Structure, Complete Data

E,B,A \

<Y,N,N>

<Y,N,Y>

<N,N,Y>

<N,Y,Y>

<N,Y,Y> P4 /FBJ

@ o

7 .3
.8 .2
.99 .01

= Network structure is not specified
= |nducer needs to select arcs & estimate parameters

= Data does not contain missing values
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Known Structure, Incomplete Data

E,B,A \

<Y,N,N>

<Y,?,Y>

<N,N,Y>

<N,Y,?>

<?.YY> E BP(A./FB,J

e bl .9 .1

£ aloaira &2 O £
. bl 2 > e bl .7 .3
S <« 2 bl .8 2
- ~ 5|.99 .01
=zl Y

= Network structure is specified

= Data contains missing values

= Need to consider assignments to missing values
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Unknown Structure, Incomplete Data

E,B,A \

<Y,N,N>

<Y,?,Y>

<N,N,Y>

<N,Y,?>

<?.Y,Y> P4 /FBJ

@ 2

7 .3
.8 .2
.99 .01

= Network structure is not specified

= Data contains missing values

= Need to consider assignments to missing values
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Learning Parameters

Training data has the form: CEo &
<P
E[1] B[] Al <D

”| . . .

E[M] BIM] AM] CIM])
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Likelihood Function

- Assume I.i.d. samples
- Likelihood function is

L(©:D)=]|P(ELm],BLm],Alm],C[m]: B)
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Likelihood Function

By definition of network, we get

L(®:D) =] | P(E[m], B[m], Alm],C[m]: ®)

(P(E[m]: ®) b
- P(B[m]: ®)
‘1;[ P(A[m]| B[m], E[m]: ©)
\P(C[m]| A[m]:®)

e
qEM 8 A1 CHTD

CEIM] BIM] AM] CIMID




Likelihood Function

Rewriting terms, we get

L(©: D) = [ P(ELm].BLm),ALm],Clm]: ©)
HP(Eﬂim] . ©)
ﬁP(B[m] . ©)

] ﬁp (Alm]| Bm),E[m]: ©)
li[/’(f[m] | Alm]: 6)




General Bayesian Networks

Generalizing for any Bayesian network:
L(©:D) =] P(x[m]...., x,[m]: ©)
[IITPCetml Aalm0))
oo

Now you can use all that you have learned...
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= Scoring function
= Structure search
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Why Struggle for Accurate Structure?

ol

Missing an arc

- Cannot be compensated - Increases the number of
for by fitting parameters parameters to be estimated

- Wrong assumptions about . Wrong assumptions about
domain structure domain structure
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Score-based Learning

Define scoring function that evaluates how well a

structure matches the data

i’ i’ i
<N,N,Y>

NY.Y> —
s R & Go s
N O S <>

Search for a structure that maximizes the score
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Likelihood Score for Structure

W& : D) =log L(G : D) = MY (I(X;. Paf ) — H(X;))

Mutual information between
X; and its parents

- Larger dependence of X;on Pa;= higher score

= Adding arcs always helps
" I(X: V) s I(X: {Y,Z))
= Max score attained by fully connected network
= QOverfitting: A bad idea...
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Bayesian Score

Likelihood score: L(G&G - D)=~ / 5,9;)

Max likelihood params ]

Bayesian approach:
Deal with uncertainty by assigning probability to all possibilities

P(D|6)=[P(D|6,0)P(0]|&)db

[ Marginal Likﬁo\oﬂ [ Likelihood l mior/Fver parameters J
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Bayesian Score

Likelihood score: L(G&G - D)=~ / 5,9;)

. Max likelih
Bayesian approach: [_aﬁo"d params |

Deal with uncertainty by assigning probability to all possibilities

P(D16)=[P(D|6,0)P(0|6)db

Fortunately, in many cases integral has closed form.
Asymptotically we get:
logP(D | G) =¢(G : D)— arm(G) + o(1)

Fit empirical Complexity
distribution penalty

log M
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Structure Search as Optimization

Input:
= Training data
= Scoring function
= Set of possible structures

Output:
- A network that maximizes the score

Key Computational Property: Decomposability:
score(G) = 2. score (family of X In G)
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Tree-Structured Networks

Trees:
At most one parent per variable

Why trees?
- Elegant math

- we can solve the
optimization problem

- Sparse parameterization
- avoid over-fitting
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Learning Trees

- Let p(7)denote parent of X
- We can write the Bayesian score as

Score(G: D) =) log P(X; : Pa;) — Pen,

Improvement over
_ Z:S(:ore(Xi - Pa.) “empty” network

— Z(Scor'e( X X p(,)) — 5c0/"e(X,-))+ Z5COF€ (X))

[ Score of “emp‘m

Score = sum of edge scores + constant

—> Can find the optimal tree using
max-spanning tree algorithm
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Beyond Trees

Essentially everything else is computationally difficult:

- Learning the optimal chain is NP-hard
(exponential in the number of variables)

- Learning the optimal poly-tree is NP-hard

- Learning the optimal Bayesian network with at most
k parents per node is NP-hard for k>1

mmmd This is where computer science comes in...
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Heuristic Search

= Define a search space:

= search states are possible structures

= operators make small changes to structure
= Traverse space looking for high-scoring structures
= Search techniques:

= Greedy hill-climbing

= Best first search

= Annealing
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Hypothesis Exploration (Local Search)

Input:

Samples

Variables

Data

Output: -+

¥a

Init: Start with initial structure

1 Consider local changes

? Score each candidate
3 Apply best modification

—
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Learning in Practice: Alarm domain

KL Divergence to

true distribution

-
157
Structure known, fit params
o Learn both structure & params
057
0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

#samples
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Local Search: Possible Pitfalls

= Local search can get stuck In:

= Local Maxima:
= All one-edge changes reduce the score

= Plateau:
= Some one-edge changes leave the score unchanged

= Standard heuristics can escape both

= Random restarts
= TABU search
= Simulated annealing
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Structure Search: Summary

= Discrete optimization problem

* In some cases, optimization problem is easy
= Example: learning trees

= In general, NP-Hard
= Need to resort to heuristic search

= |[n practice, search is relatively fast
(~100 vars in ~2-5 min):
= Decomposability
= Sufficient statistics

= Adding randomness to search is critical
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Take Home Problems

1) Assume we are given valid {P(X, | Par)}
Prove that P,(-)=] [ P(X;|Par) is a distribution

2) Let Py(X,,... X,) =] | P(X; | X;,) be a distribution

represented by a ¢hain network. How many
operations (+,x) are required to compute P, (X,)
naively? By taking advantage of decomposition?

3) When adding/detetingamredge-in-the search we
need tareom seare of the resultighgraph.
* | ity helps




Graphical Models
Goal: make a joint distribution more amenable

Goodman (1970), Haberman (1974) Sewall Wright (1921)
decomposable models of a directed graphs for
log-llinear joint distribution causal models, SEM

Lauritzen (1978)
combine probability
and graph theory

Pearl (1988)

Markov Networks:
structured
log-linear models

Bayesian Networks:
decomposition into
conditional probabilities
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= Many distributions have a dependency structure

Conclusion

Utilizing this structure is good
Discovering this structure has implications:
= To density estimation

= To knowledge discovery

= To marginal computations
Many applications

= Medicine

= Biology

= Web

45



Conclusion

= Many distributions have a dependency structure
= Utilizing this structure Is good
= Discovering this structure has implications:

= To density estimation

f Statistics and Learning \

on the continuum of data analysis techniques

= Common goals and similar challenges
= Both rely on probability theory
{Different methodologies (a plus!) /
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