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Statistics and ML have many common goals:
models that fit data, prediction, probabilistic explanation, ways 

to cope with uncertainty, discovering truths about the data…

 Learning = hypothesis exploration + estimation

 Algorithms cope with high-dimensional domains

Why Machine Learning

John Tukey

(“bit”,”software”)

“Exploratory data analysis is

an attitude, a flexibility…” (1980)

LearnerData
Inference:

make predictions,

explanations

Model
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NASA Mission Control

Bayesian networks are everywhere
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Overview

 Introduction

 Inference

 Parameter Estimation

 Model Selection
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Bayesian Networks

Burglar Earthquake

Call

RadioAlarm

P(B)

P(A|B,E)

P(E)

P(C|A)

ARBEC |,,

Independence

assumptions:
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Bayesian Networks

Burglar Earthquake

Call

RadioAlarm

P(B)

P(A|B,E)

P(E)

P(C|A)

iiiX Par|NonDesc

What are the implications of this?

)|()|(),|()()()|()( ACPERPEBAPEPBPParXPP
i

ii  

Independence

assumptions:

E P(R|e)

0 0.999 0.001

1 0.01 0.99
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Example: “ICU Alarm” network

Domain: Monitoring Intensive-Care Patients

 37 variables

 509 parameters

…instead of  254

PCWP CO
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Proof











 

i

ii

i

iii

i

iii

ParXP

SParXP

XXXPP

)|(

)|(

),...,|()( 1

 w.l.o.g. let X1,…,Xn be an order in which a parent

appears before a child (topological ordering)

 assume 

chain rule

Topological ordering

SiNDi

Independence

assumptions

iiiX Par|NonDesc
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Bayesian Networks

Burglar Earthquake

Call

RadioAlarm

P(B)

P(A|B,E)

P(E)

P(C|A)

iiiX Par|NonDesc

 Compact representation of uncertainty

 Intuitive and interpretable representation

 Bidirectional inferences (prediction, explanation)

 Amenable to inference and learning algorithms

)|()|(),|()()()|()( ACPERPEBAPEPBPParXPP
i

ii  

Independence

assumptions:

E P(R|e)

0 0.999 0.001

1 0.01 0.99
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Bayesian Networks

Burglar Earthquake

Call

RadioAlarm

P(B)

P(A|B,E)

P(E)

P(C|A)

iiiX Par|NonDesc

 Compact representation of uncertainty

 Intuitive and interpretable representation

 Bidirectional inferences (prediction, explanation)

 Amenable to inference and learning algorithms

)|()|(),|()()()|()( ACPERPEBAPEPBPParXPP
i

ii  

Independence

assumptions:

E P(R|e)

0 0.999 0.001

1 0.01 0.99

Formalism captures many common models:

mixture/clustering, hierarchical Bayes,

logistic regression, HMMs, factor analysis…



Take Home Problems

1) Assume we are given valid

Prove that is a distribution
i

iiB ParXPP )|()(

 )|( ii ParXP
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Overview

 Introduction

 Inference

 Parameter Estimation

 Model Selection
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Inference

 Posterior probabilities

 Probability of any event given any evidence

Most likely explanation

 Scenario that explains evidence

 Rational decision making

 Maximize expected utility

 Value of Information

 Effect of intervention

Earthquake

Radio

Burglary

Alarm

Call

Radio

Call
why is this difficult?

 



nii XXXX

ni XXPXP
,,,...,

1

111

,...,)(
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Does Decomposition Help?









raeb

raeb

ERPEBAPEPBPACP

ACPERPEBAPEPBPCP

)|(),|()()()|(

)|()|(),|()()()(
,,,

Let’s say we are interested in P(C)

Still difficult in general…



Take Home Problems

1) Assume we are given valid

Prove that is a distribution

2) Let be a distribution 

represented by a chain network. How many 

operations (+,x) are required to compute  

naively? By taking advantage of decomposition?


i

iiB ParXPP )|()(

 )|( ii ParXP

 
i

iinB XXPXXP )|(),...,( 11

)( nB XP
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Overview

 Introduction

 Inference

 Parameter Estimation

 Model Selection
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Why learn from data?

Knowledge acquisition bottleneck

 Knowledge acquisition is an expensive process

 Often we don’t have an expert

 Robust encoding is often quite challenging

(hard for humans to estimate global effects)

Data is cheap

 Amount of available information growing rapidly

 Learning allows us to construct 

models from raw data
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Learning Bayesian networks

E

R

B

A

C
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+
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Learner
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Known Structure, Complete Data

E B

A
.9 .1

e

b

e

.7 .3

.99 .01

.8 .2

be

b

b

e

BE P(A | E,B)

? ?

e

b

e

? ?

? ?

? ?

be

b

b

e

BE P(A | E,B) E B

A

 Network structure is specified

 Inducer needs to estimate parameters

 Data does not contain missing values

Learner

E, B, A

<Y,N,N>

<Y,N,Y>

<N,N,Y>

<N,Y,Y>

.

.

<N,Y,Y>
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Unknown Structure, Complete Data

E B

A
.9 .1

e

b

e

.7 .3

.99 .01

.8 .2

be

b

b

e

BE P(A | E,B)

E B

A

 Network structure is not specified

 Inducer needs to select arcs & estimate parameters

 Data does not contain missing values

E, B, A

<Y,N,N>

<Y,N,Y>

<N,N,Y>

<N,Y,Y>

.

.

<N,Y,Y>
Learner
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Known Structure, Incomplete Data

E B
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 Network structure is specified

 Data contains missing values

 Need to consider assignments to missing values

E, B, A

<Y,N,N>

<Y,?,Y>

<N,N,Y>

<N,Y,?>

.

.

<?,Y,Y>
Learner
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Unknown Structure, Incomplete Data

E B
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 Network structure is not specified

 Data contains missing values

 Need to consider assignments to missing values

E, B, A

<Y,N,N>

<Y,?,Y>

<N,N,Y>

<N,Y,?>

.

.

<?,Y,Y>
Learner
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Learning Parameters

E B

A

C









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


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


][][][][
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MCMAMBME

CABE

D

Training data has the form:
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Likelihood Function 

E B

A

C

 Assume i.i.d. samples

 Likelihood function is

 
m

mCmAmBmEPDL ):][],[],[],[():(
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Likelihood Function

E B

A

C

By definition of network, we get
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Likelihood Function

E B

A

C

Rewriting terms, we get
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General Bayesian Networks

Generalizing for any Bayesian network:

Decomposition 

 Independent estimation problems













i
ii

i m
iii

m
n

DL

mPamxP

mxmxPDL

):(

):][|][(

):][,],[():( 1 

Now you can use all that you have learned…
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Overview

 Introduction

 Inference

 Parameter Learning

 Model Selection

 Scoring function

 Structure search
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Why Struggle for Accurate Structure?

 Increases the number of 

parameters to be estimated

 Wrong assumptions about 

domain structure

 Cannot be compensated 

for by fitting parameters

 Wrong assumptions about 

domain structure

Earthquake Alarm Set

Sound

Burglary Earthquake Alarm Set

Sound

Burglary

Earthquake Alarm Set

Sound

Burglary

Adding an arcMissing an arc
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Score­based Learning

E, B, A

<Y,N,N>

<Y,Y,Y>

<N,N,Y>

<N,Y,Y>

.

.

<N,Y,Y>

E B

A

E

B

A

E

B
A

Search for a structure that maximizes the score

Define scoring function that evaluates how well a 

structure matches the data
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Likelihood Score for Structure

 Larger dependence of Xi on Pai  higher score

 Adding arcs always helps

 I(X; Y)  I(X; {Y,Z})

 Max score attained by fully connected network

 Overfitting: A bad idea…

  
i

i
G
ii H(X)Pa;I(XMD):L(GD):(G )log

Mutual information between

Xi and its parents
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Likelihood score:

Bayesian approach:

Deal with uncertainty by assigning probability to all possibilities

Max likelihood params

Bayesian Score

)θG,|P(DD):L(G G
ˆ

  dGPGDPGDP )|(),|()|(

Likelihood
Prior over parametersMarginal Likelihood
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Likelihood score:

Bayesian approach:

Deal with uncertainty by assigning probability to all possibilities

Max likelihood params

Bayesian Score

)θG,|P(DD):L(G G
ˆ

  dGPGDPGDP )|(),|()|(

Fortunately, in many cases integral has closed form.

Asymptotically we get:

O(1)dim(G)
2

M
D):(GG)|P(D 

log
log 

Fit empirical

distribution

Complexity

penalty
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Structure Search as Optimization

Input:

 Training data

Scoring function

Set of possible structures

Output:

 A network that maximizes the score

Key Computational Property: Decomposability: 

score(G) =   score ( family of X in G )
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Tree-Structured Networks

Trees:

At most one parent per variable

Why trees?

 Elegant math 

 we can solve the 

optimization problem

 Sparse parameterization 

 avoid over-fitting
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Learning Trees

 Let p(i) denote parent of Xi

 We can write the Bayesian score as

Score = sum of edge scores + constant

Can find the optimal tree using 

max-spanning tree algorithm

Score of “empty” network

Improvement over 
“empty” network

i

ii PaXScore ):(

   
i

i
i

iipi XScoreXScoreXXScore )()():( )(

 
i

iii PenPaXPDGScore ):(log):(
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Beyond Trees

Essentially everything else is computationally difficult:

 Learning the optimal chain is NP-hard

(exponential in the number of variables)

 Learning the optimal poly-tree is NP-hard

 Learning the optimal Bayesian network with at most

k parents per node is NP-hard for k>1

This is where computer science comes in…
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Heuristic Search

 Define a search space:

 search states are possible structures

 operators make small changes to structure

 Traverse space looking for high-scoring structures

 Search techniques:

 Greedy hill-climbing

 Best first search

 Annealing

 ...



39
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Learning in Practice: Alarm domain
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Local Search: Possible Pitfalls

 Local search can get stuck in:

 Local Maxima:

All one-edge changes reduce the score

 Plateau:

Some one-edge changes leave the score unchanged

 Standard heuristics can escape both

 Random restarts

 TABU search

 Simulated annealing
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Structure Search: Summary

 Discrete optimization problem

 In some cases, optimization problem is easy

 Example: learning trees

 In general, NP-Hard

 Need to resort to heuristic search

 In practice, search is relatively fast 

(~100 vars in ~2-5 min):

Decomposability

Sufficient statistics

 Adding randomness to search is critical



Take Home Problems

1) Assume we are given valid

Prove that is a distribution

2) Let be a distribution 

represented by a chain network. How many 

operations (+,x) are required to compute  

naively? By taking advantage of decomposition?

3) When adding/deleting an edge in the search we 

need to compute the score of the resulting graph. 

Explain precisely how does decomposability helps 

in this computation? What if we reverse an edge?


i

iiB ParXPP )|()(

 )|( ii ParXP

 
i

iinB XXPXXP )|(),...,( 11

)( nB XP
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Graphical Models

Sewall Wright (1921)

directed graphs for

causal models, SEM

Goodman (1970), Haberman (1974)

decomposable models of a

log-llinear joint distribution

Lauritzen (1978)

combine probability

and graph theory

Markov Networks:

structured

log-linear models

Bayesian Networks:

decomposition into

conditional probabilities

Pearl (1988)

Goal: make a joint distribution more amenable
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Conclusion

 Many distributions have a dependency structure

 Utilizing this structure is good

 Discovering this structure has implications:

 To density estimation

 To knowledge discovery

 To marginal computations

 Many applications

 Medicine

 Biology

 Web

 …
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Conclusion

 Many distributions have a dependency structure

 Utilizing this structure is good

 Discovering this structure has implications:

 To density estimation

 To knowledge discovery

 To marginal computations

 Many applications

 Medicine

 Biology

 Web

 …

Statistics and Learning

on the continuum of data analysis techniques

 Common goals and similar challenges

 Both rely on probability theory

 Different methodologies (a plus!)


