High-dimensional Copula Constructions in Machine Learning

Gal Elidan The Hebrew University

What is this talk about?

Goal: Provide an overview of high-dimensional copula-based constructions in ML

I will:

- Describe the key components of several general purpose models
- Present sample results for each work
- Discuss central merits and relation to other works

Scope

- Learning with tree-averaged distributions [Kirshner, 2008]
- The Nonparanormal [Liu, Laffery, Wasserman, JMLR 2009]
- Copula Bayesian Networks [Elidan, NIPS 2010]
- Copula Processes [Wilson and Ghahramani, NIPS 2010]

What will not be covered:

- Ricardo Silva's work (later today)
- Copula-based applications (a few are here today)
- Works that use copulas but do not directly aim to model joint distributions (we will also see some of those)
- Related constructions (some very interesting!)
 (e.g. cumulative distribution networks, Huang and Frey, 2008)

Markov Networks

U is an undirected graph that encodes independencies:

$$X_i \perp \mathcal{X} - \{X_i\} - N(X_i) | N(X_i) \rangle$$

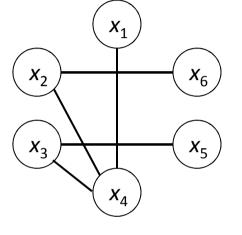
where $N(X_i)$ are the neighbors of X_i in U

Theorem (Hammersley-Clifford):

If f is positive and the independencies hold then it factorizes according to U

For trees:

$$f_{\mathcal{X}}(\mathbf{x}) = \left[\prod_{i} f_{i}(x_{i})\right] \left[\prod_{(i,j)\in E} \frac{f_{i,j}(x_{i},x_{j})}{f_{i}(x_{i})f_{j}(x_{j})}\right]$$



Bayesian mixture of all trees

Challenge: there are N^(N-2) trees

Idea: use edge weight matrix β to define a prior over trees

$$P(T \mid \beta) = \frac{1}{Z} \prod_{(i,j) \in T} \beta_{i,j} \quad \text{with} \quad Z = \sum_{T} \prod_{(i,j) \in T} \beta_{i,j}$$

Theorem (Meila and Jaakkla 2006):

- 1. Easy to compute Z (via generalized Laplacian matrix)
- 2. Decomposability of the prior allows us to compute average over all tree efficiently

Average density over copula trees (still a copula!) can be computed via ratio of matrix determinants

From Bivariate Copulas to Copula Trees

It follows that the joint copula also decomposes:

$$c_{\mathcal{X}}(\mathbf{x}) = rac{f_{\mathcal{X}}(\mathbf{x})}{\prod_i f_i(x_i)}$$

From Bivariate Copulas to Copula Trees

It follows that the joint copula also decomposes:

$$c_{\mathcal{X}}(\mathbf{x}) = \frac{f_{\mathcal{X}}(\mathbf{x})}{\prod_{i} f_{i}(x_{i})} = \prod_{(i,j)\in E} \frac{f_{i,j}(x_{i}, x_{j})}{f_{i}(x_{i})f_{j}(x_{j})}$$

From Bivariate Copulas to Copula Trees

It follows that the joint copula also decomposes:

$$c_{\mathcal{X}}(\mathbf{x}) = \frac{f_{\mathcal{X}}(\mathbf{x})}{\prod_{i} f_{i}(x_{i})} = \prod_{(i,j)\in E} \frac{f_{i,j}(x_{i}, x_{j})}{f_{i}(x_{i})f_{j}(x_{j})} = \prod_{(i,j)\in E} c_{i,j}(x_{i}, x_{j})$$

Given marginals, we can find the optimal tree efficiently using a maximum spanning tree algorithms

Upside: only bivariate estimation (different than vines!) **Downside:** assumptions are too simplistic

Estimation using EM

Parameters: 1) the edge weight matrix β 2) the bivariate copula parameters θ_{ij}

E-Step: need to compute posterior over N^(N-2) trees!

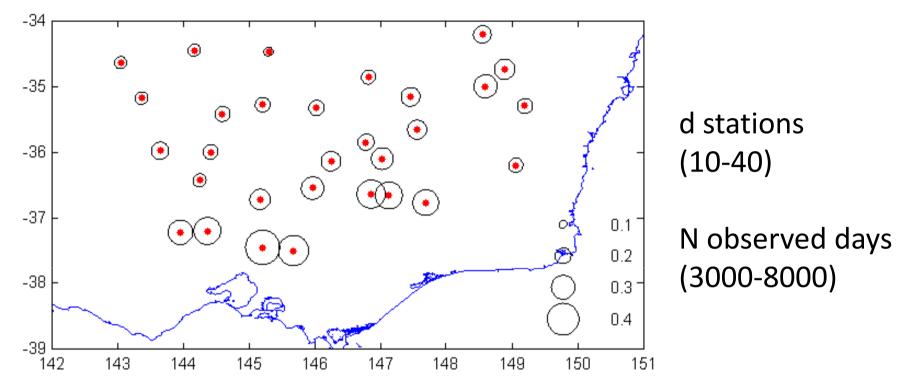
Decomposability \Rightarrow need only compute N(N-1)/2 edge probabilities and reuse computations.

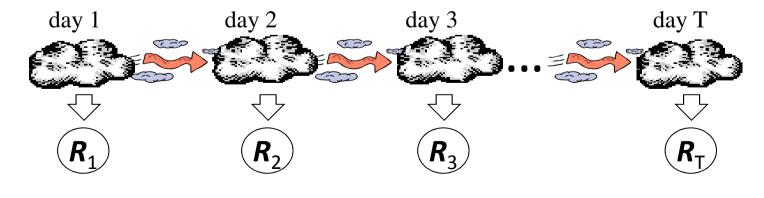
M-Step: standard optimization of bivariate copulas that depends only on pairs of variables

Assuming copula estimation complexity of O(M): complexity of learning the model is O(MN³)

Practical for tens of variables!

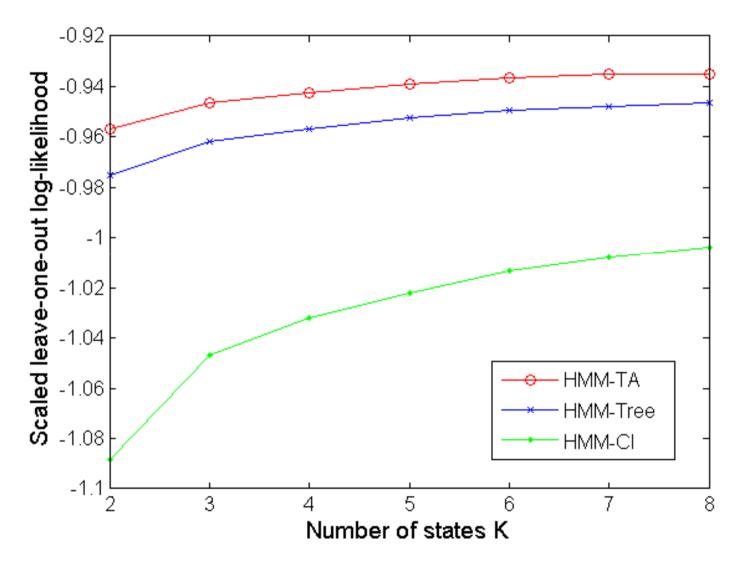
Modeling Daily Multi-Site Rainfall





Kirshner, 2008

Selecting Number of States



Kirshner, 2008

Consistent estimation in high-dimension

Assumptions	Dimension	Regression	Graphical Models
Parametric	Low	Linear model	Multivariate normal
	High	LASSO	Graphical LASSO
Nonparametric	Low	Additive model	С
	High	Sparse additive model	

Goal: theoretically founded estimation for nonparametric high-dimensional undirected graphs

The Nonparanormal Distribution

 $X = (X_1, ..., X_p)^T \sim NPN(\mu, \Sigma, f)$ if there exists univariate functions $\{f_i(X_i)\}$ such that

$$(f_1(X_1),\ldots,f_p(X_p)) \sim N(\mu,\Sigma)$$

Isn't this is just a Gaussian copula? Yes, if f_i(X_i) are monotone and differentiable

So what is the problem?

- High-dimensionality leads to estimation issues (p>n)
- Plugging in the empirical distribution does not work in the semiparametric case...

Density-less Structure Estimation

Let $h_j(x) = \Phi^{-1}(F_j(x))$ and Λ be the covariance of h(x) Key insight: (X_j \perp X_i|rest) if and only if $\Lambda_{ij}^{-1}=0$

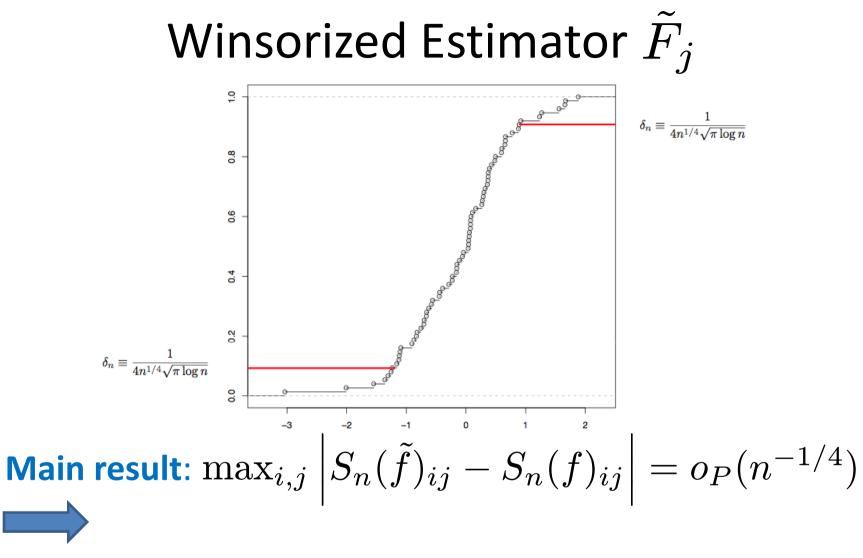
can estimate structure solely from ranks

1. Replace observation with normal score $\widetilde{f}_j(x) = \Phi^{-1}(\widetilde{F}_j(x))$

2. Compute functional sample covariance

$$S_n(\tilde{f}) = \frac{1}{n} \sum_{i=1}^n \tilde{f}(X[i])\tilde{f}(X[i])^T$$

3. Estimate structure from $S_n(\tilde{f})$ (e.g. using glasso)



risk, norm (of Σ) and model selection consistency (using analysis of Rothman et al, 2008, and Ravikumar, 2009)

Synthetic Structure Recovery

- 40 nodes
- 2 different transforms
- several training sample sizes

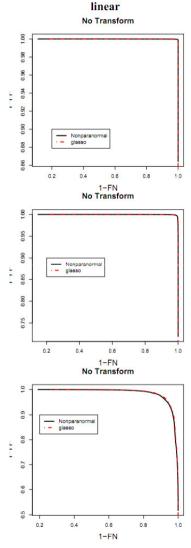


Figure 7: ROC curves for sample sizes n = 1000, 500, 200 (top, middle, bottom).

Synthetic Structure Recovery

- 40 nodes
- 2 different transforms
- several training sample sizes

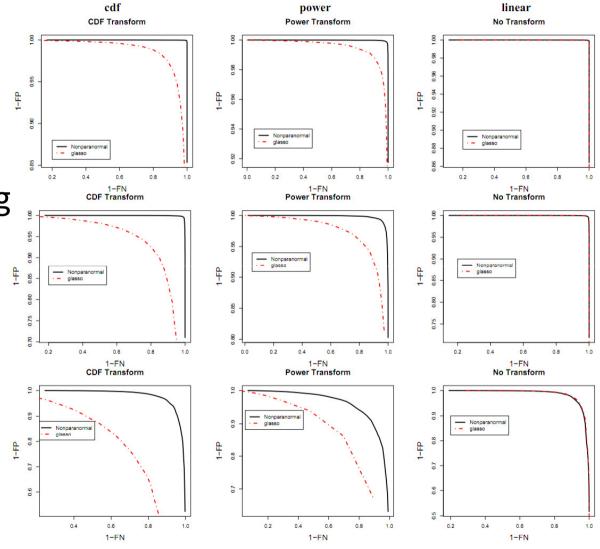
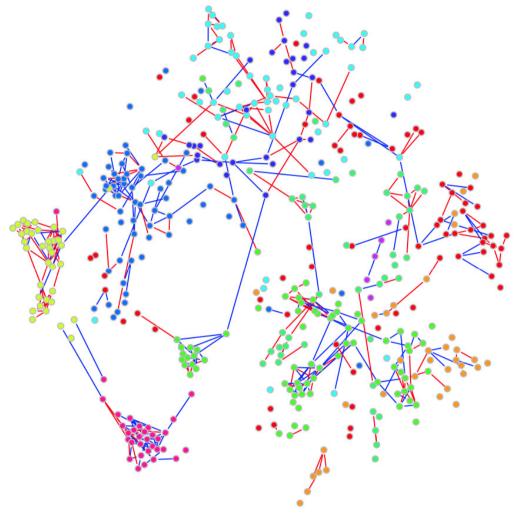


Figure 7: ROC curves for sample sizes n = 1000, 500, 200 (top, middle, bottom).

S&P 500: differences from glasso



Non-Gaussian case possibly reveals new useful information

Bayesian Networks

G is a <u>directed</u> graph that encodes independencies:

 $X_i \perp \text{Non-descendents}_i | \text{Parents}_i$

Theorem: If f is positive and the independencies hold then it factorizes according to G $f_{\mathcal{X}}(\mathbf{x}) = \prod_{i} f_{i|par_{i}}(x_{i} \mid x_{par_{i}})$

 \checkmark Intuitive representation of uncertainty

✓ Easy to construct using local $f_{i|par_i}(x_i | x_{par_i})$

Simple bivariate case:

$$f(x|y) = \frac{f(x,y)}{f(y)}$$

(this is Kirshner presented differently)

Simple bivariate case:

$$f(x|y) = \frac{f(x,y)}{f(y)} = \frac{c(F(x),F(y))f(x)f(y)}{f(y)}$$

(this is Kirshner presented differently)

Simple bivariate case:

 $f(x|y) = \frac{f(x,y)}{f(y)} = \frac{c(F(x),F(y))f(x)f(y)}{f(y)} = c(F(x),F(y))f(x)$

(this is Kirshner presented differently)

Theorem: For any f(x|y), there exists a copula such that $f(x|y) = R_c(F(x), F(y_1), \dots, F(y_K))f(x)$

Simple bivariate case:

 $f(x|y) = \frac{f(x,y)}{f(y)} = \frac{c(F(x),F(y))f(x)f(y)}{f(y)} = c(F(x),F(y))f(x)$

(this is Kirshner presented differently)

Theorem: For any f(x|y), there exists a copula such that $f(x|y) = R_c(F(x), F(y_1), \dots, F(y_K))f(x)$ $\equiv \frac{c(F(x), F(y_1), \dots, F(y_K))}{\frac{\partial^K C(1, F(y_1), \dots, F(y_K))}{\partial F(y_1) \dots \partial F(y_K)}} f(x)$ And constructive converse also holds!

Elidan, 2010

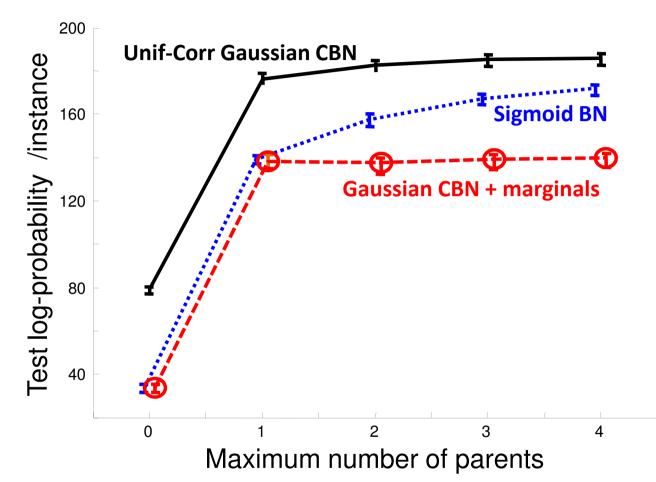
From local to global Copulas

Theorem: If the independencies in G hold then

 $c(F(x_1), \dots, F(x_N)) = \prod_i R_{c_i}(F(x_i), \{F(\mathbf{pa}_{ik})\})$ (and vice-versa)

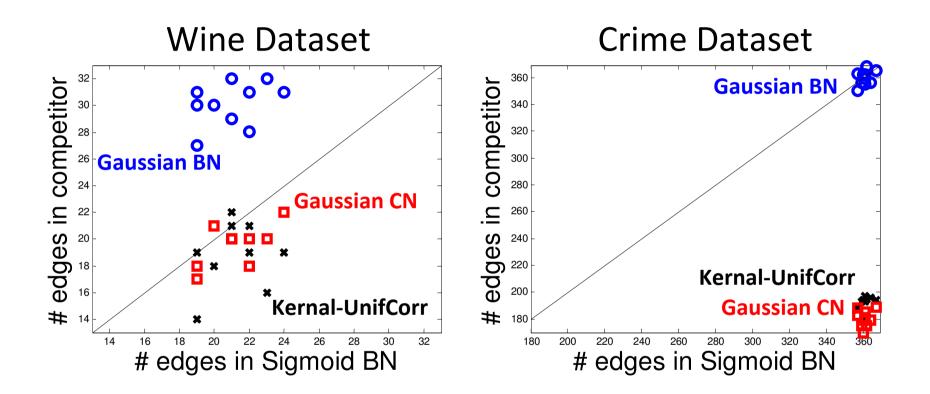
- A Copula Network defines a valid joint density $f(\mathbf{x}) = \prod_{i} R_i(F(x_i), F(\mathbf{par}_{i1}), \dots, F(\mathbf{par}_{ik_i}))f(x_i)$
- Can now use standard estimation and graphical models structure learning techniques
- Similar to NPBBN (Hanea 2008), but avoids conditional rank correlations

Crime (100 variables)



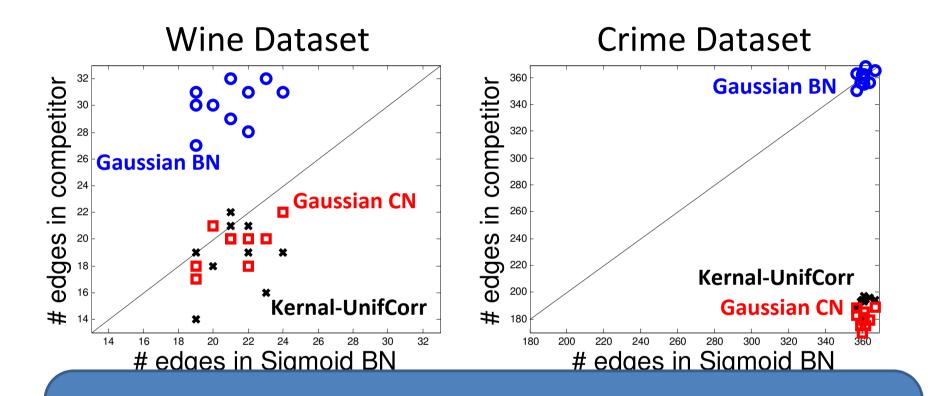
Copula networks dominate BN models
 Learn structure in less than ½ hour!

Complexity of Dependency Structure



Better generalization with sparser structures
 Simple (one parameter) copula resists over-fitting

Complexity of Dependency Structure



Next steps: mean-field like inference (Elidan 2010) and lightning-speed structure learning (Elidan 2012)

Elidan, 2010

Real-life Processes

Motivation:

- Relationship between distance and velocity of rocket
- Relationship between volatilities of RVs, e.g. the returns on equity indices (hetero-scedastic sequence)

Challenges:

- Infinitely many interacting variables Z_t
- Non-Gaussian interaction
- Varied marginal distributions

Gaussian Processes

A collection of random variables Z_t , any finite number of which have a joint Gaussian distribution

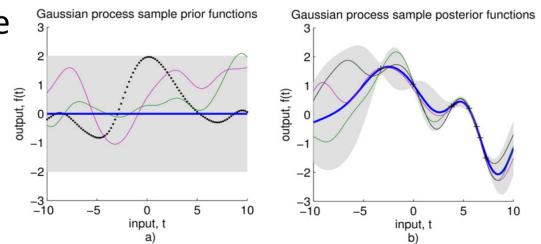
Used to define distribution over functions:

 $f(\boldsymbol{z}) \sim \mathcal{GP}(m(\boldsymbol{z}), k(\boldsymbol{z}, \boldsymbol{z}'))$

1. any finite set $\{f(z_i)\}$ have a joint Gaussian distribution

- 2. $m(z_i)$ is the expectation of $f(Z_i)$
- 3. $\Sigma_{ij} = k(z_i, z_j)$ defines the functions properties

Rasmussen and Williams 2006 for (many) more details



Copula Processes

Let μ be a process measure with marginals G_t and joint H. Z_t is a **copulas process** distributed with base measure μ if

$$P\left(\bigcap_{i=1}^{n} \left\{ G_{t_i}^{-1}\left(F_{t_i}(Z_{t_i})\right) \le a_i \right\} \right) = H_{t_1,\dots,t_n}(a_1,\dots,a_n)$$

Example: Gaussian Copula Process = μ is a standard GP Another way to think about this:

There is a mapping Ψ that transform Z_{t} into a GP

$$\Psi(Z_t) \sim \mathcal{GP}(m(t), k(t, t'))$$

Gaussian Copula Process Volatility

Let $y_1, ..., y_n$ be a heteroscedastic sequence (varying σ_t) Goal: model joint of $\sigma_1, ..., \sigma_n$ and predict unrealized σ_t

- 1. Observations: $y(t) \sim \mathcal{N}(0, \sigma^2(t))$ [this can be relaxed]
- 2. Volatility modeled as a Gaussian Copula Process

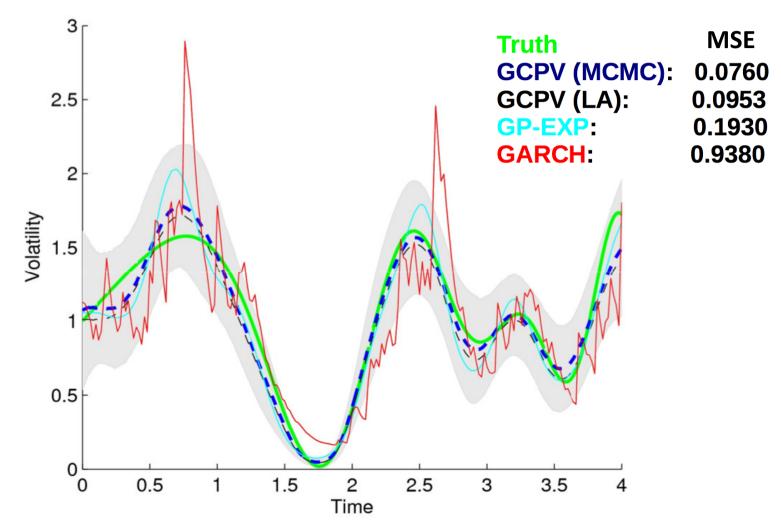
 $egin{aligned} f(t) &= \Psi^{-1}(\sigma(t)) & ext{[warping function]} \ f(t) &\sim \mathcal{GP}(m(t) = 0, k(t, t')) \end{aligned}$

Challenges:

- Learn a flexible g (warping function)
- Need to do inference over many latent RVs

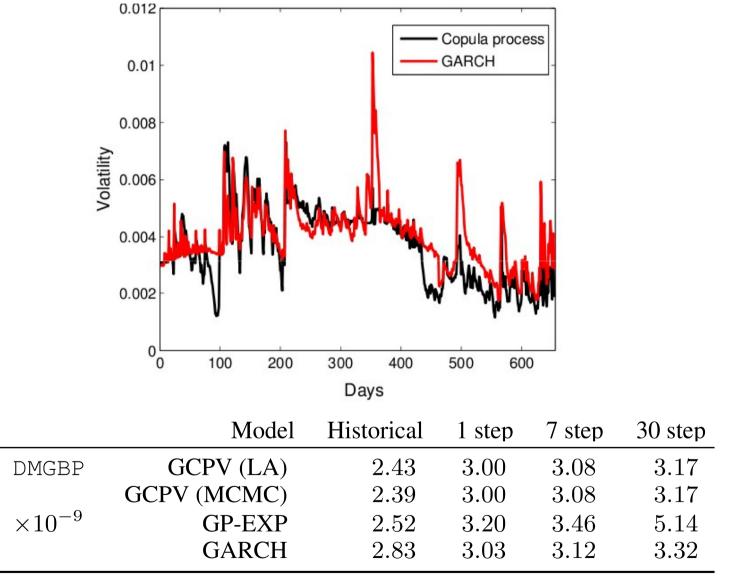
Interesting technical solutions in the paper! (no time \circledast)

Simulation Results

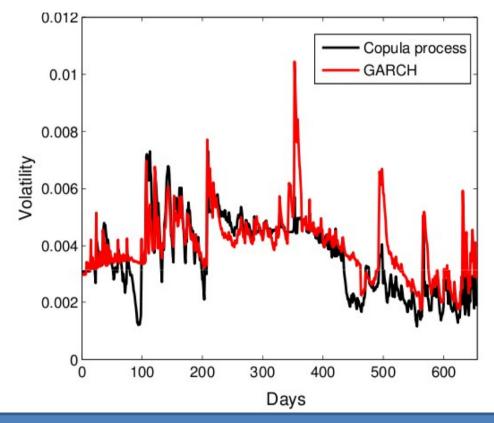


Very promising results also for "JUMP" (spike like) sequence

DM-GBP exchange rate returns



DM-GBP exchange rate returns



Next step: multivariate stochastic predictions "Generalised Wishart Processes", Wilson and Ghahramani 2011

Summary

Model	Base Copula	# RVs	Structure	Central merit
Vines	any bivariate	<10s	conditional dependence	Well understood general purpose framework
NPBBN	any bivariate	100s	BN+Vines	Mature application to large hybrid domains
Tree- averaged	any bivariate	10s	Markov	Bayesian averaging over structures
Non- paranormal	Gaussian	100-1000s	Markov	Large scale undirected estimation with guarantees
Copula Networks	any multivariate	100s	BN	General directed model that avoids conditional correlations
Copula Processes	any multivariate	∞ of few dimensions	-	Arbitrarily many variables

Further Information

- Vine Copula Handbook (Kurwicka and Joe, 2011)
- PhD thesis and papers on NPBBN (Hanea 2008,2009,2010)
- Tree-averaged distributions (Kirshner, 2008)
- The Nonparanormal (Liu, Wasserman and Lafferty, 2009)
- Copula BNs (Elidan, 2010), Inference-less Density Estimation (Elidan, 2010), Structure learning (Elidan, 2012)
- Copula Processes (Wilson and Ghahramani, 2010), Generalized Wishart Processes (W&G, 2011), Kernelbased Copula Processes (Jaimungal and Ng, 2009)