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What is this talk about?

Goal: Provide an overview of high-dimensional 

copula-based constructions in ML

I will:

•Describe the key components of several•Describe the key components of several

general purpose models

•Present sample results for each work

•Discuss central merits and relation to other works



Scope
� Learning with tree-averaged distributions [Kirshner, 2008]

� The Nonparanormal [Liu, Laffery, Wasserman, JMLR 2009]

� Copula Bayesian Networks [Elidan, NIPS 2010]

� Copula Processes [Wilson and Ghahramani, NIPS 2010]

What will not be covered:What will not be covered:

� Ricardo Silva’s work (later today)

� Copula-based applications (a few are here today)

� Works that use copulas but do not directly aim to model 

joint distributions (we will also see some of those)

� Related constructions (some very interesting!)
(e.g. cumulative distribution networks, Huang and Frey, 2008)



Markov Networks

U is an undirected graph that encodes independencies:

where N(Xi) are the neighbors of Xi in U

Theorem (Hammersley-Clifford):
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Theorem (Hammersley-Clifford):

If f is positive and the independencies

hold then it factorizes according to U

For trees:

x4



Bayesian mixture of all trees

Challenge: there are N(N-2) trees

Idea: use edge weight matrix β to define a prior over trees

Theorem (Meila and Jaakkla 2006): Theorem (Meila and Jaakkla 2006): 

1. Easy to compute Z (via generalized Laplacian matrix)

2. Decomposability of the prior allows us to compute

average over all tree efficiently

Average density over copula trees (still a copula!) can be 

computed via ratio of matrix determinants
Kirshner, 2008



From Bivariate Copulas to Copula Trees 

It follows that the joint copula also decomposes:

Kirshner, 2008
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From Bivariate Copulas to Copula Trees 

It follows that the joint copula also decomposes:

Given marginals, we can find the optimal tree 

efficiently using a maximum spanning tree algorithms

Upside: only bivariate estimation (different than vines!)

Downside: assumptions are too simplistic

Kirshner, 2008



Estimation using EM

Parameters: 1) the edge weight matrix β

2) the bivariate copula parameters θij

E-Step: need to compute posterior over N(N-2) trees!

Decomposability ⇒⇒⇒⇒ need only compute N(N-1)/2 edge 

probabilities and reuse computations.

M-Step: standard optimization of bivariate copulas that M-Step: standard optimization of bivariate copulas that 

depends only on pairs of variables

Assuming copula estimation complexity of O(M):

complexity of learning the model is O(MN3)

Practical for tens of variables!

Kirshner, 2008



Modeling Daily Multi-Site Rainfall

d stations

(10-40)

N observed days

(3000-8000)(3000-8000)

Kirshner, 2008

day 1

R1 R2 RTR3

day 2 day 3 day T

…



Selecting Number of States

Kirshner, 2008



Consistent estimation in high-dimension

Graphical ModelsRegressionDimensionAssumptions

Multivariate normalLinear modelLow
Parametric

Graphical LASSOLASSOHigh

?
Additive modelLow

Nonparametric
Sparse additive modelHigh

Goal: theoretically founded estimation for 

nonparametric high-dimensional undirected graphs

Liu, Lafferty, Wasserman, 2009



The Nonparanormal Distribution

X = (X1,…,Xp)T ∼ NPN(µµµµ,ΣΣΣΣ,f) if there exists

univariate functions {fj(Xi)} such that

Isn’t this is just a Gaussian copula?Isn’t this is just a Gaussian copula?

Yes, if fi(Xi) are monotone and differentiable

So what is the problem?

� High-dimensionality leads to estimation issues (p>n)

� Plugging in the empirical distribution does not work in 

the semiparametric case…

Liu, Lafferty, Wasserman, 2009



Density-less Structure Estimation

Let and Λ be the covariance of h(x)

Key insight: (Xj ⊥ Xi|rest) if and only if Λij
-1=0 

can estimate structure solely from ranks 

1. Replace observation with normal score

hj(x) = Φ
−1(Fj(x))

1. Replace observation with normal score

2. Compute functional sample covariance

3. Estimate structure from (e.g. using glasso)  

Liu, Lafferty, Wasserman, 2009

Sn(f̃)



Winsorized Estimator F̃j

Liu, Lafferty, Wasserman, 2009

Main result:

risk, norm (of Σ) and model selection consistency

(using analysis of Rothman et al, 2008, and Ravikumar, 2009)

maxi,j

∣∣∣Sn(f̃)ij − Sn(f)ij
∣∣∣ = oP (n−1/4)



Synthetic Structure Recovery

� 40 nodes

� 2 different 

transforms

� several training

sample sizes

Liu, Lafferty, Wasserman, 2009



Synthetic Structure Recovery

� 40 nodes

� 2 different 

transforms

� several training

sample sizes

Liu, Lafferty, Wasserman, 2009



S&P 500: differences from glasso

Liu, Lafferty, Wasserman, 2009

Non-Gaussian case possibly reveals new useful information



Bayesian Networks

G is a directed graph that encodes independencies:

Theorem:

If f is positive and the independencies

X1 X2

If f is positive and the independencies

hold then it factorizes according to G

� Intuitive representation of uncertainty

� Easy to construct using local  

X5

X3X4



Simple bivariate case:

(this is Kirshner presented differently)

Conditional Densities  Using Copulas

Elidan, 2010
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Simple bivariate case:

(this is Kirshner presented differently)

Theorem: For any f(x|y), there exists a copula such that

Conditional Densities  Using Copulas

Theorem: For any f(x|y), there exists a copula such that

And constructive converse also holds!

simpler than the

copula density!

Elidan, 2010



From local to global Copulas

Theorem: If the independencies in G hold then

(and vice-versa)

A Copula Network defines a valid joint densityA Copula Network defines a valid joint density

� Can now use standard estimation and graphical 

models structure learning techniques

� Similar to NPBBN (Hanea 2008), 

but avoids conditional rank correlations
Elidan, 2010
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� Copula networks dominate BN models

� Learn structure in less than ½ hour!
Elidan, 2010



Complexity of Dependency Structure
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� Better generalization with sparser structures

� Simple (one parameter) copula resists over-fitting

Elidan, 2010
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� Better generalization with sparser structures

� Simple (one parameter) copula resists over-fitting

Elidan, 2010

Next steps: mean-field like inference (Elidan 2010) and 

lightning-speed structure learning (Elidan 2012)



Real-life Processes

Motivation:

� Relationship between distance and velocity of rocket

� Relationship between volatilities of RVs, e.g. the 

returns on equity indices (hetero-scedastic sequence)

Challenges:Challenges:

� Infinitely many interacting variables Zt

� Non-Gaussian interaction

� Varied marginal distributions

Wilson and Ghahramani, 2010

See also related work by Jaimungal and Ng, 2009



Gaussian Processes

A collection of random variables Zt, any finite number 

of which have a joint Gaussian distribution

Used to define distribution over functions:

1. any finite set {f(z )} have a joint Gaussian distribution1. any finite set {f(zi)} have a joint Gaussian distribution

2. m(zi) is the expectation of f(Zi)

3. Σij=k(zi,zj) defines the

functions properties

Rasmussen and Williams 2006

for (many) more details



Copula Processes

Let µ be a process measure with marginals Gt and joint H.

Zt is a copulas process distributed with base measure µ if

Example: Gaussian Copula Process = µ is a standard GPExample: Gaussian Copula Process = µ is a standard GP

Another way to think about this:

There is a mapping Ψ that transform Zt into a GP

Wilson and Ghahramani, 2010



Gaussian Copula Process Volatility

Let y1,…,yn be a heteroscedastic sequence (varying σt)

Goal: model joint of σ1,…,σn and predict unrealized σt

1. Observations: [this can be relaxed]

2. Volatility modeled as a Gaussian Copula Process

[warping function]

Wilson and Ghahramani, 2010

[warping function]

Challenges: 

� Learn a flexible g (warping function)

� Need to do inference over many latent RVs

Interesting technical solutions in the paper! (no time �)



Simulation Results
MSE

Wilson and Ghahramani, 2010

Very promising results also for “JUMP” (spike like) sequence



DM-GBP exchange rate returns

Wilson and Ghahramani, 2010



DM-GBP exchange rate returns

Wilson and Ghahramani, 2010

Next step: multivariate stochastic predictions 
“Generalised Wishart Processes”, Wilson and Ghahramani 2011



Summary
Model Base Copula # RVs Structure Central merit

Vines any 

bivariate

<10s conditional

dependence

Well understood general 

purpose framework

NPBBN any 

bivariate

100s BN+Vines Mature application to large 

hybrid domains

Tree-

averaged

any 

bivariate

10s Markov Bayesian averaging over 

structures

Non-

paranormal

Gaussian 100-1000s Markov Large scale undirected 

estimation with guarantees

Copula 

Networks

any 

multivariate

100s BN General directed model that

avoids conditional correlations

Copula 

Processes

any 

multivariate

∞ of few 

dimensions

- Arbitrarily many variables



Further Information

� Vine Copula Handbook (Kurwicka and Joe, 2011)

� PhD thesis and papers on NPBBN (Hanea 2008,2009,2010)

� Tree-averaged distributions (Kirshner, 2008)

� The Nonparanormal (Liu, Wasserman and Lafferty, 2009)

� Copula BNs (Elidan, 2010), Inference-less Density � Copula BNs (Elidan, 2010), Inference-less Density 

Estimation (Elidan, 2010), Structure learning (Elidan, 2012)

� Copula Processes (Wilson and Ghahramani, 2010), 

Generalized Wishart Processes (W&G, 2011), Kernel-

based Copula Processes (Jaimungal and Ng, 2009)


