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Copulas and Covariates

Copulas are useful tools for the construction of multivariate models.
They allow us to separate the modelling of marginals and dependence.

Sklar’s Theorem:
Let F be a bivariate distribution with continuous marginals Fx and Fy. Then,
there exists a unique copula C such that F(x,y) = C[Fx(x), Fy(y)]-

However, C (and Fx and Fy) may depend on the effect of a covariate Z.
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Conditional Copulas

We can adjust for the effect of Z by modelling the conditional copula.

Conditional Copula: [Patton 2006]
Let Fx|z and Fy|z be the conditional marginals of X and Y given Z.
The conditional copula Cz is the distribution of Fx|z(X|Z) and Fzy(Y|Z).

Extension of Sklar’'s Theorem: [Patton 2006]
Let Fz be the conditional distribution with continuous marginals Fx|z and Fy|z.
Then, there is a unique conditional copula Cz such that
Fz(x,ylz) = Cz[Fx|z(x|2), Fy|z(y|z)|2].
The estimation of Fz from a sample {X;, Y;, Z;}7_; can then be done by
@ Estimating Fx|z and Fy|z using our favorite method.

@ Mapping {X;, Y;}"_;to [0,1]? using the estimates for Fx|z and Fy|z.

@ Estimating Cz using the data from the step 2. We need a model for C; .
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A Semi-parametric Model for Conditional Copulas

We describe Cz using a parametric model specified in terms of Kendall's tau.

Kendall's tau: [Joe 1997]

Let C be a bivariate copula and let (U, V1) and (Uz, V2) be two independent
samples from C. Then, Kendall's tau is given by

T = P[(Ul — U2)(V1 — \/2) > 0] —P[(U1 — U2)(V1 — V2) < 0]
and satisfies:

* U and V are independent — 7 = 0.
* U and V have perfect positive dependence — 7 = 1.
* U and V have perfect negative dependence — 7= —1.

Most parametric bivariate copulas are fully determined given 7.
For example, in the Gaussian copula, p = sin(77/2).

The dependence of Cz on Z is captured by the relationship '7 = a[f(Z)] , where

f is an arbitrary non-linear function and 'o(x) = 2®(x) — 1 is a sigmoid function.
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Bayesian Inference
Given a sample Dyy = {U;, V;}7_; from Cz with corresponding covariate values
Dz = {Z;}"_,, we want to identify the value of f that generated the data.

We assume that f follows a priori a Gaussian process with zero mean and
covariance function k[f(Z;), f(Z;)] = exp{—0.5v"2(Z; — Z;)?} .
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Posterior and Predictive Distributions
Given Dyy = {U;, V;}_, and Dz = {Z;}]_,, the | posterior distribution for
f=(f,...,f)", where f; = f(Z;), is obtained by Bayes rule:

P(f[Duv, Dz) = HIHZIP(UI%\(/EZ ;gz[gf])P(ﬂDZ) |

where P(f|Dz) = N(f|0,K) is the GP prior with k; = k(Z;, Z;),
P(U;, Vi|t = o[fi]) is the likelihood of the parametric copula model and
P(Dyv|Dz) is the model evidence.

Given Z, 1, the predictive distribution for U,,; and V, ;1 is

P(uns1, Vis1] Zns1, Doy, Dz) = / Plunsr, Vs = o[fora])
P(for1lf, Zni1, Dz)P(f|Dyv, Dz)df

These computations are infeasible. We have to use |approximate inference .
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Expectation Propagation [Minka 2001]

EP approximates the posterior P(f|Dyy, D7) by a simpler distribution
9(f) = N(flm,V) , where

q(f1) qn(fn)
P(f|Duv, D7) x|[P(Us, Vi|r = o[fi])|- - -|P(Un, Vi |7 = o[f;])| | N (F]0, K)
T
Q(f) o< [kuN(Alfn, 01)| - - - [kaN (Fol 1, 0)| | NV(]0, K)|
q1(f1) 4n(fn)

EP tunes A1; and ¥; by minimizing KL[g:(f)Q(f)[a:(F)] t[|Q(f)] . i=1,...,n.
Similar to EP for Gaussian process classification [Rasmussen and Williams 2006].

We fix the kernel length-scale by maximizing the EP approx. of P(Dyy|Dz).
The total cost is O(n?) .
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Experiments with Synthetic and Real-world Data

We choose a Gaussian copula for the likelihood function P(u, v|T = o[f(2)]).

Synthetic Data:

1000 points. Z sampled uniformly from [0, ].
U and V sampled from a Gaussian copula with 7 = 0.5 cos(3z).

Meteorological Data:

522 points. Atmospheric pressure (X), Temperature (Y) and Wind Velocity (Z).
Conditional marginals Fx|z and Fy |z estimated using kernels [Hall et al. 2004].
These estimates are used to map X and Y into U and V.

Experimental Protocol:
Training sets with 100 observations.
40 repetitions. Test log-likelihood (TLL) used as a measure of performance.

Benchmark Methods:
* Parametric Gaussian copula with no dependence on Z.

* Non-parametric maximum local likelihood estimator of f [Acar et al. 2011].
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Results

EP-CC: The EP method for the estimation of conditional copulas.
MLL: Non-parametric maximum local likelihood estimator.
GC: Parametric Gaussian copula with constant 7.

Dataset Method Avg. TLL p-value!
EP-CC 0.13+0.021 -
Synthetic MLL 0.06+0.150 0.002
GC -0.01+0.017 < 2.2-1071°
EP-CC 0.49+0.019 -
Meteorological MLL 0.42+£0.479 0.35
GC 0.47+0.029 7.03-107°

1: p-value of a paired Student’s t test between EP-CC and the other methods.

EP-CC is more robust than MLL.
The meteorological data have a copula that depends on the wind velocity.
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Plots of f for each Dataset

Predictions for f on each dataset when the training set contains 200 points.
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Conclusions and Future Work

o The copula of a bivariate distribution may depend on a covariate Z.
The conditional copula incorporates the effect of Z.

@ We have proposed a semi-parametric model for conditional copulas.
The model employs a Gaussian process prior.
Expectation propagation can be used for efficient inference.

o The performance of this method (EP-CC) has been illustrated in
experiments with synthetic and meteorological data.

o In these experiments, EP-CC is more robust and can perform better than
other approaches that maximize the local likelihood.

o As future work, we propose to

@ Evaluate EP-CC for selecting among different parametric copulas.
@ Increase the number of parameters in the Gaussian process prior.
@ Extend this method to more than two dimensions.
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Thank you for your attention!
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