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Copulas and Covariates

Copulas are useful tools for the construction of multivariate models.
They allow us to separate the modelling of marginals and dependence.

Sklar’s Theorem:
Let F be a bivariate distribution with continuous marginals FX and FY . Then,
there exists a unique copula C such that F (x , y) = C [FX (x),FY (y)].

However, C (and FX and FY ) may depend on the effect of a covariate Z .
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Conditional Copulas

We can adjust for the effect of Z by modelling the conditional copula.

Conditional Copula: [Patton 2006]
Let FX |Z and FY |Z be the conditional marginals of X and Y given Z .
The conditional copula CZ is the distribution of FX |Z (X |Z ) and FZ |Y (Y |Z ).

Extension of Sklar’s Theorem: [Patton 2006]
Let FZ be the conditional distribution with continuous marginals FX |Z and FY |Z .
Then, there is a unique conditional copula CZ such that
FZ (x , y |z) = CZ [FX |Z (x |z),FY |Z (y |z)|z ].

The estimation of FZ from a sample {Xi ,Yi ,Zi}ni=1 can then be done by

1 Estimating FX |Z and FY |Z using our favorite method.

2 Mapping {Xi ,Yi}ni=1to [0, 1]2 using the estimates for FX |Z and FY |Z .

3 Estimating CZ using the data from the step 2. We need a model for CZ .
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A Semi-parametric Model for Conditional Copulas

We describe CZ using a parametric model specified in terms of Kendall’s tau.

Kendall’s tau: [Joe 1997]
Let C be a bivariate copula and let (U1,V1) and (U2,V2) be two independent
samples from C . Then, Kendall’s tau is given by

τ = P[(U1 − U2)(V1 − V2) > 0]− P[(U1 − U2)(V1 − V2) < 0]

and satisfies:

? U and V are independent → τ = 0.
? U and V have perfect positive dependence → τ = 1.
? U and V have perfect negative dependence → τ = −1.

Most parametric bivariate copulas are fully determined given τ .
For example, in the Gaussian copula, ρ = sin(τπ/2).

The dependence of CZ on Z is captured by the relationship τ = σ[f (Z )] , where

f is an arbitrary non-linear function and σ(x) = 2Φ(x)− 1 is a sigmoid function.
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Bayesian Inference

Given a sample DUV = {Ui ,Vi}ni=1 from CZ with corresponding covariate values
DZ = {Zi}ni=1, we want to identify the value of f that generated the data.

We assume that f follows a priori a Gaussian process with zero mean and
covariance function k[f (Zi ), f (Zj)] = exp{−0.5γ−2(Zi − Zj)

2} .

−10 −5 0 5 10

−
1

0
1

2
3

−10 −5 0 5 10

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

J. M. Hernández-Lobato et al. (UC MPI) EP and Conditional Bivariate Copulas December 16, 2011 5 / 13



Posterior and Predictive Distributions

Given DUV = {Ui ,Vi}ni=1 and DZ = {Zi}ni=1, the posterior distribution for

f = (f1, . . . , fn)T, where fi = f (Zi ), is obtained by Bayes rule:

P(f|DUV ,DZ ) =

∏n
i=1 P(Ui ,Vi |τ = σ[fi ])P(f|DZ )

P(DUV |DZ )
,

where P(f|DZ ) = N (f|0,K) is the GP prior with kij = k(Zi ,Zj),
P(Ui ,Vi |τ = σ[fi ]) is the likelihood of the parametric copula model and
P(DUV |DZ ) is the model evidence.

Given Zn+1, the predictive distribution for Un+1 and Vn+1 is

P(un+1, vn+1|Zn+1,DUV ,DZ ) =

∫
P(un+1, vn+1|τ = σ[fn+1])

P(fn+1|f,Zn+1,DZ )P(f|DUV ,DZ )df ,

These computations are infeasible. We have to use approximate inference .
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Expectation Propagation [Minka 2001]

EP approximates the posterior P(f|DUV ,DZ ) by a simpler distribution

Q(f) = N (f|m,V) , where

EP tunes m̂i and v̂i by minimizing KL[qi (fi )Q(f)[q̂i (fi )]−1||Q(f)] , i = 1, . . . , n.

Similar to EP for Gaussian process classification [Rasmussen and Williams 2006].

We fix the kernel length-scale by maximizing the EP approx. of P(DUV |DZ ).

The total cost is O(n3) .
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Experiments with Synthetic and Real-world Data

We choose a Gaussian copula for the likelihood function P(u, v |τ = σ[f (z)]) .

Synthetic Data:

1000 points. Z sampled uniformly from [0, π].
U and V sampled from a Gaussian copula with τ = 0.5 cos(3z).

Meteorological Data:

522 points. Atmospheric pressure (X ), Temperature (Y ) and Wind Velocity (Z ).
Conditional marginals FX |Z and FY |Z estimated using kernels [Hall et al. 2004].
These estimates are used to map X and Y into U and V .

Experimental Protocol:
Training sets with 100 observations.
40 repetitions. Test log-likelihood (TLL) used as a measure of performance.

Benchmark Methods:
? Parametric Gaussian copula with no dependence on Z .

? Non-parametric maximum local likelihood estimator of f [Acar et al. 2011].
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Results

EP-CC: The EP method for the estimation of conditional copulas.
MLL: Non-parametric maximum local likelihood estimator.
GC: Parametric Gaussian copula with constant τ .

Dataset Method Avg. TLL p-value1

Synthetic
EP-CC 0.13±0.021 -
MLL 0.06±0.150 0.002
GC -0.01±0.017 < 2.2 · 10−16

Meteorological
EP-CC 0.49±0.019 -
MLL 0.42±0.479 0.35
GC 0.47±0.029 7.03 · 10−5

1: p-value of a paired Student’s t test between EP-CC and the other methods.

EP-CC is more robust than MLL.

The meteorological data have a copula that depends on the wind velocity.
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Plots of f for each Dataset

Predictions for f on each dataset when the training set contains 200 points.
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Conclusions and Future Work

The copula of a bivariate distribution may depend on a covariate Z .
The conditional copula incorporates the effect of Z .

We have proposed a semi-parametric model for conditional copulas.
The model employs a Gaussian process prior.
Expectation propagation can be used for efficient inference.

The performance of this method (EP-CC) has been illustrated in
experiments with synthetic and meteorological data.

In these experiments, EP-CC is more robust and can perform better than
other approaches that maximize the local likelihood.

As future work, we propose to

1 Evaluate EP-CC for selecting among different parametric copulas.
2 Increase the number of parameters in the Gaussian process prior.
3 Extend this method to more than two dimensions.
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Thank you for your attention!
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