Expectation Propagation for the Estimation of Conditional Bivariate Copulas

José Miguel Hernández-Lobato¹, David López-Paz² and Zoubin Ghahramani¹

¹Department of Engineering, Cambridge University

²Max Planck Institute for Intelligent Systems

December 16, 2011

Copulas and Covariates

Copulas are useful tools for the construction of **multivariate** models. They allow us to **separate** the modelling of marginals and dependence.

Sklar's Theorem:

Let F be a bivariate distribution with continuous marginals F_X and F_Y . Then, there exists a unique copula C such that $F(x, y) = C[F_X(x), F_Y(y)]$.

However, C (and F_X and F_Y) may depend on the effect of a **covariate** Z.

J. M. Hernández-Lobato et al. (UC MPI) EP and Conditional Bivariate Copulas

Wind Velocity Low

Wind Velocity High

Conditional Copulas

We can adjust for the effect of Z by modelling the conditional copula.

Conditional Copula: [Patton 2006] Let $F_{X|Z}$ and $F_{Y|Z}$ be the conditional marginals of X and Y given Z. The conditional copula C_Z is the distribution of $F_{X|Z}(X|Z)$ and $F_{Z|Y}(Y|Z)$.

Extension of Sklar's Theorem: [Patton 2006] Let F_Z be the conditional distribution with continuous marginals $F_{X|Z}$ and $F_{Y|Z}$. Then, there is a unique conditional copula C_Z such that $F_Z(x, y|z) = C_Z[F_{X|Z}(x|z), F_{Y|Z}(y|z)|z].$

The estimation of F_Z from a sample $\{X_i, Y_i, Z_i\}_{i=1}^n$ can then be done by

- 1 Estimating $F_{X|Z}$ and $F_{Y|Z}$ using our favorite method.
- 2 Mapping $\{X_i, Y_i\}_{i=1}^n$ to $[0,1]^2$ using the estimates for $F_{X|Z}$ and $F_{Y|Z}$.
- 3 Estimating C_Z using the data from the step 2. We need a model for C_Z .

A Semi-parametric Model for Conditional Copulas

We describe C_Z using a **parametric model** specified in terms of Kendall's tau.

Kendall's tau: [Joe 1997]

Let C be a bivariate copula and let (U_1, V_1) and (U_2, V_2) be two independent samples from C. Then, Kendall's tau is given by

$$\tau = \mathcal{P}[(U_1 - U_2)(V_1 - V_2) > 0] - \mathcal{P}[(U_1 - U_2)(V_1 - V_2) < 0]$$

and satisfies:

- * U and V are independent $\rightarrow \tau = 0$.
- \star U and V have perfect positive dependence $\rightarrow \tau = 1$.
- \star U and V have perfect negative dependence \rightarrow au = -1.

Most parametric bivariate copulas are fully determined given τ . For example, in the Gaussian copula, $\rho = \sin(\tau \pi/2)$.

The dependence of C_Z on Z is captured by the relationship $\tau = \sigma[f(Z)]$, where f is an arbitrary non-linear function and $\sigma(x) = 2\Phi(x) - 1$ is a sigmoid function.

Bayesian Inference

Given a sample $\mathcal{D}_{UV} = \{U_i, V_i\}_{i=1}^n$ from C_Z with corresponding covariate values $\mathcal{D}_Z = \{Z_i\}_{i=1}^n$, we want to identify the value of f that generated the data.

We assume that f follows a priori a **Gaussian process** with zero mean and covariance function $k[f(Z_i), f(Z_j)] = \exp\{-0.5\gamma^{-2}(Z_i - Z_j)^2\}$.

5 / 13

Posterior and Predictive Distributions

Given $\mathcal{D}_{UV} = \{U_i, V_i\}_{i=1}^n$ and $\mathcal{D}_Z = \{Z_i\}_{i=1}^n$, the **posterior distribution** for $\mathbf{f} = (f_1, \dots, f_n)^{\mathsf{T}}$, where $f_i = f(Z_i)$, is obtained by Bayes rule:

$$\mathcal{P}(\mathbf{f}|\mathcal{D}_{UV},\mathcal{D}_Z) = \frac{\prod_{i=1}^n \mathcal{P}(U_i,V_i|\tau = \sigma[f_i])\mathcal{P}(\mathbf{f}|\mathcal{D}_Z)}{\mathcal{P}(\mathcal{D}_{UV}|\mathcal{D}_Z)},$$

where $\mathcal{P}(\mathbf{f}|\mathcal{D}_Z) = \mathcal{N}(\mathbf{f}|\mathbf{0}, \mathbf{K})$ is the **GP prior** with $k_{ij} = k(Z_i, Z_j)$, $\mathcal{P}(U_i, V_i | \tau = \sigma[f_i])$ is the **likelihood** of the parametric copula model and $\mathcal{P}(\mathcal{D}_{UV}|\mathcal{D}_Z)$ is the **model evidence**.

Given Z_{n+1} , the **predictive distribution** for U_{n+1} and V_{n+1} is

$$\mathcal{P}(u_{n+1}, v_{n+1}|Z_{n+1}, \mathcal{D}_{UV}, \mathcal{D}_Z) = \int \mathcal{P}(u_{n+1}, v_{n+1}|\tau = \sigma[f_{n+1}])$$
$$\mathcal{P}(f_{n+1}|\mathbf{f}, Z_{n+1}, \mathcal{D}_Z)\mathcal{P}(\mathbf{f}|\mathcal{D}_{UV}, \mathcal{D}_Z)d\mathbf{f},$$

These computations are infeasible. We have to use approximate inference .

Expectation Propagation [Minka 2001]

EP approximates the posterior $\mathcal{P}(f|\mathcal{D}_{UV},\mathcal{D}_Z)$ by a simpler distribution $\mathcal{Q}(f)=\mathcal{N}(f|m,V)$, where

EP tunes \hat{m}_i and \hat{v}_i by minimizing $\text{KL}[q_i(f_i)\mathcal{Q}(\mathbf{f})]\hat{q}_i(f_i)]^{-1}||\mathcal{Q}(\mathbf{f})|$, i = 1, ..., n. Similar to EP for Gaussian process classification [Rasmussen and Williams 2006].

We fix the kernel length-scale by maximizing the EP approx. of $\mathcal{P}(\mathcal{D}_{UV}|\mathcal{D}_Z)$. The total cost is $\mathcal{O}(n^3)$.

Experiments with Synthetic and Real-world Data

We choose a **Gaussian copula** for the likelihood function $\mathcal{P}(u, v|\tau = \sigma[f(z)])$.

Synthetic Data:

1000 points. Z sampled uniformly from $[0, \pi]$. U and V sampled from a Gaussian copula with $\tau = 0.5 \cos(3z)$.

Meteorological Data:

522 points. Atmospheric pressure (X), Temperature (Y) and Wind Velocity (Z). Conditional marginals $F_{X|Z}$ and $F_{Y|Z}$ estimated using kernels [Hall et al. 2004]. These estimates are used to map X and Y into U and V.

Experimental Protocol:

Training sets with 100 observations.

40 repetitions. Test log-likelihood (TLL) used as a measure of performance.

Benchmark Methods:

- \star Parametric Gaussian copula with no dependence on Z.
- * Non-parametric maximum local likelihood estimator of f [Acar et al. 2011].

Results

EP-CC: The EP method for the estimation of conditional copulas. **MLL**: Non-parametric maximum local likelihood estimator. **GC**: Parametric Gaussian copula with constant τ .

Dataset	Method	Avg. TLL	p -value 1
	EP-CC	0.13±0.021	-
Synthetic	MLL	$0.06{\pm}0.150$	0.002
	GC	-0.01 ± 0.017	$< 2.2\cdot10^{-16}$
	EP-CC	0.49±0.019	-
Meteorological	MLL	$0.42{\pm}0.479$	0.35
	GC	$0.47{\pm}0.029$	$7.03 \cdot 10^{-5}$

1: p-value of a paired Student's t test between EP-CC and the other methods.

EP-CC is more robust than MLL.

The meteorological data have a copula that **depends** on the wind velocity.

Plots of f for each Dataset

Predictions for f on each dataset when the training set contains 200 points.

Conclusions and Future Work

- The copula of a bivariate distribution may depend on a **covariate** *Z*. The **conditional copula** incorporates the effect of *Z*.
- We have proposed a semi-parametric model for conditional copulas. The model employs a Gaussian process prior.
 Expectation propagation can be used for efficient inference.
- The performance of this method (EP-CC) has been illustrated in experiments with **synthetic** and **meteorological** data.
- In these experiments, EP-CC is more **robust** and can perform better than other approaches that maximize the local likelihood.
- As future work, we propose to
 - 1 Evaluate EP-CC for **selecting** among different parametric copulas.
 - 2 Increase the number of **parameters** in the Gaussian process prior.
 - 3 Extend this method to more than two dimensions.

References

- A. J. Patton. Modelling Asymmetric Exchange Rate Dependence International, Economic Review, 2006, 47, 527-556.
- H. Joe. Multivariate models and dependence concepts. Chapman & Hall, 1997.
- T. Minka. A family of algorithms for approximate Bayesian inference. Massachusetts Institute of Technology, 2001.
- C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
- P. Hall, J. S. Racine and Q. Li. Cross-Validation and the Estimation of Conditional Probability Densities, Journal of the American Statistical Association, 2004, 99, 1015-1026.
- E. F. Acar, R. V. Craiu and F. Yao. Dependence Calibration in Conditional Copulas: A Nonparametric Approach, Biometrics, 2011, 67, 445-453.

Thank you for your attention!