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Dependency-seeking Clustering

» Clustering co-occurring samples
from different data sources called
views:

(z ,...,x”)p—»(yl,---,th

» The aim is to cluster the points
according to their between-views
dependence structure.
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Dependency-seeking Clustering

(1) +(2) : cor(Xa, Y2) = 0.45.
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Dependency-seeking Clustering

(1) +(2) : cor(Xa, Y2) = 0.45. (1) : cor(Xz, Y2) = 0.8,
(2) : cor(Xq, Y1) = 0.45.
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Probabilistic CCA

» The probabilistic interpretation of CCA [Bach, 2005]:

Z ~ Ny (0,1y),
(X7 Y) |Z NNerq(WZ—I—,u,\U),

where W has a block-diagonal form:

v, 0
(5 v)

5/1



Dependency-seeking Clustering

» Probabilistic dependency-seeking clustering [Klami, 2006]:

Z ~ Mult (0),
(X, Y)|Z ~ Np+q (pz, V).

where W has a block-diagonal form:

v, 0
()

» W block diagonal — independent views conditioned on
cluster assignment — cluster structure captures
dependencies.
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Clustering of non-Gaussian data

Gaussian model, view 1 Copula model, view 1
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Meta-Gaussian distribution

» Specify dependence by a Gaussian copula with block-diagonal
correlation matrix P:

Cg (u) = dp (49_1 (uh,...,07t (ud>> .
» Margins are arbitrary continuous distributions:
X0 = X0/ ~ F{qa, i=1,....p,
Yo =Yg ~ nyw,j: 1,....,q.

» Use Sklar's Theorem to construct Fg p.
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Meta-Gaussian density

» Consider F with copula C and margins F1,...,F9. If F has a
density then it can be expressed as:

F(xL, ..., d)—c(Fl( )Hff (),
where c(ul, ..., u) = % is the copula density of C.

» Gaussian copula density has a simple form and fy p is:

B 1 B ypta
f(X,Y)|9,P(X:y) = |P‘ 2 exp {_2XT(P t- I)X}H fJ(XJ)v

where & = &1 (Fi(x)) .
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Mixture of Copula Model

The joint density of X and Y is a
Dirichlet process prior mixture:

Y
f(X7Y)(X7y) =
I I fox vye.p(x, y)due,pduc (X, Go). ] ] o
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The priors

» Assume a priori independence for 6 and P:
— specify the priors separately

» Specify prior distributions for P, and P,, where

P = P 0 , assuming a priori independence.
0 P

» For P, and P, we choose the marginally uniform prior
[Barnard, 2000]:

(d+1)

o) d -2
7 1 (H |R”|> .
i=1

f(R,d+1)x|R]|
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Inference

» MCMC algorithm for DP with
non-conjugate prior [Neal, 1998].
» Simplifies when using data

augmentation: introduce the
normal scores (X, Y)

Y
X = o7t (FI(X))), e e .
Yi=o" (F/(Y)). a @

We then have:
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Simulations

Gaussian model, view 2
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Real data experiments

Two data sets containing information about the regulation of heat
shock in yeast, [Gasch, 2000], [Harbison, 2004].
» First view : gene expressions for yeast measured at 4 time
points
— Gaussian
» Second view: probability scores of binding interactions for 8
different regulators
— Beta
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Real data experiments

Gaussian Mixture, view 2 Copula mixture, view 2
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Conclusion

» Dependency-seeking clustering as alternative to CCA for
multi-view analysis.

» Gaussian model produces misleading results when Gaussian
assumption violated.

> Increase flexibility using a copula mixture model.

> Thank you !

melanie.rey@unibas.ch
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