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Graphical Models

� Languages for encoding conditional independence 
constraints and factorizations

� Aids parameterization and computation

� From “local” parameterizations to joint distributions

X2

X1

X3

X4

X1 X4 | {X2, X3}

P(X1, …, X4)  α  Πφθ(A)(XA)



This Talk: A Tale of Two Models

� Scope: two main classes of graphical models

� and how to turn them into copula models

� and how copula theory helps constructing them

� Learning

� Bayesian inference, point estimators, a combination of both, 
MCMC methods, etc.

� Recent work in progress (Buyer Beware)



Focus

I’ll take for granted why copula models are 

good, and focus on why they can make good, and focus on why they can make 

graphical model construction easier



Part I

Trees, Mixtures of Trees and Trees, Mixtures of Trees and 
Non-parametric Bayesian Learning

(Silva and Gramacy, 2009)



Contribution

� Bayesian inference in multivariate distributions 
with Markov random fields

� Wanted: computationally tractable MCMC

L(θ; X1, …, Xp)  =  1  Πφθ(A)(XA)
Z(θ)

A

For computational tractability, might want to 
forfeit full generality. Say, use trees.



� Innocent looking decomposable model:

Possibly Nasty Side Effects

X1

X2 X3
X4 X5



Possibly Nasty Side Effects

X1

� Alternative encoding (zero mean Gaussian case):

X2 X3
X4 X5

Xi =  λi X1 +  εi

Var(Xi) = λ2
iv + Var(εi)

Cov(Xi, Xj) = λiλjv

X1 ~ N(0, v)



Possibly Nasty Side Effects

� Parameters encode all sorts of features. Independence 
constraints/factorizations however affect your joint in 
(possibly) hard-to-understand ways

� But this distributed encoding given by graphical models is 
supposed to be a “feature”, not a “bug”supposed to be a “feature”, not a “bug”

Xi =  λi X1 +  εi

Var(Xi) = λ2
iv + Var(εi)

Cov(Xi, Xj) = λiλjv



Possibly Nasty Side Effects

� Same phenomenon with mixture models

H

� Marginal distribution over H affects both resulting 
dependence between variables and their marginal 
distribution

X2X1 X3



Now What?

Another type of modularity comes to 
rescue: parameterize each univariaterescue: parameterize each univariate

marginal, then parameterize dependence 

structure



Now What?

Let’s shed a tear for budget cuts on the 
dependence structure, but let’s preserve dependence structure, but let’s preserve 
the univariate marginals



Parameterizations

� Parameterization of choice: copula models

� Kirshner, NIPS 2007

� Marginal distributions are parameterized 
independently of dependency structure

� Deal with intractability by mixtures of tree-structured 
distributions

� Methods: designing good proposals akin to 
reversible jump MCMC

� Evaluation: different measures on mixing behaviour



Copula Models

� Bivariate case (Xi, Xj)

Marginal of X Marginal of X

ai = Fi(Xi)

� Example: Gaussian copula density

Marginal of Xi Marginal of Xj Copula function: cumulative distribution
with uniform marginals



Tree-Copula Models

� Multivariate (3+ variables) copulas hard to construct: 
usually boils down to introducing constraints too

� Alternative: tree-structured copulas (Kirshner, 2007)

Density function of data
Density function of marginal

Tree-copula densityTree-copula density

Uniform random variable



Derivation

� Follows easily from the alternative marginal 
parameterization of trees. For instance

X1

p(X) = p(X1, X2)p(X1, X3)p(X1, X4)p(X1, X5)

X2 X3
X4 X5

p(X) = p(X1, X2)p(X1, X3)p(X1, X4)p(X1, X5)

p(X1)
3



Hold On

� If we can have a generic marginal parameterization, where 
do copulas simplify matters in this context?

X1

� P(X1, X2) and P(X1, X3) have to 
agree on the same marginal. 

� Variation independence: no constraints between 
parameters in different factors

X2 X3
X4 X5

agree on the same marginal. 
Copulas give you that for free



Priors for Mixtures of Tree-Copulas

Dirichlet process mixture when K → ∞



A Family of Proposals: Treeangular Moves

� Local change within a chain Yu − Yv − Yt

� Can be made uniform over all possible trees

� Can traverse the whole tree space

(Current) (Proposed)



Advantages

� “Small” departures from current tree

� Allow the proposal of sensible new parameter values 
corresponding to the new “active” copula 

Idea: there is an implied copula function

� Full proposal: treeangular move + parameter proposal

Idea: there is an implied copula function
for the joint of Yu and Yt. Propose a new
“direct” copula based on the implied one.

(A link to Reversible Jump MCMC)



Implied Copulas: Proposals

� Usually it is not possible to 
analytically compute the 
implied copula

� Take advantage of the 
treeangular move: tabulate 
numerical computations!

Proposal Template

numerical computations!

� Take advantage of the 
copula parameterization: 
map parameters into a 
dependence measure 
space



One Step Further: MCMC + Deterministic

� Propose treeangular moves by numerically integrating out
copula parameters in the posterior joint of (θuv, θvt, θut)

� For one-parameter copulas, this boils down to three one-� For one-parameter copulas, this boils down to three one-
dimensional integrals (solved by a deterministic method)

� Account for numerical mistakes by Metropolis-Hastings



Experiments



Summary: Part I

� Towards expanding Bayesian multivariate analysis

� Smart proposals make a difference

� Simple extension: constraining tree mixtures by forbidding � Simple extension: constraining tree mixtures by forbidding 
some edges

� Hierarchical models (for marginals and copulas) are 
particularly of interest



Part II

Mixed Graph Modeling: Mixed Graph Modeling: 
Non-monotonic Independence 

Families, and Products of Copulas

(Silva, Blundell and Teh, 2011)



Directed Graphical Models

X1 X2 U X3 X4

X2 X4

X2 X4 | X3

X2 X4 | {X3, U}
...



Marginalization

X1 X2 X3U X4

X2 X4

X2 X4 | X3

X2 X4 | {X3, U}
...



Marginalization

No: X1 X3 | X2

?

X1 X2 X3 X4 ?

No: X X | X

X1
X
2

X3U X4

X1 X2 X3 X4 ? No: X2 X4 | X3

X1 X2 X3 X4 ? OK, but not ideal
X2 X4



The Acyclic Directed Mixed Graph (ADMG)

� “Mixed” as in directed + bi-directed
� See also: chain graphs

X1 X2 X3 X4

� See also: chain graphs

� “Directed” for obvious reasons 

� “Acyclic” for the usual reasons

� Independence model is
� Closed under marginalization (generalize DAGs)

� Different from chain graphs/undirected graphs

� Analogous inference calculus as DAGs: m-separation

(Richardson and Spirtes, 2002)



Why Do We Care?

(Bollen, 1989)



The Gaussian Bi-directed Model



The Gaussian Bi-directed Case

(Drton and Richardson,  2003)



Binary Bi-directed Case: 

the Constrained Moebius Parameterization

(Drton and Richardson,  2008)



Binary Bi-directed Case:

the Constrained Moebius Parameterization

� Disconnected sets are marginally independent. Hence, 
define qA for connected sets only

P(X1 = 0, X4 = 0) = P(X1 = 0)P(X4 = 0)

q14 = q1q4
(However, notice there is a parameter q1234)



Binary Bi-directed Case:

the Constrained Moebius Parameterization

� The good: 

� this parameterization is complete. Every single binary bi-directed 
model can be represented with it

� The bad: 

� Moebius inverse is intractable, and number of connected sets 
can grow exponentially even for treescan grow exponentially even for trees

...

...

...



The Cumulative Distribution Network (CDN) 

Approach

� Parameterizing cumulative distribution functions (CDFs) 
by a product of functions defined over subsets

� Sufficient condition: each factor is a CDF itself

� Independence model: the “same” as the bi-directed graph... but 
with extra constraints

(Huang and Frey,  2011)

F(X1234) = F1(X12)F2(X24)F3(X34)F4(X13)

X1 X4

X1 X4 | X2 etc



CDF ⇔ PMF Relations

� P(X = xi) = P(X ≤ xi) – P(X ≤ xi – 1)

� P(X = xi, Y = yj) = 

P(X ≤ xi, Y ≤ yj) – P(X ≤ xi – 1, Y ≤ yj)
– P(X ≤ xi, Y ≤ yj – 1) + P(X ≤ xi – 1,Y ≤ yj – 1)

� P(X ≤ xi) = P(X ≤ xi, Y ≤ ∞)



Relationship

� CDN: the resulting PMF (usual CDF2PMF transform)

� Moebius: the resulting PMF is equivalent

� Notice: qB = P(XB = 0) = P(X\B ≤ 1, XB ≤ 0)

� However, in a CDN, parameters further factorize over 
cliques q1234 = q12q13q24q34



The Mixed CDN Model (MCDN)

� How to construct a distribution Markov to this?

� The binary ADMG parameterization by Richardson (2009) is 
complete. Many nice properties, but with the same 
computational difficulties
� And how to easily extend it to non-Gaussian, infinite discrete cases, 

etc.?



Step 1: The High-level Factorization

� Define a set of Pi(⋅ | ⋅) Markov with respect to subgraph Gi

– the graphs we obtain from looking at bi-directed 
components

� We can show the resulting distribution is Markov
with respect to the ADMG

X4 X1 X4 X1



Step 2: Parameterizing Components

� For this talk, I’ll consider only the case where there are 
no directed edges within a bi-directed component

X2X1
X3

X4 X5 X6 X7



Step 2: Parameterizing Components

� Multiply conditional CDFs using bi-directed cliques

X2X1
X3

X4 X5 X6 X7

F(X4, X5 | X1, X2)F(X5, X6 | X2)F(X6, X7 | X2, X3)

F(X4, X5, X6, X7 | X1, X2, X3) =



Step 2: Parameterizing Components

� Needs “local factor restrictions” though

X2X1
X3

Follows from factorization:

X4 X5 X6 X7

X5 X1| X2

X4 X7| X1

Needs further care:



Step 2a: A Copula Formulation

Implementing the local factor restriction could 

be potentially complicated, but the problem can be potentially complicated, but the problem can 

again be easily tackled by adopting a copula 

formulation.



Step 2a: A Copula Formulation

� The idea is to use a conditional marginal Fi(Xi | pa(Xi)) 
within a copula

� Example

X1 X2 X3 X4

� Check:

U2(x1) ≡ P2(X2 ≤ x2 | x1) U3(x4) ≡ P2(X3 ≤ x3 | x4)

P(X2 ≤ x2, X3 ≤ x3 | x1, x4) = C(U2(x1), U3(x4))

P(X2 ≤ x2 | x1, x4) = C(U2(x1), 1) = C(U2(x1))

= U2(x1) = P2(X2 ≤ x2 | x1) 



Step 2a: A Copula Formulation

� Not done yet!  We need this

� Product of copulas is not a copula� Product of copulas is not a copula

� However, results in the literature are helpful here. It can 
be shown that plugging in Ui

1/d(i), instead of Ui will turn the 
product into a copula

� where d(i) is the number of bi-directed cliques containing Xi

Liebscher (2008)



Liebscher’s Construction for Products

� Special case is easy to understand:

C(u1, …, up) = ΠCf(u1
w(1f), u2

w(2f), … up
w(pf))

Σ w(if) = 1, 0  ≤ w(if) ≤ 1

f

where each Cf( .) is a copula function

Σ w(if) = 1, 0  ≤ w(if) ≤ 1

� It is not hard to verify that C(u1, …, up) is a CDF, and that 
C(ui) = ui

f



Parameter Learning

� For the purposes of illustration, assume a finite mixture of 
experts for the conditional marginals for continuous data

� For discrete data, just use the standard CPT formulation 
found in Bayesian networks



Parameter Learning

� Copulas: we use a bi-variate formulation only (so we take 
products “over edges” instead of “over cliques”).

� In the experiments: Frank copula



Parameter Learning

� Suggestion: two-stage quasiBayesian learning

� Analogous to other approaches in the copula literature 
(inference function for margins, Joe 1997)

� Fit marginal parameters using the posterior expected value of 
the parameter for each individual mixture of experts

� Plug those in the model, then do MCMC on the copula � Plug those in the model, then do MCMC on the copula 
parameters

� Relatively efficient, decent mixing even with random walk 
proposals

� Nothing stopping you from using a fully Bayesian approach, but 
mixing might be bad without some smarter proposals

� Notice: needs constant CDF-to-PDF/PMF 
transformations!



Experiments



Experiments



Summary: Part II

� General toolbox for construction for ADMG models

� Bayesian learning requires some extra work in case 
where CDF to PDF transformations are intractable

Structure learning: how would this parameterization help?� Structure learning: how would this parameterization help?

� Empirical applications in problems with extreme value 
issues, exploring non-independence constraints, relations 
to effect models in the potential outcome framework etc.



Part III

Work in ProgressWork in Progress

(You have been warned)



Parameter Learning for CDNs

� Unsurprisingly, finding the maximum likelihood estimator 
requires computing the likelihood function

� For variables in {0, 1, 2, …}, mass function is given by:

� Intractable in general. Without special knowledge of the 
function, sampling from it is intractable too!



Exploit Factorizations: Dynamic Programming 

(Huang and Frey, 2011)

� Pretend z is a hidden vector

X1 X2 X3 X4

C12(x1, x2)C23(x2, x3)C34(x3,x4)

Σ Π

X1

Σ
z

{Πi(–1)zi} C12(x1 – z1, x2 – z2)C23(x2 – z2, x3 – z3)C34(x3 – z3,x4 – z4)

X2
X3

X4

Z1
Z2 Z3

Z4

(Notice: this is NOT a joint distribution)



Alternative Fitting Methods

� Abandon maximum likelihood. Marginal composite 
likelihood is straightforward

� Small marginals can be calculate trivially by brute force. 

S(θ) =    wA log P(XA; θ)Σ
A

� Small marginals can be calculate trivially by brute force. 
Larger marginals might be tractable to calculate using 
Huang and Frey’s DP method

� Tap into the copula literature. Theoretical results for 
general copula fitting by IFM + CL, including covariates: 
Zhao and Joe (2005)



� Multi-output prediction problems

Some Open Questions

X
1

X
2

X
p

…

Y1 Y2
Y
m

…

� Which sparse structures could be used as alternatives to 
conditional random fields? 

� Why/when sparsity?



Care Needs to be Taken

� Watch out for those pairwise models with fixed 
exponentiation

X1

X2

X3

X4

X1 X3

X2 X4

X5

X2 X4

X5

Recall: single factors Cij(ui
1/#n(i), uj

1/#n(j))

Pairwise marginal: ui
1 – 1/#n(i)uj

1 – 1/ #n(j) Cij(ui
1/#n(i), uj

1/#n(j))



Another Problem: Sampling

� What if I have a bi-directed graph with a large treewidth?

� Calculating the likelihood function is intractable. Is Bayesian 
inference as problematic as in Markov random fields?

� Auxiliary variable schemes: there is an implicit latent 
variable construction. Can we Gibbs sample our way out 
of it?of it?



More Exploitation of Copula Theory

� The Laplace transform of a CDF of a positive random variable with 
CDF G(h):

� Relation to the marginal CDF of a random variable

∫ ≥−= 0),()exp()( shdGshxφ

� Relation to the marginal CDF of a random variable

� So 

∫ ∫ −=== ))|(log()())|(exp(log)()|()( hxFhdGhxFhdGhxFxF φ

)}(exp{ 1
FG

−= φ



Archimedean Copulas

� Restricted to “constant dependency” over multiple variables 
(nested versions exist)

� Analogy: exchangeable “rank-one” latent variable model with 
restriction on parameters (Gaussian instead of uniform in this 

))(...)()(()( 21

1

puuuC ψψψψ +++= −
u

restriction on parameters (Gaussian instead of uniform in this 
example)

U
1

H

U
2

U
3

U
4
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)1,0(~

)1,0(~

2ρε −N
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i



A Sampling Procedure for a Single 

Archimedean Copula

� In the Archimedean case, we can sample H from the 
inverse Laplace transform of  ψ-1

� We can then sample each Ui independently conditioned 
on H using a simple function of ψ

� Laplace transform might not be easy to find. Simple in 
some cases

� In the Frank copula, it boils down to a discrete distribution

� Other numerical methods available (Hofert, 2008)



Product Case

� Sampling scheme: sample (H, θ) given data, keep θ samples

� Cf(u1
w(1,f), …, up

w(p,f) | Hf) factorizes into univariate CDFs: easy to 
convert to product of PMFs/PDFs by differentiating each product of 
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convert to product of PMFs/PDFs by differentiating each product of 
factors that depends only in a single ui at a time
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Product Case

� Gibbs-like scheme for Hf given the others

U3

U1

U2

H1H4

H1H4

� Conditioned on X, there is a “dual” Markov network for 
H. Small neighbourhoods might speed up computation.

U4

H3
H2

H3
H2



Remind me Again: Why not Latent Variables 

from the Very Start?

� Copula motivation: CDN allows easy copula construction. 
The Laplace transform might be hard to find, and it is not 
necessary if sampling is not necessary 

� Silva and Ghahramani (2009): the collapsed Gibbs sampler 
interpretation for a mixed graph modelinterpretation for a mixed graph model
� Gains of an order of magnitude in effective sample size, even 

for small networks

� Partial collapse: keep a tractable subset of factors where 
DP can be used, make the rest of the latents explicit
� Question: good ways of doing this?



What About Prediction?

� Finding the MAP assignment of a CDN model: finding the 
maximum of a “marginal”

Z1
Z2 Z3

Z4

� Alternative: a stochastic EM approach
� Use sampler to generate p(H | X) (hard)

� Maximize approximation to Ep(H | X)[log(P(X | H)] (“easy”)

� Iterate

X1
X2

X3
X4



Conclusion

� Using graphical model decompositions is great as a way of 
constructing copulas
� Copula Bayesian networks, vines and many other interesting 

contributions today

Likewise, using results from copula theory helps us to � Likewise, using results from copula theory helps us to 
better understand graphical models and to avoid 
reinventing some wheels
� Both in model construction and estimation

� Thanks to the organizers and the audience. Also thanks to 
Sergey Kirshner and Thomas Richardson for several useful 
discussions and code
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