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Continuous Mixture Models Copula-based Factorization of Joint Densities Choosing the Best Copula Density.

Multi-modal Data Statistical Model / Unknown Copula density
: : — In a Nutshell:
Models to explain data stemming ] P

¢ - NN - X = SRS o I N Copula functions allow factorization of joint densities as a product of marginal densities fxn,xa, e oxq) = f1(x1) X fo(x2) e X fg (xq) X cuy, s,
rom different populations: e T B :

1. Sensor data from engg systems. 1 | : AR QAT and a Copula density.
2. Demographic data. S SEe—— | e
3. Finance.

4. Image/Video analytics.
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OPTION 1. OPTION 2:
u, = F,(x,) is the j** marginal CDF Use copula functions from Derive Copula Functions from known joint densities.

know parametric families: . o flxg, x5, oXxg)
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Gumbel Conula B fl(x'l) X fz(xE) e X fﬂ'(xd)
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Gaussian Mixture Models are widely used for this task !!! Product of Marginal PDFs Copula PDFs

Substitute for x,. F;(x;) =u; — x; = F7 ' (w;)
+ GMM can approximate any continuous PDF and scales well with the data dimension.
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* GMM imposes a rigid assumption about the Gaussianity of each mode. Not a realistic Cluy,u,;8) =Flog(l+ o8 1
assumption in several domains !!! lllustration of Joint Density Estimation using Copula functions:
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Example of a poor mixture of
Gaussians-based generative model

Bivariate Scatter plot

: P e R
Original Data _QMM _[Iearnt]I Generat_ed Datla R 0 | i | . # ]
¥ “-" I et | i N o . . Ik ; " X | ; oo / ,J . ,,’/} Y - 5 ‘_‘-':5l - Gau SS I an CO p u I a
{ | g N Motivation: Develop a o - ,

|2 | ) | ol . 4 (Derived from multivariate ‘
Copula based mixture model, Al . M_M””M l | ¥ ‘ 2 / o0 0 . Gaussian density)

IN
o
o

B

Copula PDF

o =
=0 0 = @,
Copula PDF

N
Copula PDF

Ly}

=0

with comparable scalability, -
but higher flexibility. e
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Motivation

Why the existing Copulas can’t be used for Multimodal Dataset ?

Known Copula families are not designed to capture dependencies in GMC function is derived from a density defined by a finite Mixture of Gaussians!!! Define the objective function:
multimodal distributions (absence of location parameter)!!!

Given N i.i.d. samples, {15':f:'}'\;1: define observed data log-likelihood as:

Our Contribution (Gaussian Mixture Copula (GMC) Function*) Algorithms for Parameter Estimation

Estimate parameters such that observed data likelihood is maximized
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Clayton Copula No location/shift parameter in the definition !!! Sum of Gaussians Multivariate Gaussian ‘ =1 Z ( ¢ J

-1( Substitute y . k,/ e Obtain the Solution:
clug,uy uy,) = . = f=v¢= a'“:;f.aw[xl,xz. X Hw)
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f:r' o ij < Marginal Density GMM © 1
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Fi Mixing weights sum to unity
N . Covariance matrices are positive definite
l Inverse function of

GMM marginal CDF / \

P (), Wy () - Wi (1) 0) Expectation-Maximization Algorithm: Gradient-Based Algorithm:
P, (qul (ulj) X Y, (qu_l (25 )) o1, [an_l (un)) Pros: Pros:

Fast, because does not involve gradient/ 1. Guarantees convergence to the local
optimal step length computations. maximum.
. Constraints are implicitly satisfied. 2. 2"d order derivative information can be
Gaussian copula could not used to speedup the optimization.
@@= gpture the dependence in The parameter set of GMC function consists of the mixing

a bimodal dataset. !!! proportions, mean vector and covariance matrix of all the

. 6, .6 _q\Ye . i istributi
C(upuzﬁ) _ (HJ +uf - 1) Increasing dependence R Not suitable to model the distribution below

) . . . Gaussian
Gaussian Copula Based Joint Density Fit on:

Mixture Copula
Unimodal Dataset Bimodal Dataset (GMC) Function

Came (Up, Uy - Uy, ©) =

Does not converge to the local maximum Cons:

1
i
v
A = {ﬂ-'-:j'-' ', 9:3‘3} fﬂ?"’ all k (for the above objective function). 1. Unavailability of analytical order
components . 1st order optimization method **. derivatives can add significant
computational overhead.
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Convergence and Initialization Results (Comparing GMCMs with GMMs) Conclusion

~2+0.18s ~26+ 2845 + Gaussian Mixture Copula Model (GMCM) results in a better generative model
A A than a Gaussian Mixture Model (GMM)

ient- ' Experiments with Synthetic Datasets: : : : o _ _ _ - _
Gradient-based algorithm guaraniees ' Image segmentation experiment based on pixel clustering: Resulting Gaussian Mixture Copula models can learn non-Gaussian components with
convergence to a locally optimal —&— Random : > EOT—
solution. —+— GMM EM ¥  Gradient Based L

. . Only RGB values were used for the segmentation. non-linear dependencies.
—o— GMC EM % Optimization model - BT . The number of segments kept the same for both methods.

. One experiment consist of 20 runs of the learning algorithm (with . .. . . . .
diﬁerenﬁ’imtianzaﬁons) and choosing the model \,S’ith ?ﬂghest( Proposed an expectation-maximization (EM) and a derivative-based algorithm for
observed data likelihood. parameter estimation.

Proposed a Copula function to model dependencies in multi-modal distributions.

EM updates are significantly faster
than the gradient-based updates.
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Both GMM-EM and GMC-EM

Results on synthetic and real-life datasets corroborate the benefits of GMCM over GMM.
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0 e e S S e N TS ¢ [ooes « Providing analytical approximations for Gradient and Hessian.
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GMM Fit (Avg. log-likelihood = -2.15)
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log(1%! Derivative)

» Explore other optimization schemes, Cross-Entropy-based, Swarm etc.




