Copulas and Machine Learning
UAI 2012 Tutorial
for anyone interested in real-valued modeling

Gal Elidan
Department of Statistics
Hebrew University
Recipe for Disaster: The Formula That Killed Wall Street

By Felix Salmon 02.23.09

In the mid-'80s, Wall Street turned to the quants—brainy financial engineers—to invent new ways to boost profits. Their methods for minting money worked brilliantly... until one of them devastated the global economy.

Photo: Jim Krantz/Gallery Stock
Canadian scholar scapegoat for global meltdown

In a scholarly paper published in 2000, Li proposed the theorem be applied to credit risks, encompassing everything from bonds to mortgages. This particular copula was not new, but the financial application Li proposed for it was.

Disastrously, it was just simple enough for untrained financial analysts to use, but too complex for them to properly understand. It appeared to allow them to definitively determine risk, effectively eliminating it. The result was an orgy of misspending that sent the U.S. banking system over a cliff.
Motivation

The world around us is continuous

Many of these domains

- have a complex structure
- are highly non-linear
- are high-dimensional

Our goal: to learn realistic joint distributions (and use them for prediction, explanation, discovery)
Motivation

Density estimation is easy in one dimension:

✓ Many convenient families (Gaussian, Gamma, Chi\(^2\),...)
✓ Non-parametric approach is efficient and accurate

In contrast, for two (or more) variables:

✗ Few explicit non-Gaussian families
✗ Non-parametric estimation is demanding
✗ Sensitive to noise

⇒ most of multivariate ML is discrete!
Why should we care about copulas?

Graphical Models

- A framework for modeling multivariate distributions
- Intuitive representation
- Tools for large-scale estimation and computation
- Limited to few workable forms (for continuous domains)

Copulas

- A framework for modeling multivariate distributions
- Highly flexible representation
- Separate univariates from the true nature of dependence (we will see this shortly)
- Typically limited to a small number of dimensions

Can our community take advantage of both?
Outline

- Part I: Introduction to Copulas
- Part II: Graphical Copula Models
- Part III: Other Copula-based works in ML
Part I: Introduction to Copulas

- A dependence prelude
- What are copulas
- Copula models
- Copulas and dependence
- Multivariate copulas
What is the dependency structure?

When X is large Y is low and vice-versa.

Example thanks to Christian Genest.
What is the dependency structure?

\[F_Y(y) = P(Y \leq y) \]

\[F_X(x) = P(X \leq x) \]

Example thanks to Christian Genest
What is the dependency structure?

This region is “doubly” rare

\[X \sim \text{EXP}(\lambda_x) \]
\[Y \sim \text{EXP}(\lambda_y) \]
\[F_{X,Y}(x,y) = F_X(x)F_Y(y) \]

Example thanks to Christian Genest
What is the dependency structure?

Is the dependency multi-modal? Heavy tailed?
What is the dependency structure?

Humans are inapt at “seeing” the dependency structure
Probability 101 Example

$X_1 =$ minimum of the two numbers
$X_2 =$ maximum of the two numbers

The variables are obviously dependent ($X_2 \geq X_1$)

It is easy to show that:

$$P(X_1 \leq x_1, X_2 \leq x_2) = 2F(min\{x_1, x_2\})F(x_2) - F(min\{x_1, x_2\})^2$$

What if we change the numbers of each die to 7,...,12?

Obviously, the joint distribution changes.

But, intuitively, the dependence structure does not!
Probability 101 Example

Let $X_1 = \text{minimum of the two numbers}$ and $X_2 = \text{maximum of the two numbers}$.

The variables are obviously dependent ($X_2 \geq X_1$).

It is easy to show that:

$$P(X_1 \leq x_1, X_2 \leq x_2) = 2F(\min\{x_1, x_2\})F(x_2) - F(\min\{x_1, x_2\})^2$$

Copulas are all about separating the univariate marginals from all other (dependence) factors.
Part I: Introduction to Copulas

- A dependence prelude
- What are copulas
- Copula models
- Copulas and dependence
- Multivariate copulas
A (bivariate) copula is a function $C: [0,1]^2 \rightarrow [0,1]$ such that
- for all u,v: $C(u, 0) = C(0, v) = 0$
- for all u,v: $C(u, 1) = u$, $C(1, v) = v$
- for all $u_1 \leq u_2, v_1 \leq v_2$:
 $$C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \geq 0$$
 this is just the positive mass (2-increasing) property

Equivalent probabilistic definition:
Let $U_1 \ldots U_N$ be real random variables $\sim U([0,1])$
A copula function $C: [0,1]^N \rightarrow [0,1]$ is a joint distribution
$$C_{\theta}(u_1, \ldots, u_n) = P(U_1 \leq u_1, \ldots, U_n \leq u_n)$$
Copulas

A (bivariate) copula is a function $\text{C} : [0,1]^2 \rightarrow [0,1]$ such that

- for all u,v: $\text{C}(u, 0) = \text{C}(0, v) = 0$
- for all u,v: $\text{C}(u, 1) = u$, $\text{C}(1, v) = v$
- for all $u_1 \leq u_2, v_1 \leq v_2$:

$$\text{C}(u_2, v_2) - \text{C}(u_2, v_1) - \text{C}(u_1, v_2) + \text{C}(u_1, v_1) \geq 0$$

This is just the positive mass (2-increasing) property

Equivalent probabilistic definition:

But uniform random variables are uninteresting...
The Copula Trick

Let $X \sim F$ be (almost) any continuous RV
What is the distribution of $F(x) = P(X \leq x)$?

$$P(F(X) \leq u) = P(F^{-1}(F(X)) \leq F^{-1}(u))$$
The Copula Trick

Let $X \sim F$ be (almost) any continuous RV
What is the distribution of $F(x)=P(X \leq x)$?

$$P(F(X) \leq u) = P(F^{-1}(F(X)) \leq F^{-1}(u))$$
$$= P(X \leq F^{-1}(u))$$
$$= F(F^{-1}(u)) = u$$

Constructively:
1) Choose any $F_i(x_i)$
2) $F_i(x_i) \sim U([0,1])$ so plug into any copula function $C_\theta(F_1(x_1),...,F_n(x_n))$ is a valid joint distribution!
How powerful is this framework

Sklar’s Theorem (1959): For any joint distribution over X_1, \ldots, X_N, there exists a copula function C such

$$F_X(x_1, \ldots, x_N) = C_\theta(F_1(x_1), \ldots, F_N(x_N))$$

and if the marginals are continuous, the copula is unique (if discontinuous, see Genest & Neslehova 2007)

A word of warning:
Finding the “right” copula may be as hard as finding F_X!

A word of encouragement:
We now have significant constructive flexibility!
Part I: Introduction to Copulas

- A dependence prelude
- What are copulas
- Copula models
- Copulas and dependence
- Multivariate copulas
Example 1: The FGM Copula

An analytically simple copula:

\[C_\theta(u, v) = uv + \theta uv(1 - u)(1 - v) \]

\theta = -1 \hspace{2cm} \theta = 0 \text{ (independence)} \hspace{2cm} \theta = +1

\theta \text{ sets “distance” from independence copula } uv
Example 1: The FGM Copula

An analytically simple copula:

\[C_\theta(u, v) = uv + \theta uv(1-u)(1-v) \]

with Exp(1) marginals

with Exp(1) and N(0,1) marginals
Example 2: Inversion of Sklar’s

1. Start with a multivariate distribution

\[F_X(X) = P(X_1 \leq x_1, \ldots, X_n \leq x_n) = \Phi_\Sigma(x_1, \ldots, x_n) \]

in bivariate case copula is specified by \(\rho \)

2. Extract its (Gaussian) copula

\[F_X(x) = \Phi_\Sigma(F_1^{-1}(F_1(x_1)), \ldots, F_n^{-1}(F_n(x_n))) \]
Example 2: Inversion of Sklar’s

1. Start with a multivariate distribution

\[F_X(X) = P(X_1 \leq x_1, \ldots, X_n \leq x_n) = \Phi_\Sigma(x_1, \ldots, x_n) \]

in bivariate case copula is specified by \(\rho \)

2. Extract its (Gaussian) copula

\[
F_X(x) = \Phi_\Sigma(F_1^{-1}(F_1(x_1)), \ldots, F_n^{-1}(F_n(x_n)))
\]

\[
= \Phi_\Sigma(F_1^{-1}(u_1), \ldots, F_n^{-1}(u_n))
\]

\[
= \Phi_\Sigma(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_n))
\]

\[
= C_\Sigma(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_n))
\]

3. Plug in any marginal into our copula function
Example 2: The Gaussian Copula

\[C(\{ F_i(x_i) \}) = \Phi_\Sigma(\Phi^{-1}(F_1(x_1)), \ldots, \Phi^{-1}(F_N(x_N))) \]
Example 2: The Gaussian Copula

\[C(\{F_i(x_i)\}) = \Phi_{\Sigma}(\Phi^{-1}(F_1(x_1)), \ldots, \Phi^{-1}(F_N(x_N))) \]

More generally, we can mix any univariate marginals with one of the many copula functions!
Some Copula Examples

- Independence copula:
 \[C(u, v) = uv \]

- Gaussian copula (Inversion):
 \[C_\rho(u, v) = \Phi_\rho(\Phi^{-1}(u), \Phi^{-1}(v)) \]

- Clayton copula (Archimedean):
 \[C_\theta(u, v) = (u^{-\theta} + v^{-\theta} - 1)^{-1/\theta} \]

- ...
A Real Example

Consider the Nazdaq and S&P 500 GARCH innovations:

Example from van den Goorbergh et al. 2005 and thanks to Christian Genest
A Real Example

How can we view the underlying copula?

Step 1: Estimate the margins in the most conservative way:

\[F^M(x) = \frac{1}{M + 1} \sum_{m=1}^{M} 1(X[m] \leq x) \quad G^M(y) = \frac{1}{M + 1} \sum_{m=1}^{M} 1(Y[m] \leq y) \]

Step 2: Plot the pairs

\[(\hat{U}[m], \hat{V}[m]) = (F^M(X[m]), G^M(Y[m])) = \left(\frac{R[m]}{M + 1}, \frac{S[m]}{M + 1} \right) \]

where \(R[m] \) and \(S[m] \) are the ranks of the samples
A Real Example

This empirical copula was studied by many starting with Ruschendorf (1976) and has many appealing properties.
A Real Example

Step 3 (optional?): find a copula with a similar structure

Can now perform model selection, followed by estimation followed by model validation (no time for this today)
Copula Densities

Assuming $F(x_1, \ldots, x_n)$ has n-order partial derivatives (true almost everywhere for continuous distributions)

$$f(x_1, \ldots, x_n) = \frac{F(x_1, \ldots, x_n)}{\partial X_1 \ldots \partial X_n}$$
Copula Densities

Assuming $F(x_1, \ldots, x_n)$ has n-order partial derivatives (true almost everywhere for continuous distributions)

\[
f(x_1, \ldots, x_n) = F(x_1, \ldots, x_n) \frac{\partial X_1 \ldots \partial X_n}{\partial X_1 \ldots \partial X_n} \]

\[
= C(F_1(x_1), \ldots, F_n(x_n)) \frac{\partial X_1 \ldots \partial X_n}{\partial F_1(X_1) \ldots \partial F_n(X_n)} \prod_i \frac{\partial F_i(X_i)}{\partial X_i}
\]

\[
\equiv c(F_1(x_1), \ldots, F_n(x_n)) \prod_i f_i(x_i)
\]

copula density

And decomposition is always an opportunity…
A quick word on estimation

Caution: likelihood decomposition is misleading since the copula function depends on univariate marginals

However, the following procedure:

1. Estimate marginals first
2. Estimate dependence parameter second

is an unbiased, asymptotically Gaussian efficient estimate!

Caution: can fail miserably if marginals are misspecified (Kim et al., 2007)

Solution: estimate marginals conservatively (as before) (see Genest 1995 for properties)
Part I: Introduction to Copulas

- A dependence prelude
- What are copulas
- Copula models
- Copulas and dependence
- Multivariate copulas
Measuring Association

We are interested in measuring association in a way that is invariant to monotone transformations (why?)

What is the simplest measure for interaction between the ranks \(R[m], S[m] \) of the samples \(X[m], Y[m] \)?

\[
\rho(M) = \frac{\sum_m (R[m] - \bar{R})(S[m] - \bar{S})}{\sqrt{\sum_m (R[m] - \bar{R})^2} \sqrt{\sum_m (S[m] - \bar{S})^2}}
\]

Or asymptotically (using \(F(X) \) and \(G(Y) \) to denote marginals)

\[
\rho_S = \text{corr}\{F(X), G(Y)\}
\]

This is **Spearman’s Rho** measure of association
Copulas and Spearman’s Rho

\[\rho_s = 12 \int \int C(u, v) \, du \, dv - 3 \]

Proof: use \(U = F(X) \) and \(V = G(Y) \) to denote marginals

\[\rho_s = \frac{E[F(X)G(Y)] - E[F(X)]E[F(Y)]}{STD(F(X))STD(G(Y))} \]
Copulas and Spearman’s Rho

\[\rho_s = 12 \int \int C(u, v) \, du \, dv - 3 \]

Proof: use U=F(X) and V=G(Y) to denote marginals

\[\rho_s = \frac{E[F(X)G(Y)] - E[F(X)] E[F(Y)]}{\text{STD}(F(X)) \text{STD}(G(Y))} \]

\[= \frac{E[F(X)G(Y)] - \frac{1}{2}^2}{\frac{1}{12}} \]

\[= 12 E[F(X)G(Y)] - 3 \]

\[= 12 \int \int uvdC(u, v) - 3 \]

\[= 12 \int \int C(u, v) \, du \, dv - 3 \]
Copulas and Spearman’s Rho

\[\rho_s = 12 \int \int C(u, v) \, du \, dv - 3 \]

Proof: use \(U = F(X) \) and \(V = G(Y) \) to denote marginals

\[
\rho_s = \frac{E[F(X)G(Y)] - E[F(X)]E[F(Y)]}{STD(F(X))STD(G(Y))} = \frac{E[F(X)G(Y)] - \frac{1}{2}^2}{\frac{1}{12}}
\]

Nice, but why is this interesting?
Copulas and Spearman’s Rho

\[\rho_s = 12 \int\int C(u, v) \, du \, dv - 3 \]

Fact: for essentially all copula families, by construction

\[\theta_2 > \theta_1 \rightarrow C_{\theta_2}(u, v) \geq C_{\theta_1}(u, v) \quad \forall u, v \]

This is also called concordance or PQD ordering

Example: \[C_{\theta}(u, v) = uv + \theta uv(1 - u)(1 - v) \]

In this case, Spearman’s is a dependence measure (i.e. =0 only if X and Y are independent)

copula families define a dependence ordering!
Copulas and Spearman’s Rho

\[\rho_s = 12 \int \int C(u, v) \, du \, dv - 3 \]

Appealing properties of copulas and Spearman’s Rho:
1. Both are non-parametric measures of association
2. Both are invariant to monotone transformations (substantially strengthening Pearson’s correlation)
3. Both do not depend on the univariate marginals (by now it should be obvious that we require this)

- Similar relationship with other dependence measures
- Copulas can be viewed as a tool to gauge dependence
Copulas and Mutual Information

\[I(X, Y) = \int \int f(x, y) \log \frac{f(x, y)}{f_X(x) f_Y(y)} \, dx \, dy \]

Probably THE dependence measure in ML

But: seems like it heavily depends on the marginals...

Recall: \(f(x, y) = c(F_X(x), F_Y(y)) f_X(x) f_Y(y) \)

It follows that MI is simply the negative copula entropy!

\[I(X, Y) = \int \int c(F_X(x), F_Y(y)) f(x) f(y) \log c(F_X(x), F_Y(y)) \, dx \, dy \]
Copulas and Mutual Information

\[I(X, Y) = \int \int f(x, y) \log \frac{f(x, y)}{f_X(x)f_Y(y)} \, dx \, dy \]

Probably **THE** dependence measure in ML

But: seems like it heavily depends on the marginals...

Recall: \(f(x, y) = c(F_X(x), F_Y(y))f_X(x)f_Y(y) \)

It follows that MI is simply the negative copula entropy!

\[
I(X, Y) = \int \int c(F_X(x), F_Y(y))f(x)f(y) \log c(F_X(x), F_Y(y)) \, dx \, dy \\
= \int \int c(u, v) \log c(u, v) \, dudv \equiv -H(c(U, V))
\]
Part I: Introduction to Copulas

- A dependence prelude
- What are copulas
- Copula models
- Copulas and dependence
- Multivariate copulas
Attempts at multivariate Copulas

Explicit constructions:
- Some of the families we have seen have a multivariate form
- Koehler & Symanowski (1995)
- Morillas (2005)
- Liebscher (2006)
- Fischer & Kock (2007)
- ...

Compositions of bivariate copulas:

Rarely used for more than 10 dimensions (will mention an exception later)
Vines

For **two** variables we have

\[f(x_1 | x_2) f_2(x_2) = c_{12}(F_1(x_1), F_2(x_2)) f_1(x_1) f_2(x_2) \]

\[\Rightarrow \]

\[f(x_1 | x_2) = c_{12}(F_1(x_1), F_2(x_2)) f_1(x_1) \]

For **three** variables

\[f(x_1 | x_2, x_3) = c_{12|3}(F_{1|3}(x_1 | x_3), F_{2|3}(x_2 | x_3)) f_{1|3}(x_1 | x_3) \]

Or

\[f(x_1 | x_2, x_3) = c_{13|2}(F_{1|2}(x_1 | x_2), F_{3|2}(x_3 | x_2)) f_{1|2}(x_1 | x_3) \]

And so on...

Joe, 1996; Bedford and Cooke 2001
Graphical Representation of a D-Vine

- A bivariate copula is associated with each edge.
- Density is defined by the product over edge copulas and univariates.

A very general and flexible representation that is well understood and uses only bivariate copulas.

So what are we doing here?

Joe, 1996; Bedford and Cooke 2001
Limitations of Vines

- High-dimensional conditional terms are hard to estimate!
- Cumbersome construction does not take advantage of independencies
- In practice, only first "levels" have any effect

2.4. Five variables

The general expression for the five-dimensional canonical vine structure is

$$ f(x_1, x_2, x_3, x_4, x_5) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_4) \cdot f_5(x_5) \cdot c_{12}(F_1(x_1), F_2(x_2)) \cdot c_{13}(F_1(x_1), F_3(x_3)) \cdot c_{14}(F_1(x_1), F_4(x_4)) \cdot c_{15}(F_1(x_1), F_5(x_5)) \cdot c_{23|1}(F(x_2|x_1), F(x_3|x_1)) \cdot c_{24|1}(F(x_2|x_1), F(x_4|x_1)) \cdot c_{25|1}(F(x_2|x_1), F(x_5|x_1)) \cdot c_{34|12}(F(x_3|x_1, x_2), F(x_4|x_1, x_2)) \cdot c_{35|12}(F(x_3|x_1, x_2), F(x_5|x_1, x_2)) \cdot c_{45|123}(F(x_4|x_1, x_2, x_3), F(x_5|x_1, x_2, x_3)). $$

and the general expression for the D-vine structure is

$$ f(x_1, x_2, x_3, x_4, x_5) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_4) \cdot f_5(x_5) \cdot c_{12}(F_1(x_1), F_2(x_2)) \cdot c_{23}(F_2(x_2), F_3(x_3)) \cdot c_{34}(F_3(x_3), F_4(x_4)) \cdot c_{45}(F_4(x_4), F_5(x_5)) \cdot c_{13|2}(F(x_1|x_2), F(x_3|x_2)) \cdot c_{24|3}(F(x_2|x_3), F(x_4|x_3)) \cdot c_{25|4}(F(x_2|x_3), F(x_5|x_3)) \cdot c_{14|23}(F(x_1|x_2, x_3), F(x_4|x_2, x_3)) \cdot c_{25|34}(F(x_2|x_3, x_4), F(x_5|x_3, x_4)) \cdot c_{15|234}(F(x_1|x_2, x_3, x_4), F(x_5|x_2, x_3, x_4)). $$

In the five-dimensional case there are regular vines that are neither canonical nor D-vines. One example is the following:

$$ f(x_1, x_2, x_3, x_4, x_5) = f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3) \cdot f_4(x_4) \cdot f_5(x_5) \cdot c_{12}(F_1(x_1), F_2(x_2)) \cdot c_{23}(F_2(x_2), F_3(x_3)) \cdot c_{34}(F_3(x_3), F_4(x_4)) \cdot c_{45}(F_4(x_4), F_5(x_5)) \cdot c_{13|2}(F(x_1|x_2), F(x_3|x_2)) \cdot c_{24|3}(F(x_2|x_3), F(x_4|x_3)) \cdot c_{25|4}(F(x_2|x_3), F(x_5|x_3)) \cdot c_{14|23}(F(x_1|x_2, x_3), F(x_4|x_2, x_3)) \cdot c_{25|34}(F(x_2|x_3, x_4), F(x_5|x_3, x_4)) \cdot c_{15|234}(F(x_1|x_2, x_3, x_4), F(x_5|x_2, x_3, x_4)). $$
Limitations of Vines

- High-dimensional conditional terms are hard to estimate!
- Cumbersome construction does not take advantage of independencies
- In practice, only first "levels" have any effect

Rarely used for more than 10 dimensions (will mention an exception next)
Distribution free BBNs

Basic idea: use vines-like construction to parameterize conditional distributions and combine as in BNs

Pros:
- Compact and flexible
- To-date only copula model that has been applied to high-dimensions (hundreds of variables)

Cons:
- Requires conditional correlations – in practice assumes these are specified and limited to Gaussian copula

Most similar to development in ML that we will soon see

Kurowicka and Cooke 2006, Hanea 2009
Recommended Reading

- Everything you always wanted to know about copula modeling but were afraid to ask [Genest, 2007]
- Modeling dependence with copulas [Embrehchts, 2001]
- Understanding relationships using copulas [Frees & Valdes, 1998]
- The Joy of Copulas [Genest, 1986]
- Coping with Copulas [Schmidt, 2006]

Book references:

- An Introduction to Copulas [Nelsen, 2006]
Part II: Graphical Copula Models
Scope

- Learning with tree-averaged distributions [Kirchner, 2008], MCMC for Bayes Mix of Copulas [Silva and Gramacy, 2009]
- The Nonparanormal [Liu, Laffery, Wasserman, 2009]
- Copula Bayesian Networks [Elidan, 2010]
- Copula Processes [Wilson and Ghahramani, 2010]

What will not be covered:

- Kernal-based copula processes [Jaimungal and Ng, 2009]
- Mixed cumulative distribution networks [Silva et al., 2011]
Markov Networks

U is an undirected graph that encodes independencies:

\[X_i \perp \mathcal{X} - \{X_i\} - N(X_i)|N(X_i) \]

where \(N(X_i) \) are the neighbors of \(X_i \) in \(U \)

Theorem (Hammersley-Clifford):

If \(f \) is positive and the independencies hold then it factorizes according to \(U \)

For trees:

\[
f_{\mathcal{X}}(x) = \left[\prod_i f_i(x_i) \right] \left[\prod_{(i,j) \in E} \frac{f_{i,j}(x_i, x_j)}{f_i(x_i)f_j(x_j)} \right]
\]
From Bivariate Copulas to Copula Trees

It follows that the joint copula also decomposes:

\[c_{X}(\{F_{i}(x_{i})\}) = \frac{f_{X}(x)}{\prod_{i} f_{i}(x_{i})} = \]
From Bivariate Copulas to Copula Trees

It follows that the joint copula also decomposes:

\[c_x(\{F_i(x_i)\}) = \frac{f_x(x)}{\prod_i f_i(x_i)} = \prod_{(i,j) \in E} \frac{f_{i,j}(x_i, x_j)}{f_i(x_i) f_j(x_j)} \]

\[= \prod_{(i,j) \in E} c_{i,j}(F_i(x_i), F_j(x_j)) \]

Given marginals, we can find the optimal tree efficiently using a maximum spanning tree algorithms

Upside: only bivariate estimation (different than Vines!)

Downside: assumptions are too simplistic

Kirchner, 2008
Mixture of All Trees

Challenge: there are $N^{(N-2)}$ trees

Idea: use edge weight matrix β to define a prior over trees

\[
P(T \mid \beta) = \frac{1}{Z} \prod_{(i,j) \in T} \beta_{i,j} \quad \text{with} \quad Z = \sum_{T} \prod_{(i,j) \in T} \beta_{i,j}
\]

Theorem (Meila and Jaakkla 2006):
1. Easy to compute Z (via generalized Laplacian matrix)
2. Decomposability of the prior allows us to compute average over all trees efficiently

Average density over copula trees (still a copula!) can be computed via ratio of matrix determinants

Kirshner, 2008
Estimation using EM

Parameters:
1) the edge weight matrix β
2) the bivariate copula parameters θ_{ij}

E-Step: need to compute posterior over $N^{(N-2)}$ trees!

Decomposability \implies need only compute $N(N-1)/2$ edge probabilities and reuse computations.

M-Step: standard optimization of bivariate copulas that depends only on pairs of variables

Assuming copula estimation complexity of $O(M)$: complexity of learning the model is $O(MN^3)$

Practical for tens of variables!

Kirshner, 2008
Modeling Daily Multi-Site Rainfall

N stations with unique marginals (10-40)

M observed days (3000-8000)
Selecting Number of States

![Graph showing the relationship between the number of states and scaled leave-one-out log-likelihood. The graph plots the log-likelihood against the number of states (K) for different models: HMM-TA, HMM-Tree, and HMM-CI.]
More Bayesian, More Flexibility

Advantage of Kirshner: the set of all trees is parameterized by a matrix with $O(N^2)$ parameters

Limitations of Kirshner: the set of all trees is parameterized by $O(N^2)$ parameters

- Heavy parameter sharing
- Matrix and mixture proportions are learned using MLE
- No possibility of using some trees

Goal: use Bayesian paradigm to allow for more flexibility
Idea: a Dirichlet Process with shared univariate marginals

A mixture component

Data sampled from component

sampled from a Dirichlet prior

copula parameters

specific tree \([z^{(i)}]\) and parameters generate sample

univariate marginals shared by all components

Silva and Gramacy, 2009
Markov Chain Monte Carlo

As usual, the devil is in the computations:

- Given a set of trees and cluster assignments, propose parameters in the standard way
- Given a set of tree and parameters, proposed cluster assignments in the standard way
- Given fixed parameters and cluster assignments, proposing trees is a potentially problematic combinatorial problem

Silva and Gramacy, 2009
Caution

Recall: need to maintain parameters $\theta_{i,j}$ for all i,j

But: given one tree T, with $e_{i,j}$ edge indicators

$$c_{\mathcal{X}}(\{F_i(x_i)\}) = \prod_{(i<j)} c_{i,j}(F_i(x_i), F_j(x_j))^{e_{i,j}}$$

→ some $\theta_{i,j}$ are independent of data!

(and will be useless later if sampled from prior)

→ requires innovative sampling of trees with parameters (Silva and Gramacy, 2009)
Consistent estimation in high-dimension

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Dimension</th>
<th>Regression</th>
<th>Graphical Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric</td>
<td>Low</td>
<td>Linear model</td>
<td>Multivariate normal</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>LASSO</td>
<td>Graphical LASSO</td>
</tr>
<tr>
<td>Nonparametric</td>
<td>Low</td>
<td>Additive model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Sparse additive model</td>
<td>?</td>
</tr>
</tbody>
</table>

Goal: theoretically founded estimation for nonparametric high-dimensional undirected graphs

Liu, Lafferty, Wasserman, 2009
The Nonparanormal Distribution

$X = (X_1, \ldots, X_p)^T \sim \text{NPN}(\mu, \Sigma, f)$ if there exists univariate functions $\{f_j(X_i)\}$ such that

$$\left(f_1(X_1), \ldots, f_p(X_p)\right) \sim N(\mu, \Sigma)$$

Isn’t this just a Gaussian copula?
Yes, if $f_i(X_i)$ are monotone and differentiable

So what is the problem?
- High-dimensionality leads to estimation issues ($p>n$)
- Plugging in the empirical distribution does not work in the semiparametric case...

Liu, Lafferty, Wasserman, 2009
Density-less Structure Estimation

Let \(h_j(x) = \Phi^{-1}(F_j(x)) \) and \(\Lambda \) be the covariance of \(h(x) \)

Key insight: \((X_j \perp X_i | \text{rest}) \) if and only if \(\Lambda_{ij}^{-1} = 0 \)

can estimate structure solely from ranks

1. Replace observation with normal score
 \[
 \tilde{f}_j(x) = \Phi^{-1}(\tilde{F}_j(x))
 \]

2. Compute functional sample covariance
 \[
 S_m(\tilde{f}) = \frac{1}{m} \sum_{i=1}^{m} \tilde{f}(X[i]) \tilde{f}(X[i])^T
 \]

3. Estimate structure from \(S_m(\tilde{f}) \) (e.g. using glasso)

Liu, Lafferty, Wasserman, 2009
Winsorized Estimator \hat{F}_j

Main result: $\max_{i,j} \left| S_m(\hat{f})_{ij} - S_m(f)_{ij} \right| = o_P(m^{-1/4})$

risk, norm (of Σ) and model selection consistency

Liu, Lafferty, Wasserman, 2009
Synthetic Structure Recovery

- 40 nodes
- 2 different transforms
- several training sample sizes

Figure 7: ROC curves for sample sizes $n = 1000, 500, 200$ (top, middle, bottom).

Liu, Lafferty, Wasserman, 2009
S&P 500: differences from glasso

Non-Gaussian case possibly reveals new useful information

Liu, Lafferty, Wasserman, 2009
Bayesian Networks

G is a directed graph that encodes independencies:

$X_i \perp \text{Non-descendants}_i | \text{Parents}_i$

Theorem:

If f is positive and the independencies hold then it factorizes according to G

$$f_X(x) = \prod_i f_{i|\text{par}_i}(x_i | x_{\text{par}_i})$$

✓ Intuitive representation of uncertainty
✓ Easy to construct using local $f_{i|\text{par}_i}(x_i | x_{\text{par}_i})$
Conditional Densities Using Copulas

Simple bivariate case:

\[f(x \mid y) = \frac{f(x,y)}{f(y)} \]
Conditional Densities Using Copulas

Simple bivariate case:

\[f(x \mid y) = \frac{f(x, y)}{f(y)} = \frac{c(F(x), F(y)) f(x) f(y)}{f(y)} = c(F(x), F(y)) f(x) \]

Theorem: For any \(f(x \mid y) \), there exists a copula such that

\[f(x \mid y) = R_c(F(x), F(y_1), \ldots, F(y_K)) f(x) \]
Conditional Densities Using Copulas

Simple bivariate case:

\[
f(x | y) = \frac{f(x,y)}{f(y)} = \frac{c(F(x), F(y))f(x) f(y)}{f(y)} = c(F(x), F(y))f(x)
\]

Theorem: For any \(f(x | y) \), there exists a copula such that

\[
f(x | y) = R_c(F(x), F(y_1), \ldots, F(y_K)) f(x)
\]

\[
\equiv \frac{c(F(x), F(y_1), \ldots, F(y_K))}{\frac{\partial^K C(1, F(y_1), \ldots, F(y_K))}{\partial F(y_1) \ldots \partial F(y_K)}} f(x)
\]

And constructive converse also holds!

Elidan, 2010
From local to global Copulas

Theorem: if the independencies in G hold then

$$c(F_1(x_1), \ldots, F_n(x_n) = \prod_i R_{c_i}(F_i(x_i), \{F_{ik}(pa_{ik})\})$$

and (partially) vice-versa

A **Copula Network** defines a valid joint density

$$f(x) = \prod_i R_{c_i}(F_i(x_i), \{F_{ik}(pa_{ik})\}) f_i(x_i)$$

we can now use graphical model tools!

Note: this is similar to non-parameteric BBNs (Hanea 2009) without relying on conditional rank correlations

Elidan, 2010
Crime (100 variables)

Test log-probability / instance

Maximum number of parents

- Unif-Corr Gaussian CBN
- Sigmoid BN
- Gaussian CBN + marginals

✓ Copula networks dominate BN models
✓ Learn structure in less than ½ hour!

Elidan, 2010
Complexity of Dependency Structure

Wine Dataset

Crime Dataset

- Better generalization with sparser structures
- Simple (one parameter) copula resists over-fitting

Elidan, 2010
Complexity of Dependency Structure

Wine Dataset

Crime Dataset

- Better generalization with sparser structures
- Simple (one parameter) copula resists over-fitting

Elidan, 2010
Control Over Marginals

Caveat: the *valid* density defined via

$$\prod_i R_{c_i}(F_i(x_i), \{F_{i_k}(\text{pa}_{i_k})\})$$

is only a copula for tree structures

generally, the univariate marginals are skewed

If you are copula person: this is a disaster
(easily fix for Gaussian copula as is done for NPBBNs)

From the UAI perspective:

no control over marginals completion control

and the marginals in practice are quite accurate!

Elidan, 2010
Expressiveness vs Efficiency

Common sense in ML: there is a computational price for additional expressiveness / flexibility

However: separation of univariates from dependence can “magically” avoid this:

- Because local copula functions are simple (i.e. one parameter), estimation is efficient despite flexibility
- Perform mean-field like inference faster than standard mean field [Elidan, 2010]
- Significantly faster structure learning using new relationship of ρ_s and expected likelihood [Elidan, 2012]
Expressiveness vs Efficiency

Common sense in ML: there is a computational price for additional expressiveness / flexibility

However: separation of univariates from dependence can “magically” avoid this:

- Because local copula functions are simple (i.e. one parameter), estimation is efficient despite flexibility
- Perform mean-field like inference faster than standard mean field [Elidan, 2010]

Can we take further advantage of the representation?
Real-life Processes

Motivation:
- Relationship between distance and velocity of rocket
- Relationship between volatilities of RVs, e.g. the returns on equity indices (hetero-scedastic sequence)

Challenges:
- Infinitely many interacting variables Z_t
- Non-Gaussian interaction
- Varied marginal distributions

Wilson and Ghahramani, 2010
See also related work by Jaimungal and Ng, 2009
Gaussian Processes

A collection of random variables Z_t, any finite number of which have a joint Gaussian distribution

Used to define distribution over functions:

$$f(z) \sim \mathcal{GP}(m(z), k(z, z'))$$

1. any finite set \{f(z_i)\} have a joint Gaussian distribution
2. $m(z_i)$ is the expectation of $f(Z_i)$
3. $\Sigma_{ij}=k(z_i,z_j)$ defines the functions properties

Rasmussen and Williams 2006 for (many) more details
Copula Processes

Let μ be a process measure with marginals G_t and joint H. Z_t is a **copulas process** distributed with base measure μ if

$$P \left(\bigcap_{i=1}^{n} \left\{ G_{t_i}^{-1} \left(F_{t_i}(Z_{t_i}) \right) \leq a_i \right\} \right) = H_{t_1,\ldots,t_n}(a_1,\ldots,a_n)$$

Example: Gaussian Copula Process $= \mu$ is a standard GP

Another way to think about this:

There is a mapping Ψ that transform Z_t into a GP

$$\Psi(Z_t) \sim \mathcal{GP}(m(t), k(t,t'))$$

Wilson and Ghahramani, 2010
Gaussian Copula Process Volatility

Let y_1, \ldots, y_n be a heteroscedastic sequence (varying σ_t)

Goal: model joint of $\sigma_1, \ldots, \sigma_n$ and predict unrealized σ_t

1. Observations: $y(t) \sim N(0, \sigma^2(t))$ [this can be relaxed]
2. Volatility modeled as a Gaussian Copula Process
 \[
 f(t) = \Psi^{-1}(\sigma(t)) \quad \text{[warping function]}
 \]
 \[
 f(t) \sim GP(m(t) = 0, k(t, t'))
 \]

Challenges:
- Learn a flexible warping function
- Need to do inference over many latent RVs

Interesting technical solutions in the paper! (no time 😞)

Wilson and Ghahramani, 2010
Simulation Results

Very promising results also for “JUMP” (spike like) sequence

Wilson and Ghahramani, 2010
DM-GBP exchange rate returns

<table>
<thead>
<tr>
<th>Model</th>
<th>Historical</th>
<th>1 step</th>
<th>7 step</th>
<th>30 step</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMGBP</td>
<td>GCPV (LA)</td>
<td>2.43</td>
<td>3.00</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>GCPV (MCMC)</td>
<td>2.39</td>
<td>3.00</td>
<td>3.08</td>
</tr>
<tr>
<td>(\times 10^{-9})</td>
<td>GP-EXP</td>
<td>2.52</td>
<td>3.20</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td>GARCH</td>
<td>2.83</td>
<td>3.03</td>
<td>3.12</td>
</tr>
</tbody>
</table>

Wilson and Ghahramani, 2010
DM-GBP exchange rate returns

Next step: multivariate stochastic predictions
“Generalised Wishart Processes”, Wilson and Ghahramani 2011

Wilson and Ghahramani, 2010
<table>
<thead>
<tr>
<th>Model</th>
<th>Base Copula</th>
<th># RVs</th>
<th>Structure</th>
<th>Central merit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vines</td>
<td>any bivariate</td>
<td><10s</td>
<td>conditional dependence</td>
<td>Well understood general purpose framework</td>
</tr>
<tr>
<td>NPBBN</td>
<td>Gaussian in practice</td>
<td>100s</td>
<td>BN+Vines</td>
<td>Mature application to large hybrid domains</td>
</tr>
<tr>
<td>Tree-averaged</td>
<td>any bivariate</td>
<td>10s</td>
<td>Markov</td>
<td>Bayesian averaging over structures</td>
</tr>
<tr>
<td>Non-paranormal</td>
<td>Gaussian</td>
<td>100-1000s</td>
<td>Markov</td>
<td>Large scale undirected estimation with guarantees</td>
</tr>
<tr>
<td>Copula Networks</td>
<td>any multivariate</td>
<td>100s</td>
<td>BN</td>
<td>very flexible at the cost of partial control over marginals</td>
</tr>
<tr>
<td>Copula Processes</td>
<td>any multivariate</td>
<td>∞ of few dimensions</td>
<td>-</td>
<td>Arbitrarily many variables</td>
</tr>
</tbody>
</table>
Part III: Other copula-based works in ML and applications
Scope

- REGO: Rank-based Estimation of Renyi Information Using Euclidean Graph Optimization [Poczos et al., 2010]
- Copula Mix Model for Dependency-seeking Clustering [Rey and Roth, 2012]

What will not be covered:

- ICA & ISA Using Schweizer-Wolff [Kirshner and Poczos, 2008]
- Estimation of Renyi Entropy and Mutual Info. Based on Generalized Nearest-Neighbor Graphs [Pal et al., 2010]
- Copula-based applications
- Other related works in computational statistics venues
Mutual Information

Goal: estimate entropy/information

\[I_S(f_x) = - \int f(x) \log \frac{f(x)}{\prod f_i(x_i)} \, dx \]

\[R_\alpha(f_x) = \frac{1}{1 - \alpha} \log \int f^\alpha(x) \left(\prod_{i} f_i(x_i) \right)^{1-\alpha} \, dx \]

Plug-in approach:
1. Estimate \(f_x(x) \)
2. Plug into divergence equation

Problem: density estimation is difficult

Hope: the density is a nuisance parameter, do we need it?
Euclidean Entropy Estimation

1. A 2D (uniform) graph with samples as nodes
2. Compute length $L_n(X^1, \ldots, X^n)$ of MST (TSP, k-NN, ...)

Theorem (Steel 1988 for MST)

$$
\frac{1}{1 - \alpha} \log \frac{L_n(X^1, \ldots, X^n)}{\text{const} \times n^\alpha} \rightarrow H_\alpha(f_x)
$$

Hero and Michel (1998):

use graph optimization algorithms to estimate entropy
From Entropy to Mutual Information

Recall from the first part of the tutorial:

\[I(X, Y) = \int \int c(u, v) \log c(u, v) \, du \, dv \equiv -H(c(U, V)) \]

Problem: we don’t know \(U=F_X(x), V=F_Y(y) \)

REGO (Poczos et al., 2010):

1. Transform data into empirical ranks
2. Use Euclidean graph optimization to estimate entropy

\[\text{non-parametric estimator for Renyi information that is provably strongly consistent and robust} \]

See also Pal et al. (2010), Poczos et al. (2012) for follow-ups
Example: Image Registration

Task: register image rotated at different angles
Example: Image Registration

Task: register image rotated at different angles (with <5% of the pixels corrupted)
Multiview Dependency Learning

We are given two paired datasets

How are these “views” related?

Canonical Correlation Analysis (CCA):
linearly project views so as to maximize correlation
weights of the projection are indicative of
dimensions that underlie the dependence
Dependency Seeking Clustering

Idea: dependence may be evident only locally

seek for clusters where dependency “manifests”
From CCA to Clustering

Probabilistic interpretation of CCA (Bach & Jordan, 2005)

$$Z \sim \mathcal{N}_d(0, I_d)$$

$$(X|Z) \sim \mathcal{N}_p(W_X Z + \mu_X, \Psi_X)$$

$$(Y|Z) \sim \mathcal{N}_p(W_Y Z + \mu_Y, \Psi_Y)$$

Dependency seeking clustering (Klami & Kaski, 2008):

$$Z \sim CRP(\lambda)$$

$$(X|Z) \sim \mathcal{N}_p(\mu_X(Z), \Psi_X)$$

$$(Y|Z) \sim \mathcal{N}_p(\mu_Y(Z), \Psi_Y)$$

Problem: still assumes Gaussian structure within X and Y

Idea: replace Gaussian distribution with a copula

Rey and Roth, 2012
Yeast under Heat-shock

View 1: Gene expression

View 2: Binding affinities

Copula Mixture: 8 clusters

Gaussian Mixture: 14 clusters

Rey and Roth, 2012
Take Home Messages

- Copulas (like graphical models) are a general framework for multivariate modeling
- Separation between univariate marginals and dependence function provides great flexibility
- Copulas are closely related to dependence concepts
- High-dimensional copula models are in their infancy

MAKE ML LESS GAUSSIAN
Challenges for Grabs

- Effective inference and learning for large-scale copula-based models (we talked about some of these)
- Copula-like constructions for discrete data (see Mayor 2005, 2007)
- Large-scale hybrid (discrete/continuous) models
- What if we wanted to control more than univariate distributions (the compatibility problem)

MAKE ML LESS GAUSSIAN