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Abstract

We present the Copula Bayesian Network model for representing multivariate
continuous distributions, while taking advantage of the relative ease of estimat-
ing univariate distributions. Using a novel copula-based reparameterization of a
conditional density, joined with a graph that encodes independencies, our model
offers great flexibility in modeling high-dimensional densities, while maintaining
control over the form of the univariate marginals. We demonstrate the advantage
of our framework for generalization over standard Bayesian networks as well as
tree structured copula models for varied real-life domains that are of substantially
higher dimension than those typically considered in the copula literature.

1 Introduction
Multivariate real-valued distributions are of paramount importance in a variety of fields ranging from
computational biology and neuro-science to economics to climatology. Choosing and estimating a
useful form for the marginal distribution of each variable in the domain is often a straightforward
task. In contrast, aside from the normal representation, few univariate distributions have a conve-
nient multivariate generalization. Indeed, modeling and estimation of flexible (skewed, multi-modal,
heavy tailed) high-dimensional distributions is still a formidable challenge.

Copulas [24] offer a general framework for constructing multivariate distributions using any given
(or estimated) univariate marginals and a copula function C that links these marginals. The impor-
tance of copulas is rooted in Sklar’s theorem [30] that states that any multivariate distribution can
be represented as a copula function of its marginals. The constructive converse is important from a
modeling perspective as it allows us to separate the choice of the marginals and that of the depen-
dence structure which is expressed in C. We can, for example, robustly estimate marginals using
a non-parametric approach, and then use only few parameters to capture the dependence structure.
This can result in a model that is easier to estimate and less prone to over-fitting than a fully non-
parametric one, while at the same time avoiding the limitations of a fully parameterized distribution.
In practice, copula constructions often lead to significant improvement in density estimation. Ac-
cordingly, there has been a dramatic growth of academic and practical interest in copulas in recent
years, with applications ranging from mainstream financial risk assessment and actuarial analysis
(e.g., Embrechts et al. [7]) to off-shore engineering (e.g., Accioly and Chiyoshi [2]).

Despite the generality of the framework, constructing high-dimensional copulas is difficult, and
much of the research involves only the bivariate case. Several works have attempted to overcome
this difficulty by suggesting innovative ways in which bivariate copulas can be combined to form
workable copulas of higher dimensions. These attempts, however, are either limited to hierarchical
[27] or mixture of trees [14] compositions, or rely on a recursive construction of conditional bivariate
copulas [1, 3, 17] that is somewhat elaborate for high dimensions. In practice, applications are
almost always limited to a modest (< 10) number of variables (see Section 6 for further discussion).

Bayesian networks (BNs) [26] offer a markedly different approach for representing multivariate
distributions. In this widely used framework, a graph structure encodes independencies which imply
a decomposition of the joint density into local terms (the density of each variable conditioned on its
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parents). This decomposition in turn facilitates efficient probabilistic computation and estimation,
making the framework amenable to high-dimensional domains. However, the expressiveness of
these models is hampered by practical considerations that almost always lead to the the reliance
on simple parametric forms. Specifically, non-parametric variants of BNs (e.g., [9, 28]) typically
involve elaborate training setups with a running time that grows unfavorably with the number of
samples and local graph connectivity. Furthermore, aside from the case of the normal distribution,
the form of the univariate marginal is neither under control nor is it typically known.

Our goal is to construct flexible multivariate continuous distributions that maintain desired marginals
while accommodating tens and hundreds of variables, or more. We present Copula Bayesian Net-
works (CBNs), an elegant marriage between the copula and the Bayesian network frameworks.1 As
in BNs, we make use of a graph to encode independencies that are assumed to hold. Differently,
we rely on local copula functions and an explicit globally shared parameterization of the univariate
densities. This allows us to retain the flexibility of BNs, while offering control over the form of the
marginals, resulting in substantially improved multivariate densities (see Section 7 for a discussion
of the related works of Kirshner [14] and Liu et al. [21]).

At the heart of our approach is a novel reparameterization of a conditional density using a copula
quotient. With this construction, we prove a parallel to the BN factorization theorem: a decomposi-
tion of the joint density according to the structure of the graph implies a decomposition of the joint
copula. Conversely, a product of local copula-based quotient terms is a valid multivariate copula.
This result provides us with a flexible modeling tool where joint densities are constructed via a com-
position of local copulas and marginal densities. Importantly, the construction also allows us to use
standard BN machinery for estimation and structure learning. Thus, our model opens the door for
flexible explorative learning of high-dimensional models that retain desired marginal characteristics.

We learn the structure and parameters of a CBN for three varied real-life domains that are of a
significantly higher dimension than typically reported in the copula literature. Using standard copula
functions, we show that in all cases our approach leads to consistent and significant improvement in
generalization when compared to standard BN models as well as a tree-structured copula model.

2 Copulas
Let X = {X1, . . . , XN} be a finite set of real-valued random variables and let FX (x) ≡ P (X1 ≤
x1, . . . , Xn ≤ xN ) be a (cumulative) distribution function over X , with lower case letters denoting
assignment to variables. By slight abuse of notation, we use F(xi) ≡ F (Xi ≤ xi, XX/Xi

= ∞)
and f(xi) ≡ fXi

(xi), and similarly for sets of variables f(y) ≡ fY(y). A copula function [24, 30]
links marginal distributions to form a multivariate one. Formally,

Definition 2.1: Let U1, . . . , UN be real random variables marginally uniformly distributed on [0, 1].
A copula function C : [0, 1]N → [0, 1] is a joint distribution function

C(u1, . . . , uN ) = P (U1 ≤ u1, . . . , UN ≤ uN )

Copulas are important because of the following seminal result

Theorem 2.2: [Sklar 1959] Let F (x1, . . . , xN ) be any multivariate distribution over real-valued
random variables, then there exists a copula function such that

F (x1, . . . , xN ) = C(F(x1), . . . , F(xN )).

Furthermore, if each F(xi) is continuous then C is unique.

The constructive converse which is of central interest from a modeling perspective is also true: since
for any random variable the cumulative distribution F(xi) is uniformly distributed on [0, 1], any
copula function taking the marginal distributions {F(xi)} as its arguments, defines a valid joint
distribution with marginals F(xi). Thus, copulas are “distribution-generating” functions that allow
us to separate the choice of the univariate marginals and that of the dependence structure expressed
in the copula function C, often resulting in an effective real-valued construction.2.

1A preliminary draft of this paper appeared as a technical report. A companion paper [6] addresses the
question of performing approximate inference in Copula Bayesian networks.

2Copulas can also be defined given non-continuous marginals and for ordinal random variables. These
extensions are orthogonal to our work and to maintain clarity we focus here on the continuous case
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Figure 1: Samples from the 2-
dimensional normal copula den-
sity using a correlation ma-
trix with a unit diagonal and
an off-diagonal coefficient of
0.25. (left) with zero mean and
unit variance normal marginals;
(right) with a mixture of two
Gaussians marginals.
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To derive the joint density f(x) = ∂NF (x)
∂x1...∂xN

from the copula construction, assuming F has N-order
partial derivatives (true almost everywhere when F is continuous), and using the chain rule, we have

f(x) =
∂NC(F(x1), . . . , F(xN ))

∂F(x1) . . . ∂F(xN )

∏
i

f(xi) = c(F(x1), . . . , F(xN ))
∏
i

f(xi), (1)

where c(F(x1), . . . , F(xN )), is called the copula density function. Eq. (1) will be of central use in
this paper as we will directly model joint densities.

Example 2.3: A simple copula widely explored in the financial community is the Gaussian copula
constructed directly by inverting Sklar’s theorem [7]

C({F(xi)}) = ΦΣ

(
Φ−1(F(x1)), . . . ,Φ−1(F(xN ))

)
, (2)

where Φ is the standard normal distribution and ΦΣ is the zero mean normal distribution with cor-
relation matrix Σ. To get a sense of the power of copulas, Figure 1 shows samples generated from
this copula using two different families of univariate marginals. More generally and without added
computational difficulty, we can also mix and match marginals of different forms.

3 Copula Bayesian Networks (CBNs)
As in the copula framework, our goal is to model real-valued multivariate distributions while taking
advantage of the relative ease of one dimensional estimation. To cope with high-dimensional do-
mains, as in BNs, we would also like to utilize independence assumptions encoded by a graph. To
achieve this goal, we will construct multivariate copulas that are a composition of local copulas that
follow the structure of the graph. We start with the building block of our construction.

3.1 Copula Parameterization of The Conditional Density

As in the BN framework, the building block of our model will be a local conditional density. We
start with a parameterization of such a density using copulas:

Lemma 3.1: Let f(x | y), with y = {y1, . . . , yK}, be a conditional density function and let f(x) be
the marginal density of X . Then there exists a copula density function c(F(x), F(y1), . . . , F(yK))
such that

f(x | y) = Rc(F(x), F(y1), . . . , F(yK))f(x)

where Rc is the ratio

Rc(F(x), F(y1), . . . , F(yK)) ≡ c(F(x), F(y1), . . . , F(yK))∫
c(F(x), F(y1), . . . , F(yK))f(x)dx

=
c(F(x), F(y1), . . . , F(yK))

∂KC(1,F(y1),...,F(yK))
∂F(y1)...∂F(yK)

,

and where Rc is defined to be 1 when y = ∅. The converse is also true, for any copula density
function c, Rc(F(x), F(y1), . . . , F(yK))f(x) defines a valid conditional density function.

Before proving this result, it is important to understand why the derivative form of
denominator (right-most term) is more useful than the standard normalization integral∫
c(F(x), F(y1), . . . , F(yK))f(x)dx. Recall that c() is itself an N -order derivative of the cop-

ula function so computing our denominator is no more difficult than computing c(). Indeed, for
the majority of existing copula functions, both have an explicit form. In contrast, the integral term
depends both on the copula form and the univariate marginal, and is generally difficult to compute.
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Proof: From the basic properties of cumulative distribution functions, we have that for any copula
function C(1, F(y1), . . . , F(yK)) = F (y1, . . . , yk) and thus, using the derivative chain rule,

f(y) =
∂KC(1, F(y1), . . . , F(yK))

∂y1, . . . , yK
=
∂KC(1, F(y1), . . . , F(yK))

∂F(y1) . . . ∂F(yK)

∏
k

f(yk).

From Eq. (1) we have that there exists a copula density for which f(x, y1, . . . , yK) =
c(F(x), F(y1), . . . , F(yK))f(x)

∏
k f(yk). It follows that there exists a copula for which

f(x | y) =
f(x, y1, . . . , yK)

f(y)
=
c(F(x), F(y1), . . . , F(yK))f(x)

∏
k f(yk)

∂KC(1,F(y1),...,F(yK))
∂F(y1)...∂F(yK)

∏
k f(yk)

=
c(F(x), F(y1), . . . , F(yK))f(x)

∂KC(1,F(y1),...,F(yK))
∂F(y1)...∂F(yK)

≡ Rc(F(x), F(y1), . . . , F(yK))f(x)

As in Sklar’s theorem and Eq. (1), the converse follows easily by reversing the arguments.

The implications of this result will underlie our construction: any copula density function
c(x, y1, . . . , yK), together with f(x), can be used to parameterize a conditional density f(x | y).

3.2 Decomposition of The Joint Copula

Let G be a directed acyclic graph whose nodes correspond to the random variables X , and let Pai =
{Pai1, . . . ,Paiki} be the parents of Xi in G. G encodes the independence statements I(G) =
{(Xi ⊥ NonDescendantsi | Pai)}, where NonDescendantsi are nodes that are non-descendants
of Xi in G. We say that fX (x) decomposes according to G if it can be written as a product of
conditional densities fX (x) =

∏
i f(Xi | Pai). It can be shown that if f decomposes according

to G then I(G) hold in fX (x). The converse is also true: if I(G) hold in fX (x) then the density
decomposes according to G (see [16], theorems 3.1 and 3.2). These results form the basis for the
BN model [26] where a joint density is constructed via a composition of local conditional densities.
We now show that similar results hold for a multivariate copula. This in turn will provide the basis
for our construction of the CBN model.

Theorem 3.2 : Decomposition. Let G be a directed acyclic graph over X , and let fX (x) be
parameterized via a joint copula density fX (x) = c(F(x1), . . . , F(xN ))

∏
i f(xi), with fX (x)

strictly positive for all values of X . If fX (x) decomposes according to G then the copula density
c(F(x1), . . . , F(xN )) also decomposes according to G

c(F(x1), . . . , F(xN )) =
∏
i

Rci(F(xi), {F(paik)}),

where ci is a local copula that depends only on the value of Xi and its parents in G.

Proof: Using the positivity assumption, we can rearrange Eq. (1) to get c(F(x1), . . . , F(xN )) =
f(x)∏
i f(xi)

. From Lemma 3.1 and the decomposition of f(x) we have

c(F(x1), . . . , F(xN )) =
f(x)∏
i f(xi)

=

∏
i f(xi | pai)∏

i f(xi)

=

∏
iRci(F(xi), {F(paik)})f(xi)∏

i f(xi)
=
∏
i

Rci(F(xi), {F(paik)})

The constructive converse that is of central interest here is also true:

Theorem 3.3 : Composition. Let G be a directed acyclic graph over X . In addition, let
{ci(F(xi), F(pai1), . . . , F(paiki))} be a set of strictly positive copula densities associated with
the nodes of G that have at least one parent. If I(G) hold then the function

g(F(x1), . . . , F(xN )) =
∏
i

Rci(F(xi), {F(paik)})f(xi),

is a valid density over X .
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It is important to note that while g(F(x1), . . . , F(xN )) is always a valid density, its marginals are not
necessarily f(xi) so that the product of local copula ratios Rci(·) is not necessarily a copula density.
While this may seem unacceptable from a copula perspective, the model offers greater flexibility at
the cost of marginal skewness, which is small in practice. Moreover, when G is a tree, the product
of local copulas is a joint copula as in Kirshner [14]. Further, when using the Gaussian copula (or
other elliptical families), the correct marginals can be maintained using an appropriate specification
scheme, in which case the model is equivalent to a nonparametric BN model [18].

Importantly, the above limitation comes with great flexibility: the local copulas do not need to agree
on the non-univariate marginals of overlapping variables. This is a result of the fact that each copula
ci only appears as part of a quotient term which is used to parameterize a conditional density. This
gives us the freedom to mix and match local copulas of different types. Equally important is the
fact that aside from the univariate densities, we do not need to concern ourselves with any marginal
constraints when estimating the parameters of these local copulas functions.

3.3 A Multivariate Copula Model

We are now ready to construct a joint density given univariate marginals by properly composing
local terms and without worrying about global coherence:

Definition 3.4: A Copula Bayesian Network (CBN) is a triplet C = (G,ΘC ,Θf ) that encodes the
joint density fX (x). ΘC is a set of local copula densities functions ci(F(xi), {F(paik)}) that are
associated with the nodes of G that have at least one parent. Θf is the set of parameters representing
the marginal densities f(xi). fX (x) is parameterized as

fX (x) =
∏
iRci(F(xi), {F(paik)})f(xi).

Using our previous developments and applying Eq. (1) to fX (x), we have:

Corollary 3.5: A Copula Bayesian Network defines a valid joint density fX (x) whose marginal
distributions are parameterized by Θf and where the independence statements I(G) hold.

The main difference between a CBN and a regular BN, aside from a novel choice for the local
parameterization, is in the shared global component. The CBN model allows us to decompose the
problem of representing a multivariate density with given (or estimated) univariate marginals into
many local problems that, depending on the structure of G, can be substantially smaller in dimension.

For each family of Xi and its parents we are still faced with the problem of choosing an appropriate
local copula. In this work we simply limit ourselves to copulas that have convenient multivariate
form, but any of the recently suggested methods for constructing multivariate copulas functions (see
Section 6) can also be used. In either case, limiting ourselves to a smaller number of variables
(a node and its parents) makes the construction of the local copula substantially easier than the
construction of the full copula over X . Importantly, as in the case of BNs, our construction of a
joint copula density that decomposes over the graph structure G also facilitates efficient parameter
estimation and model selection (structure learning), as we briefly discuss in the next section.

4 Learning
As in the case of BNs, the product form of our CBN facilitates relatively efficient estimation and
model selection. The machinery is standard and only briefly described below.

Parameter Estimation
Given a complete dataset D of M instances where all of the variables X are observed in each
instance, the log-likelihood of the data given a CBN model C is

`(D : C) =
∑M
m=1

∑
i log f(xi[m]) +

∑M
m=1

∑
i logRi(F(xi)[m], F(pai1[m]), . . . , F(paiki [m]))

While this objective appears to fully decompose according to the structure of G, each marginal
distribution F(xi) actually appears in several local copula terms (of Xi and its children in G). To
facilitate efficient estimation, we adopt the common approach where the marginals are estimated
first [13]. Given F(xi), we can then estimate the parameters of each local copula independently of
the others. We estimate the univariate densities using a standard normal kernel-based approach [25].
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Figure 2: Train and test set performance for the 12 variable Wine, 28 variable Dow Jones and 100 variables
Crime datasets. Models compared: Sigmoid BN; CBN with a uniform correlation normal copula (single
parameter); CBN with a full normal copula (0.5 ∗ d(d − 1) parameters); CBN with Frank’s single parameter
copula. Shown is the 10-fold average log-probability per instance (y-axis) vs. the maximal number of parents
allowed in the network (x-axis). Error bars (slightly shifted for readability) show the 10 − 90% range. The
structure for all models was learned with the same search procedure using the BIC model selection score.

In this work we consider two of the simplest and most commonly used copula functions. For Frank’s
Archimedean copula C(u1, . . . , uN ) = − 1

θ log
(
1 +

∏
i(e
−θF(xi) − 1)/(e−θ − 1)N−1

)
, and for

the Gaussian copula (see Section 2) with a uniform correlation parameter, we find the maximum
likelihood parameters using a standard conjugate gradient algorithm. For the Gaussian copula with
a full covariance matrix, a reasonably effective and substantially more efficient method is based on
the relationship between the copula function and Kendall’s Tau dependence measure [20]. For lack
of space, further details for both of these copulas are provided in the supplementary material.

Model Selection
Very briefly, to learn the structure of G, we use a standard score-based approach that starts
with the empty network, and greedily advances via local modifications to the current structure
(add/delete/reverse edge). The search is guided by the Bayesian information criterion [29] that bal-
ances the likelihood of the model and its complexity score(G : D) = `(D : θ̂,G)− 1

2 log(M)|ΘG |,
where θ̂ are the maximum-likelihood parameters, and |ΘG | is the number of free parameters asso-
ciated with the graph structure G. During the search, we also use a TABU list and random restarts
[10] to mitigate the problem of local maxima. See Koller and Friedman [16] for more details.

5 Experimental Evaluation
We assess the effectiveness of our approach for density estimation by comparing CBNs and BNs
learned from training data in terms of log-probability performance on test data. For BNs, we use a
linear Gaussian conditional density and a non-linear Sigmoid one (see Koller and Friedman [16]).
For CBNs, to demonstrate the flexibility of our framework, we consider the three local copula func-
tions discussed in Section 4: fully parametrized Normal copula; the same copula with a single cor-
relation parameter and unit diagonal (UnifCorr); Frank’s single parameter Archimedean copula.
We use standard normal kernel density estimation for the univariate densities. The structure of both
the BN and CBN models was learned using the same greedy structure search procedure described in
Section 4. We consider three datasets of a markedly different nature and dimensionality:
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Figure 3: Comparison
of the number of edges
learned in the different
random run for different
models (y-axis) vs. the Sig-
moid BN model (x-axis),
when the maximal number
of parents in the network
was limited to 4.
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Wine dataset Crime dataset

• Wine Quality (UCI repository). 11 physiochemical properties and a sensory quality variable for
the red Portuguese ”Vinho Verde” wine [4]. Included are measurements from 1599 tastings.

• Dow Jones. 2001-2005 (1508 trading days) daily adjusted changes of the 30 index stocks. To
avoid arbitrary imputation, two stocks not traded in all of these days were excluded (KFT,TRV).

• Crime (UCI repository). 100 observed variables relating to crime ranging from household size to
fraction of children born outside of a marriage, for 1994 communities across the U.S.

Figure 2 shows average log-probability (y-axis) as a function of the maximal number of parents
allowed in the network (x-axis). Results for the Gaussian BN were almost identical to those of the
sigmoid BN for the Wine and Dow Jones datasets and inferior for the Crime dataset, and are omitted
for clarity. In all cases, the copula based models offer a clear gain in both training and generalization
performance. Remarkably, the single parameter (for each local density) UnifCorr model is superior
to the BN model even when the latter utilizes up to 8 local parameters (with 4 parents). In fact,
even Frank’s single parameter Archimedean copula which is constrained by the fact that all of its
K-marginals are equal [24], is superior to the BN model. Importantly, the advantage of the CBN
model is significant since, for example, an improvement of 2 bits/instance translates into each test
instance being, on average, four times as likely. Note that the performance for the crime domain is
on an unusually high scale since some of the variables are closely correlated, a phenomenon that
does not effect the validity of the reported differences between the methods. It is also important
to note the benefit that comes with structures that are richer than a tree. As the number of allowed
parents (x-axis) is increased, gains are relatively small when the dimensionality of the domain is
limited (12 variables); The gains are, however, quite substantial for the more complex domains.

To understand the role of the univariate marginals, we start with the no dependency network (0
on x-axis), where the advantage of CBNs is solely due to the use of flexible univariate marginals.
Surprisingly, even with single parameter copulas, although much simpler than the Sigmoid form
used for the BN model, we are able to maintain much of that advantage as the model becomes
more complex. As expected, this is not the case when we constrain the CBN model to have normal
marginals (Normal-UnifCorr) and when the domain is sufficiently complex (Crime).

To get a sense of the overall dependency structure, Figure 3 shows the number of edges learned for
the different models. For the Wine dataset, the linear BN attempts to compensate for its constrained
form by using substantially more edges than the non-linear Sigmoid BN. The Kernel-UnifCorr
CBN, in contrast, tends to use less edges while achieving higher test performance. Finally, the
Normal-UnifCorr CBN model, despite the forced normal marginals, does not lead to overly com-
plex structures as it is constrained by the simplicity of the copula function (single parameter). For
the challenging Crime dataset, the differences are more pronounced: both the linear and non-linear
BN models almost saturate the limit of 4 parents per variable, while the Kernel-UnifCorr copula
model requires, on average, less than half the number of parents to achieve superior performance.

Finally, in Figure 4, we demonstrate the qualitative advantage of CBNs by comparing empirical
values from the test data (left) with samples generated from the different models. For the ’physical
density’ and ’alcohol’ variables (top), the CBN samples (middle) are better than the BN ones (right),
but not dramatically so. However, for the ’residual sugar’ and ’physical density’ pair (bottom), where
the empirical dependence is far from normal, the advantage of the CBN representation is clear. We
recall that the CBN model uses a simple normal copula so that the advantage is solely rooted in the
distortion of the input to the copula created by the kernel-based univariate representation. With more
expressive copulas we can expect further qualitative and quantitative advantages.
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Figure 4: Demonstration of the depen-
dency learned for the Wine dataset for
two variable pairs. Compared is the
empirical distribution in the test data
(left) with samples generated from the
learned CBN (middle) and BN (right)
models. To eliminate the effect of dif-
ferences in structure, the CBN model
was forced to use the structure learned
for the BN model which contains the
network fragment ’residual sugar’ →
’physical density’→ ’alcohol level’.
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6 Related Work
For lack of space we do not discuss direct multivariate copula constructions (e.g., [8, 15, 19, 23]) that
are typically effective only for few dimensions, and focus on composite constructions that build on
smaller (bivariate) copulas. The Vine model [3] relies on a recursive construction of bivariate copulas
to parameterize a multivariate one. Although it uses a graphical representation, the framework is
inherently different from ours: conditional independence is replaced with a conditional dependence
whose parameters depend on the conditioning variable(s). Kurwicka and Cooke [17] reveal a direct
connection between vines and belief networks, but that is limited to the scenario of elliptical bivariate
copulas. Relying on the same representation, Aas et al. [1] suggest an alternative construction
methodology. While the vine representation is certainly general, the need to condition on many
variables using a somewhat elaborate construction limits practical applications to a modest number
of variables. Aas et al. [1] do note the simplification that can result from making independence
assumptions, but do not provide a general framework for doing so. Savu and Trede [27] suggest an
alternative model that is limited to a hierarchical tree structure of bivariate Archimedean copulas.

Kirshner [14] uses the copula product operator of Darsow et al. [5] to suggest a mixture of trees
model that is directly motivated by the field of graphical models. The relationship between our
model to theirs is the same as that of a general BN to a mixture of trees model [22]. Most recently,
Liu et al. [21] consider a general sparse undirected copula-based model that is focused on the semi
and non-parametric aspect of modeling, and is specific to the case of the normal copula.

Finally, it is important to put the dimension of the domains we consider in this work (up to 100
variables) in perspective. Copula applications are numerous yet most are limited to a relatively
small number (< 10) of variables. Heinen and Alfonso [11] are unique in that they consider 95
variables, but using an approach that is tailored to the specific details of the GARCH model.

7 Discussion and Future Work
We presented Copula Bayesian Networks, a marriage between the Bayesian network and copula
frameworks. Building on a novel reparameterization of the conditional density, our model offers
great flexibility in modeling high-dimensional continuous distribution while offering control over
the form of the univariate marginals. We applied our approach to three markedly different real-life
datasets and, in all cases, demonstrated a consistent and significant generalization advantage.

Our contribution is threefold. First, our framework allows us to flexibly “mix and match” local cop-
ulas and univariate densities of any form. Second, like BNs, we allow for independence assumptions
that are more expressive than those possible with tree-based constructions, leading to generalization
advantages. Third, we leverage on existing machinery to perform model selection in higher dimen-
sions than typically considered in the copula literature. Thus, our work opens the door for numerous
applications where the flexibility of copulas is needed but could not be previously utilized. In a
companion paper [6], we also show that CBNs give rise to an efficient inference procedure.

The gap between train and test performance for CBNs motivates the development of model selection
scores tailored to the copula framework (e.g., based on rank correlation). It would also be interesting
to see if our framework can be adapted to the cumulative scenario, while allowing for independencies
quite different from the recently introduced cumulative network model [12].
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