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Abstract

We consider learning continuous probabilistic
graphical models in the face of missing data. For
non-Gaussian models, learning the parameters
and structure of such models depends on our abil-
ity to perform efficient inference, and can be pro-
hibitive even for relatively modest domains. Re-
cently, we introduced the Copula Bayesian Net-
work (CBN) density model - a flexible frame-
work that captures complex high-dimensional
dependency structures while offering direct con-
trol over the univariate marginals, leading to im-
proved generalization. In this work we show that
the CBN model also offers significant computa-
tional advantages when training data is partially
observed. Concretely, we leverage on the spe-
cialized form of the model to derive a compu-
tationally amenable learning objective that is a
lower bound on the log-likelihood function. Im-
portantly, our energy-like bound circumvents the
need for costly inference of an auxiliary distribu-
tion, thus facilitating practical learning of high-
dimensional densities. We demonstrate the effec-
tiveness of our approach for learning the struc-
ture and parameters of a CBN model for two real-
life continuous domains.

1 Introduction

Learning multivariate continuous densities is of central im-
portance in a wide range of fields ranging from geology to
computational biology. The framework of Bayesian net-
works (BNs) (Pearl, 1988), geared toward learning such
densities in high-dimension, relies on a directed graph
structure that encodes independencies that are assumed to
hold in the domain. This results in a decomposition of the
density into local terms (corresponding to each variable and
its parents in the graph) which in turn facilitates relatively
efficient inference and learning.

For non-Gaussian continuous graphical models such as
those that use a sigmoid Gaussian conditional probabil-
ity distributions (see, for example, (Koller and Friedman,
2009, Chapter 5)), the maximum likelihood parameters do
not have a closed form solution even when the data is fully
observed, and estimation of these parameters is carried out
using a standard gradient based approach. When some of
the observations are missing, learning is computationally
daunting for all but the simplest domains since, at every
optimization step, computation of the log-likelihood func-
tion requires costly inference (high-dimensional integra-
tion). To cope with this we typically adopt an expecta-
tion maximization approach (Dempster et al., 1977) that
relies on an approximate inference method. The varia-
tional mean field method (Jordan et al., 1998), for example,
makes learning somewhat more practical by decomposing
the needed computations according to the network struc-
ture. Yet, even with this approximation, parameter learning
of non-Gaussian continuous Bayesian networks can be de-
manding. For many domains learning becomes prohibitive
when we also aim to learn the structure of the network, a
task that requires a large number of parameter estimates.

Our goal in this work is to overcome these difficulties and
perform effective density estimation with partial observa-
tions using the Copula Bayesian Network (CBN) density
model we recently introduced (Elidan, 2010). Copulas
(Nelsen, 2007; Joe, 1997) provide a general framework for
the representation of multivariate distributions that sepa-
rates the choice of marginals and that of the dependency
structure. This provides great flexibility and allows us, for
example, to construct useful multivariate densities by com-
bining robust and accurate non-parametric univariate esti-
mates (e.g., (Parzen, 1962)) with dependency functions that
have a small number of parameters. Yet, despite a dramatic
growth in academic and practical interest, copulas are for
the most part practical only for relatively low dimensional
domains (< 10 variables). The CBN model fuses the BN
and copula frameworks. Like BNs, it utilizes a directed
acyclic graph to encode independencies that are assumed
to hold in the domain, leading to a decomposable parame-
terization. Uniquely, the model relies on local copula func-



tions along with an explicit parameterization for the uni-
variate marginals that is shared by the entire network. As
demonstrated in Elidan (2010), this can lead to improved
generalization of unseen test data in a variety of domains
where the data is fully observed.

We present a novel method for density estimation with par-
tial observations that leverages on the specialized form of
the CBN model. Starting with the CBN parameterization,
we derive an approximate learning objective in the form of
a lower bound on the log-likelihood function that is closely
related to the variational mean-field lower bound (Jordan
et al., 1998). Unlike the standard variational method, by
taking advantage of the explicit parameterization of the uni-
variate marginals in the CBN model, we circumvent the
need to infer the auxiliary variational distribution in the
expectation stage of the EM procedure. As a result, we
can perform inference-less estimation, significantly speed-
ing up the learning procedure. In our experimental evalua-
tion in Section 4 this allows us to learn non-Gaussian densi-
ties that generalize well in scenarios where BN alternatives
proved either ineffective or computationally prohibitive.

The rest of the paper is organized as follows. In Section 2
we provide a brief overview of copulas and copula net-
works. In Section 3 we present our approach for learning
copula networks with partial observations. In Section 4 we
apply our approach to two real-life domains. We finish with
a discussion and future directions in Section 5.

2 Copulas and Copula Bayesian Networks

In this section we briefly review copulas and the re-
cently introduced Copula Bayesian Network model (Eli-
dan, 2010). We start with needed notation.

Let X = {X1, . . . , XN} be a finite set of real random vari-
ables and let FX (x) ≡ P (X1 ≤ x1, . . . , Xn ≤ xN ) be a
joint (cumulative) distribution function over X , with lower
case letters denoting assignment to variables. By slight
abuse of notation, we use F(xi) ≡ FXi

(xi) ≡ F (Xi ≤
xi, XX/Xi

= ∞). Similarly use f(xi) ≡ fXi
(xi) to de-

note the marginal density function of Xi. For a set of vari-
ables Y, we use the shorthand f(y) ≡ fY(y).

2.1 Copulas

A copula (Sklar, 1959; Nelsen, 2007) is a function that
links the marginal distributions together to form a multi-
variate distribution. Formally,

Definition 2.1: Let U1, . . . , UN be real random variables
marginally uniformly distributed on [0, 1]. A copula func-
tion C : [0, 1]N → [0, 1] is a joint distribution function

C(u1, . . . , uN ) = P (U1 ≤ u1, . . . , UN ≤ uN )

Interest in copulas has grown dramatically following
Sklar’s seminal result that captures their expressive power

Theorem 2.2: [Sklar 1959] Let F (x1, . . . , xN ) be any
multivariate distribution over real-valued random vari-
ables. Then there exists a copula function such that

F (x1, . . . , xN ) = C(F(x1), . . . , F(xN )).

Furthermore, if each F(xi) is continuous then C is unique.

The constructive converse which is of central interest from
a modeling perspective is also true: since for any ran-
dom variable the cumulative distribution F(xi) is uni-
formly distributed on [0, 1], any copula function taking the
marginal distributions {F(xi)} as its arguments, defines a
valid joint distribution with marginals F(xi). Thus, cop-
ulas are “distribution-generating” functions that allow us
to combine any univariate representation (e.g. robust non-
parametric) with any copula function to form a valid joint
distribution (see example below).

To derive the joint density f(x) = ∂NF (x)
∂x1...∂xN

from the
copula construction, assuming that F has N-order partial
derivatives1 and using the derivative chain rule we have

f(x) =
∂NC(F(x1), . . . , F(xN ))

∂F(x1) . . . ∂F(xN )

N∏
i=1

f(xi)

= c(F(x1), . . . , F(xN ))
∏
i

f(xi), (1)

where c(F(x1), . . . , F(xN )), the N-order partial derivative
of the copula function C(F(x1), . . . , F(xN )), is called the
copula density function.

Example 2.3: A simple copula that we use in this paper
and that received significant attention in recent years in the
financial community is the elliptical Gaussian copula con-
structed directly by inverting Sklar’s theorem (Embrechts
et al., 2003)

C({F(xi)}) = ΦΣ

(
Φ−1(F(x1)), . . . ,Φ−1(F(xN ))

)
,
(2)

where Φ is the standard normal distribution function and
ΦΣ is the zero mean multivariate normal distribution with
correlation matrix Σ. In this paper we consider the sim-
plest variant of this copula where Σ has a uniform correla-
tion structure (i.e., when Σ has a unit diagonal and a single
parameter ρ elsewhere).

To get a sense of the modeling power copulas offer, Fig-
ure 1 shows samples from two bivariate joint densities that
use the same copula function but differ in their marginal
form. The first uses normal marginals with a unit mean
and variance. The second uses Gamma marginals with the

1For any continuous cumulative distribution function F this in
fact true almost everywhere



Figure 1: Demonstration of the mod-
eling flexibility offered by the 2-
dimensional Gaussian copula using a
correlation matrix with a unit diag-
onal and a correlation coefficient of
0.25. (left) shows samples from the
bivariate density when the marginals
are modeled as a normal distribution
with a unit mean and variance; (right)
shows samples from a bivariate den-
sity that uses the same copula function
and Gamma marginals with the same
mean and variance.
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same mean and variance, resulting in a substantially dif-
ferent bivariate distribution. More generally and without
added computational difficulty, we can also mix and match
marginals of different forms.

2.2 Copula Bayesian Networks

CBNs, like BNs, rely on a directed acyclic graph (DAG)
structure to encode independencies that are assumed to
hold in the domain. This graph is joined by a re-
parameterization of the conditional density using copula
functions, resulting in a compact representation of a a mul-
tivariate density where the form of the univariate marginals
can be explicitly controlled.

Let G be a directed acyclic graph whose nodes corre-
spond to the random variables X = {X1, . . . , XN}, and
let Pai = {Pai1, . . . ,Paiki} be the parents of Xi in G.
We use G to encode the independence statements I(G) =
{(Xi ⊥ NonDescendantsi | Pai)}, where ⊥ denotes the
independence relationship and NonDescendantsi are nodes
that are non-descendants of Xi in G.

Definition 2.4 : A Copula Bayesian Network (CBN) is
a triplet C = (G,ΘC ,Θf ) that encodes a joint density
fX (x). G encodes the independence statements (Xi ⊥
NonDescendantsi | Pai), that are assumed to hold in
fX (x). ΘC is a set of local copula density functions
c(F(xi), F(pai1), . . . , F(paiki

)) that are associated with
the nodes of G that have at least one parent. In addition, Θf

is the set of parameters representing the marginal densities
f(xi) (and distributions F(xi)). The joint density fX (x) is
then parameterized as

fX (x) =

N∏
i=1

Rci

(
F(xi), F(pai1), . . . , F(paiki

)
)
f(xi).

Rci is a term parameterized by a local copula ci and that,
if Xi has at least one parent in the graph G, is defined to be

the following ratio

Rci

(
F(xi), F(pai1), . . . , F(paiki

)
)

≡
ci(F(xi), F(pai1), . . . , F(paiki

))∫
ci(F(xi), F(pai1), . . . , F(paiki

))f(xi)dxi

=
ci(F(xi), F(pai1), . . . , F(paiki

))
∂KCi(1,F(y1),...,F(yK))

∂F(y1)...∂F(yK))

.

When Xi has no parents in the graph G, we define
Rci

(
F(xi), F(pai1), . . . , F(paiki

)
)

to be 1.

It can be shown (Elidan, 2010) that a CBN defines a co-
herent joint density, and further that the product of local
ratio terms Rci defines a valid joint copula over X . Thus,
like other probabilistic graphical models, a CBN takes ad-
vantage of the independence assumptions encoded in G to
represent fX (x) compactly via a product of local terms.
Uniquely, a CBN has an explicit marginal form, offer-
ing significant modeling advantages in practice (see Elidan
(2010) for more details).

Note that in the above definition, the derivative form of
the denominator of Rci is important since for most copula
functions it can be computed analytically and integration is
not needed. It is also important to note that the univariate
distributions are parameterized independently of the local
copula functions and are actually shared by several of them.

2.3 Learning with Complete Data

Given a complete dataset D of M instances where all of
the variables X are observed in each instance, the log-
likelihood of the data given a CBN model C is

`(D : C) =
∑M

m=1

∑N
i=1

(
log fi[m] + logRci [m]

)
, (3)

where fi[m] is a shorthand for f(xi[m]) andRci [m] is sim-
ilarly a shorthand for the value that the copula ratio Rci

takes in the m’th instance.

While the above objective appears to fully decompose ac-
cording to the structure of the graph G, each marginal dis-



tribution F(xi) actually appears in several copula terms (of
Xi and all of its children in G). A solution adopted from the
copula community is the Inference Functions for Margins
approach (Joe and Xu, 1996), where the marginals are esti-
mated first (see details below). Given {F(xi)}, we can then
estimate the parameters of each local copula independently
of the others, using a standard gradient based approach.

To learn the structure G of a CBN, we use the score-based
approach commonly used in the BN community. Briefly,
starting with the empty network, we perform a greedy
search for a beneficial structure via evaluation of local
modifications to the current structure (add/delete/reverse an
edge). The search is guided by a model selection score that
balances the log-likelihood of the model and its complexity

score(G : D) = `(D : θ̂,G)− PenM (G),

where θ̂ are the maximum likelihood parameters that cor-
respond to the graph G, and PenM (G) is a penalty function
that depends on the structure of the graph and number of
instances M in D but not on the data itself. A common
model selection score is the Bayesian Information Criterion
(Schwarz, 1978) for which PenM (G) = 1

2 log(M)|ΘG |,
where |ΘG | is the number of free parameters associated
with the graph structure G. See Koller and Friedman (2009)
for more details on this standard model selection approach
in the context of regular BNs.

3 Inference-less Learning

We now consider the estimation of a CBN model when
some of the values in the dataset D of M instances are
missing. As we will show, in this scenario CBNs do not
only offer a generalization advantage but also give rise to
computational advantages in the form of relatively efficient
inference-less learning.

3.1 Estimation of the Univariate Marginals

A central motivation for the use of CBNs and copulas in
general is that estimation of the univariate marginals is
relatively straightforward and can be carried out robustly.
To examine whether this assumptions holds in practice,
we evaluate the effect of missing (at random) data on the
marginals for the two very different real-life domains we
consider in our experimental evaluation.

To estimate F(xi) and the univariate densities f(xi) we use
a standard kernel-based approach (Parzen, 1962). Given
xi[1], . . . , xi[M ] i.i.d. samples of a random variable Xi,
the kernel density estimate of its probability density func-
tion is

f̂h(x) =
1

Mh

M∑
i=1

K

(
x− xi
h

)
where K is some kernel function and h is a smoothing pa-
rameter called the bandwidth. Qualitatively, the method ap-

proximates the distribution by placing small “bumps” (de-
termined by the kernel) at each data point. Thus, higher
density values will result in regions where there is a con-
centration of data samples. In this work we use the stan-
dard and mathematically convenient Gaussian kernel (see,
for example, Bowman and Azzalini (1997) for details).

Figure 2 shows the dependence of the non-parametric uni-
variate marginal estimates on the amount of data observed.
Appealingly, with as little as 5% of the data, the marginal
estimation is reasonable. It is in fact quite accurate for
the slightly better but still aggressively pessimistic scenario
where only 25% of the variables are observed in each in-
stance. These results suggest that in the face of missing at
random data, we should simply use the observed values for
estimation of the univariate marginal. Thus, just as in the
complete data scenario, we turn to the estimation of the lo-
cal copula functions of the CBN model assuming given (or
estimated) univariate marginals.

3.2 Estimation of the Local Copula Functions

When some of the values are missing in D, given the uni-
variate marginals, the log-likelihood function becomes

`(D : C) =

M∑
m=1

log

∫ [ N∏
i=1

Rci [m]f̂i[m]

]
dHm, (4)

where Hm are the variables not observed in the m’th
instance, and f̂ are the given or estimated univariate
marginals. f̂i[m] is a shorthand for the estimated f̂(xi)
where xi takes the value of Xi in the m’th instance if
observed or the value assigned to Xi in the integral if
not. Similarly, Rci [m] is a shorthand for the value that
Rci

(
F(xi), F(pai1), . . . , F(paiki

)
)

takes given the as-
signment to Hm in the integral and the observed variables
in the m’th instance.

As is the case for the standard non-Gaussian BN log-
likelihood function, evaluation and maximization of Eq. (4)
is difficult: since each variable appears in several local cop-
ula quotient terms, the log-likelihood does not decompose
according to the graph’s structure as is the case when the
data is fully observed. A common solution is to adopt an
expectation maximization (EM) approach (Dempster et al.,
1977). This, however, requires that we compute, for each
instance m, the posterior f(Hm | O[m],M) of the hidden
variables in the instance Hm given the observed onesO[m]
and the current modelM. For all but Gaussian continuous
graphical models, this task can be quite costly as it requires
high dimensional integration.2

An appealing alternative is to construct a workable lower
bound on the log-likelihood function and optimize the

2We also tried an EM approach using a Gibbs-like Metropolis-
Hastings inference procedure (see (Koller and Friedman, 2009,
Chapter 14)). However, the approach proved computationally
prohibitive even for our smaller 12 variables dataset.
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Figure 2: Marginal density functions for 4 randomly chosen variables from the Wine and Crime datasets (see Section 4)
with 5% of the values observed (dotted red), 25% of the values observed (dashed blue) and all values observed (solid
black). The robustness of the marginal density estimates is evident even when 95% of the values are missing.

parameters with respect to this bound. Appealingly, a
straightforward way to do so without the tools of varia-
tional inference arises from the fact that CBNs contain an
explicit representation of the univariate marginals:

Theorem 3.1: Let C be a copula network model over X
andD be a dataset ofM instances. Then the log-likelihood
function can be bounded from below using

`(D : C) ≥
M∑

m=1

N∑
i=1

∫ [(∏
H∈Hi

m
f̂(h)

)
log (Rci [m])

]
dHi

m

+
M∑

m=1

∑
Xi /∈Hm

log f̂(xi[m]), (5)

where we use Hi
m = Hm ∩ {Xi,Pai} to denote the vari-

ables not observed in the i’th family in the m’th instance.

Proof: We start by rewriting the term of the log-likelihood
function of Eq. (4) that corresponds to the m’th instance:

`m(D : C) =

log
∫ [ (∏N

i=1Rci [m]
)(∏

H∈Hm
f̂(h)

)]
dHm +Am

where the constant Am absorbs the marginals of the ob-
served variables and equals

∑
Xi /∈Hm

log f̂(xi[m]) (last
term in Eq. (5)). Now, since f̂(h) is a density, we can apply

Jensen’s inequality repeatedly for each H ∈ Hm and write

`m(D : C)

≥
∫ [( ∏

H∈Hm

f̂(h)

)
log

(
N∏
i=1

Rci [m]

)]
dHm +Am

=

N∑
i=1

∫ [( ∏
H∈Hm

f̂(h)

)
log (Rci [m])

]
dHm +Am.

Finally, since Rci [m] does not depend on variables in Hm

that are not in Hi
m, we can write

=
N∑
i=1

 ∏
H/∈Hi

m

∫
f̂(h)dH

×
∫ [ ∏

H∈Hi
m

f̂(h)

 log (Rci [m])

]
dHi

m

+Am

=

N∑
i=1

∫ [ ∏
H∈Hi

m

f̂(h)

 log (Rci [m])

]
dHi

m +Am,

The last line follows from the fact that f̂(h) is a density.

Our lower bound, similarly to energy-based variational ap-
proximations (see next section) decomposes according to
the network structure and estimation can now be carried
out independently for each local copula. Importantly, as
we discuss in the next section, computation of our bound is
significantly more efficient than its variational counter-part,
facilitating practical high-dimensional learning.



3.3 A Variational Energy Perspective

Given a set of observed variables Y ⊂ X , we are in-
terested in computing f̃X (x) = f(X = x | Y = y).
In this case, even for BNs where computation of fX (x)
(with x a complete instance) is straightforward, computa-
tion of f̃X (x) = fX (x)/f(Y = y) is typically difficult,
and amounts to the computation of the likelihood function
f(Y = y). In the variational approach for approximate
inference (Jordan et al., 1998), we use an auxiliary den-
sity qX (x) of a convenient form to approximate the less
tractable f̃X (x). For any choice of qX (x) we attempt to
find q∗X (x) that minimizes the Kullback-Leibler divergence
(Kullback and Leibler, 1951) between qX (x) and our target
f̃X (x). Excluding terms that do not depend on qX (x), we
can equivalently maximize the following functional

E [qX (x), fX (x)] = IEqX (x)[log fX (x)− log qX (x)]. (6)

Eq. (6), called the energy functional, is also (for any qX (x))
a lower bound on the log-likelihood function and is tight
only if qX (x) equals to f̃X (x). In the mean-field ap-
proximation qX (x) is chosen to have a simple product of
marginals form qX (x) =

∏
i q(xi). We can then search

for q∗X (x) that (locally) maximizes the energy functional
via a straightforward iterative procedure (see Jordan et al.
(1998); Koller and Friedman (2009), for more details).

Interestingly, although our lower bound was derived from a
direct application of Jensen’s inequality to the CBN density
without any additional assumptions, it turns out that our
objective is closely related to the mean field free energy
one. Using o[m] to denote the observed values in the m’th
instances, if one chooses

q∗(X = (o[m],h[m])) =
∏

H∈Hm

f̂(h[m])
∏

O/∈Hm

f̂(o[m])

(7)
then, since for the copula network model log f(x) −
log q∗(x) =

∑
i logRci

(
F(xi), F(pai1), . . . , F(paiki

)
)
,

the energy functional for the m′th instance is
E [q∗X (x), fX (x)] =

∑
i IEq∗X (x)[logRci [m]]. In this

case, the mean field energy functional is equal to our
lower bound of Eq. (5) minus

∑
Xi /∈Hm

log f̂(xi) for each
instance m.

What are the implications of this variational perspective of
our lower bound? We start by noting that the additional
term in our bound does not depend on the local copula func-
tions. Thus, given q∗X (x), for optimization purposes we can
simply use the standard energy functional. As an approxi-
mation to the log-likelihood function, our objective can be
either inferior or superior to the energy functional, depend-
ing on the peakedness of the marginal distributions. In our
experimental evaluation we did not observe any conclusive
advantage to either objective.

The obvious question is then why choose q∗X (x) as we did
and not the one that maximizes E [qX (x), fX (x)] and is

thus guaranteed to provide a better lower bound for the
log-likelihood function.3 The answer to this question is
two-fold. First, finding the optimum of E [qX (x), fX (x)]
is difficult and the mean-field iterations only provide a lo-
cally optimal solution. Second and most importantly, our
choice of q∗X (x) as the product of the given (or estimated)
marginals circumvents the need for the mean field itera-
tions as the needed marginals are an explicit part of the
CBN representation. For continuous non-Gaussian mod-
els where mean-field inference can be quite costly, our
approach can be crucial for facilitating learning of high-
dimensional CBNs (see Section 4).

4 Experimental Evaluation

We assess the effectiveness of our approach for density
estimation by comparing CBNs and BNs learned for two
markedly different real-life datasets:

• Wine Quality. 11 physiochemical properties and a
sensory quality (0-10) variable for the red variant of
the Portuguese ”Vinho Verde” wine (Cortez et al.,
2009). Dataset includes measurements from 1599
tastings over a period of three years.

• Crime. The communities and crime dataset from the
UCI machine learning repository including 100 vari-
ables ranging from mean household size to percentage
of kids born outside of a marriage. Included are values
for 1994 communities across the U.S.

For BNs, we use a linear Gaussian conditional density
where each variable is distributed as a Gaussian whose
mean is a linear function of its parent’s values. For this
model, exact inference can be carried out in closed form.
We also tried learning Bayesian Networks with a more
expressive Sigmoid Gaussian conditional density for each
variable. This, however, led to inferior generalization per-
formance for the 12 variable Wine dataset (results not re-
ported for clarity) and was computationally prohibitive for
the 100 variable Crime dataset. For CBNs, we use the uni-
form correlation Gaussian copula of Eq. (2). We use stan-
dard Gaussian kernel density estimation for the univariate
densities as described in Section 3.1. The structure of both
the Bayesian Network and CBN models was learned using
the same greedy procedure described in Section 2.3

We start with a quantitative evaluation of the average log-
probability per instance of the train and test data given the
learned model BN and CBN models. All results reported
below are for 10 random splits into equal train/test sets.
Variables were randomly and independently hidden in each
instance. All figures show the average performance as well
as the 10− 90% range (error bars).

3Note that such a qX (x) generally does not equal to the prod-
uct of marginals of fX (x) and is in fact more peaked. See, for
example, Koller and Friedman (2009), Chapter 11.
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Figure 3: Train (left) and test (right) set performance for the 12 variable Wine dataset of a linear Gaussian BN and a
CBN with a single parameter uniform correlation Gaussian local copula (the performance of the Sigmoid BN model was
slightly inferior to the linear BN while taking an order magnitude longer to learn). Shown is the average log-probability
per instance of 10 random runs as well as the 10 − 90% range (error-bars). (top) shows performance as a function of
the fraction of missing variables for tree structured networks; (bottom) shows performance as a function of the number of
parents allowed for each variable in the network structure with two values randomly hidden in each instance. The structure
for all models was learned using a standard greedy procedure and the BIC model selection score.

Figure 3(top) shows the train and test performance (y-axis)
for the Wine dataset as a function of the fraction of missing
values in each instance, where both the CBN and BN mod-
els were constrained to a tree structure. The superiority of
the copula network model is evident and consistent. Note
that the advantage is quite significant as an improvement of
1 in the y-axis is equal to each test instance being twice as
likely on average. Not surprisingly, as the number of miss-
ing values in each instance grows, the CBN models suffers
to a greater extent since, unlike the BN model, it relies on
an approximation of the log-likelihood learning objective.
Yet, even when 25% of the values are not observed, the
advantage of the CBN model is substantial.

To show that the advantage of the CBN model does not de-
pend on the fact that the model was constrained to a tree
structure, Figure 3(bottom) compares the train and test per-
formance as a function of the number of parents allowed
in the network, with 2/12 values randomly hidden in each
instance. Once again, the advantage of the CBN model
is evident and consistent. Note that the BN benefits to a
greater extent from the increase in the model complexity

than the CBN model. This should not come as a surprise
since the CBN model has a single parameter for each vari-
able regardless of the number of parents allowed, while the
number of parameters for each variable in the linear Gaus-
sian BN equals to the number of parents of the variable in
the network plus 2. Obviously, more expressive copulas
may lead to greater generalization advantages.

To get a qualitative sense of the advantage of the CBN
model, Figure 4 compares empirical values from the test
data with samples generated for pairs of variables from the
learned BN and CBN models. For the ’physical density’
and ’alcohol’ variables (top), the samples generated from
the CBN model (middle) are somewhat better than those
generated from the BN model (right) when compared to
the empirical distribution (left), but not dramatically so.
However, for the ’residual sugar’ and ’physical density’
pair (bottom), where the empirical dependence is far from
Gaussian, the advantage of the CBN representation clearly
manifests. We recall that the CBN model uses a simple
Gaussian copula so that the advantage is rooted in the dis-
tortion of the input to the copula created by the kernel-
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Figure 4: Qualitative illustration of the dependency learned for the Wine dataset for two pairs of variables: ’physical
density’ and ’alcohol level’ (top); ’residual sugar’ and ’physical density’ (bottom). Compared is the empirical distribution
of values in the test data (left) with samples generated from the learned CBN (middle) and BN (right) models. To eliminate
the effect of differences in structure, the CBN model was forced to use the structure learned for the BN model which
contains the network fragment ’residual sugar’→ ’physical density’→ ’alcohol level’.

based univariate representation. With a choice of a domain
specific and more expressive copula, we can expect further
qualitative and quantitative advantages.

Figure 5 shows the train and test performance (y-axis)
for the significantly more challenging 100 variable Crime
dataset as a function of the fraction of missing variables in
each instance. With 5% and 10% missing values in each
instances, the CBN model still performs significantly bet-
ter both on train and test data. However, as the number of
missing values increases, performance degrades and with
20% missing values it is actually better to use a simple lin-
ear Gaussian BN. This should not come as a surprise as the
BN model has an important a-priori advantage: exact infer-
ence can be carried out in closed form making estimation
more robust in the face of missing data. The lesson here
is general - naive models with exact inference can over-
come “better” ones when many values are missing and the
quality of inference becomes crucial. That said, it is likely
that the CBN model can do better if a copula that is bet-
ter fitted to the application is used (recall that in here, for
demonstrative purposes, we used one of the simplest cop-
ula functions in the literature). Indeed, part of the strength
of the CBN model is that unlike BNs where the choice of
the parameterization has a significant impact on our ability
to use the model, the vast majority of copula functions are
equally “friendly” in terms of computations.

5 Discussion and Future Work

We presented a novel method for multivariate continu-
ous density estimation with missing at random data. By
leveraging on the unique form of Copula Bayesian Net-
works, we derived an energy-like lower-bound on the log-
likelihood function that can then be used as an approximate
learning objective. Importantly, our bound does not require
costly inference and facilitates estimation of complex con-
tinuous densities in practice. We applied our approach to
two real-life scenarios where a non-Gaussian BN model
was either ineffective or computationally prohibitive.

Recently, other works have considered a combination of
copulas and graphical models. Kirshner (2007) suggested a
mixture of tree construction of bivariate copulas. Liu et al.
(2010) describe as undirected non-parametric framework
that is specific to the multivariate Gaussian copula. Aside
from the differences in representation from CBNs, both of
these works, as indeed the vast majority of copula litera-
ture, do not consider the general (non-Gaussian) problem
of estimation in the face of missing data, which in turn re-
lies on our ability to perform posterior computations.

To the best of our knowledge, ours is the first general pur-
pose approach for copula-based density estimation in the
face of missing (at random) data. Importantly, the decom-
posable form of our learning objective does not depend on
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Figure 5: Train (left) and test (right) set performance for the 100 variable Crime dataset of a linear Gaussian BN and a
CBN with a single parameter uniform correlation Gaussian local copula. Learning a Sigmoid BN model for this dataset
proved computationally prohibitive. Shown is the average log-probability per instance of 10 random runs as well as the
10− 90% range (error-bars) as a function of the fraction of missing variables.

the specific copula used. In addition, by taking advantage
of the CBN representation, our procedure is more efficient
than a similar one for standard non-linear BNs. Thus, the
CBN model is unique in that greater expressiveness and im-
proved generalization do not necessarily come at the cost of
computational demands. We believe that application ori-
ented exploration of different local copula functions will
further enhance the ramifications of this phenomenon.

An obvious question of interest is whether the CBN model
provides computational advantages if we require more ac-
curate posterior approximations. A related question is how
to adapt our approach to the scenario where the pattern of
missing values is not random, and in particular in the face
of completely hidden variables. Another direction of inter-
est is the possibility of leveraging on the copula parameter-
ization in orthogonal directions. For example, it would be
useful to see whether structure learning can be made sub-
stantially more efficient by applying approximate-before-
exact model selection approaches (Friedman et al., 1999;
Elidan et al., 2007) to the Copula Bayesian Network model.
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