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Abstract
With the increased availability of data for complex domains, it is desirable to learn Bayesian net-
work structures that are sufficiently expressive for generalization while at the same time allow for
tractable inference. While the method of thin junction trees can, in principle, be used for this pur-
pose, its fully greedy nature makes it prone to overfitting, particularly when data is scarce. In this
work we present a novel method for learning Bayesian networks of bounded treewidth that employs
global structure modifications and that is polynomial both in the size of the graph and the treewidth
bound. At the heart of our method is a dynamic triangulation that we update in a way that facilitates
the addition of chain structures that increase the bound on the model’s treewidth by at most one. We
demonstrate the effectiveness of our “treewidth-friendly” method on several real-life data sets and
show that it is superior to the greedy approach as soon as the bound on the treewidth is nontrivial.
Importantly, we also show that by making use of global operators, we are able to achieve better
generalization even when learning Bayesian networks of unbounded treewidth.
Keywords: Bayesian networks, structure learning, model selection, bounded treewidth

1. Introduction

Recent years have seen a surge of readily available data for complex and varied domains. Accord-
ingly, increased attention has been directed towards the automatic learning of large scale proba-
bilistic graphical models (Pearl, 1988), and in particularto the learning of the graph structure of a
Bayesian network. With the goal of making predictions or providing probabilistic explanations, it is
desirable to learn models that generalize well and at the same time have low inference complexity
or a small treewidth (Robertson and Seymour, 1987).

Chow and Liu (1968) showed that the optimal Markov or Bayesian network can be learned
efficiently when the underlying structure of the network is constrained to be a tree. Learning the
structure of general Bayesian networks, however, is computationally difficult (Dagum and Luby,
1993), as is the learning of simpler structures such as poly-trees (Dasgupta, 1999) or even uncon-
strained chains (Meek, 2001). Several works try to generalize the work of Chow and Liu (1968)
either by making assumptions about the generating distribution (e.g., Narasimhan and Bilmes, 2003;
Abbeel et al., 2006), by searching for a local maxima of a mixture of trees model (Meila and Jor-
dan, 2000), or by providing an approximate method that is polynomial in the size of the graph but
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exponential in the treewidth bound (e.g., Karger and Srebro, 2001; Chechetka and Guestrin, 2008).
In the context of general Bayesian networks, Bach and Jordan(2002) propose a local greedy ap-
proach that upper bounds the treewidth of the model at each step. Because evaluating the bound
on the treewidth of a graph is super-exponential in the treewidth (Bodlaender, 1996), their approach
relies on heuristic techniques for producing tree-decompositions (clique trees) of the model at hand,
and uses that decomposition as an upper bound on the true treewidth of the model. This approach,
like standard structure search, does not provide guarantees on the performance of the model, but is
appealing in its ability to efficiently learn Bayesian networks with an arbitrary treewidth bound.

While tree-decomposition heuristics such as the one employed by Bach and Jordan (2002) are
efficient and useful on average, there are two concerns when using such a heuristic in a fully greedy
manner. First, even the best of heuristics exhibits some variance in the treewidth estimate (see,
for example, Koster et al., 2001) and thus a single edge modification can result in a jump in the
treewidth estimate despite the fact that adding a single edge to the network can increase the true
treewidth by at most one. More importantly, most structure learning scores (e.g., BIC, MDL, BDe,
BGe) tend to learn spurious edges that result in overfitting when the number of samples is relatively
small, a phenomenon that is made worse by a fully greedy approach. Intuitively, to generalize well,
we want to learn bounded treewidth Bayesian networks where structure modifications are globally
beneficial (contribute to the score in many regions of the network).

In this work we propose a novel approach for efficiently learning Bayesian networks of bounded
treewidth that addresses these concerns. At the heart of ourmethod is the idea of dynamically updat-
ing a valid moralized triangulation of our model in a particular way, and using that triangulation to
upper bound the model’s treewidth. Briefly, we use a novel triangulation procedure that is treewidth-
friendly: the treewidth of the triangulated graph is guaranteed to increase by at most one when an
edge is added to the Bayesian network. Building on the singleedge triangulation, we are also able
to characterize sets of edges thatjointly increase the treewidth of the triangulation by at most one.
We make use of this characterization of treewidth-friendlyedge sets in a dynamic programming ap-
proach that learns the optimal treewidth-friendly chain with respect to a node ordering. Finally, we
learn a bounded treewidth Bayesian network by iteratively augmenting the model with such chains.

Importantly, instead of local edge modifications, our method progresses by making use of chain
structure operators that are more globally beneficial, leading to greater robustness and improving
our ability to generalize. At the same time, we are able toguaranteethat the bound on the model’s
treewidth grows by at most one at each iteration. Thus, our method resembles the global nature of
the method of Chow and Liu (1968) more closely than the thin junction tree approach of Bach and
Jordan (2002), while being applicable in practice to any desired treewidth.

We evaluate our method on several challenging real-life data sets and show that our method
is able to learn richer models that generalize better on testdata than a greedy variant for a range
of treewidth bounds. Importantly, we show that even when models with unbounded treewidth are
learned, by employing global structure modification operators, we are better able to cope with the
problem of local maxima in the search and learn models that generalize better.

The rest of the paper is organized as follows. After briefly discussing background material
in Section 2, we provide a high-level overview of our approach in Section 3. In Section 4 we
present our treewidth-friendly triangulation procedure in detail, followed by a multiple edge update
discussion in Section 5. In Section 6 we show how to learn a treewidth-friendly chain given a node
ordering and in Section 7 we propose a practical node ordering that is motivated by the properties of
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our triangulation procedure. We evaluate the merits of our method in Section 8 and conclude with a
discussion in Section 9.

2. Background

In this section we provide a basic review of Bayesian Networks as well as introduce the graph
theoretic concepts of treewidth-decompositions and treewidth.

2.1 Bayesian Networks

Consider a finite setX = {X1, . . . ,Xn} of random variables. ABayesian network(Pearl, 1988) is
an annotated directed acyclic graph that encodes a joint probability distribution overX . Formally,
a Bayesian network overX is a pairB = 〈G,Θ〉. The first component,G = (V ,E), is a directed
acyclic graph whose verticesV correspond to the random variables inX . The edgesE in the
graph represent direct dependencies between the variables. The graphG represents independence
properties that are assumed to hold in the underlying distribution: eachXi is independent of its non-
descendants given its parentsPai ⊂ X denoted by(Xi ⊥ NonDescendantsi | Pai). The second
component,Θ, represents the set of parameters that quantify the network. Each node is annotated
with aconditional probability distributionP (Xi | Pai), representing the conditional probability of
the nodeXi given its parents inG, defined by the parametersΘXi|Pai

. A Bayesian network defines
a unique joint probability distribution overX given by

P (X1, . . . ,Xn) =

n
∏

i=1

P (Xi | Pai).

A topological orderingOT of variables with respect to a Bayesian network structure isan ordering
where each variable appears before all of its descendants inthe network.

Given a Bayesian network model, we are interested in the taskof probabilistic inference, or
evaluating queries of the formPB(Y | Z) whereY andZ are arbitrary subsets ofX . This task
is, in general, NP-hard (Cooper, 1990), except whenG is tree structured. The actual complexity
of inference in a Bayesian network (whether by variable elimination, by belief propagation in a
clique tree, or by cut-set conditioning on the graph) is proportional to itstreewidth(Robertson and
Seymour, 1987) which, roughly speaking, measures how closely the network resembles a tree (see
Section 2.2 for more details).

Given a network structureG, the problem of learning a Bayesian network can be stated as
follows: given a training setD = {x[1], . . . ,x[M ]} of instances ofX ⊆ X , we want to learn
parameters for the network. In theMaximum Likelihoodsetting we want to find the parameter
valuesθ that maximize the log-likelihood function

log P (D | G,θ) =
∑

m

log P (x[m] | G,θ).

This function can be equivalently (up to a multiplicative constant) written asIE
P̂
[log P (X | G,θ)]

whereP̂ is the empirical distribution inD. When all instances inD are complete (that is, each
training instance assigns values to all of the variables), estimating themaximum likelihoodparame-
ters can be done efficiently using a closed form solution for many choices of conditional probability
distributions (for more details see Heckerman, 1998).
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Learning the structure of a network poses additional challenges as the number of possible struc-
tures is super-exponential in the number of variables and the task is, in general, NP-hard (Chicker-
ing, 1996; Dasgupta, 1999; Meek, 2001). In practice, structure learning is typically done using a
local search procedure, which examines local structure changes that are easily evaluated (add, delete
or reverse an edge). This search is usually guided by a scoring function such as the MDL principle
based score (Lam and Bacchus, 1994) or theBayesian score(BDe) (Heckerman et al., 1995). Both
scores penalize the likelihood of the data to limit the modelcomplexity. An important characteristic
of these scoring functions is that when the data instances are complete the score isdecomposable.
More precisely, a decomposable score can be rewritten as thesum

Score(G : D) =
∑

i

FamScoreXi
(Pai : D).

whereFamScoreXi
(Pai : D) is thelocal contribution ofXi to the total network score. This term

depends only on values ofXi andPaXi
in the training instances.

Chow and Liu (1968) showed that maximum likelihood trees canbe learned efficiently via a
maximum spanning tree whose edge weights correspond to the empirical information between the
two variables corresponding to the edge’s endpoints. Theirresult can be easily generalized for any
decomposable score.

2.2 Tree-Decompositions and Treewidth

The notions of tree-decompositions (or clique trees) and treewidth were introduced by Robertson
and Seymour (1987).1

Definition 2.1: A tree-decomposition of an undirected graphH = (V ,E) is a pair({C i}i∈T ,T )
with {Ci}i∈T a family of subsets ofV , one for each node ofT , andT a tree such that

•
⋃

i∈T Ci = V .

• for all edges(v,w) ∈ E there exists ani ∈ T with v ∈ Ci andw ∈ Ci.

• for all i, j, k ∈ T : if j is on the (unique) path fromi to k in T , thenCi ∩Ck ⊆ Cj.

The treewidth of a tree-decomposition({C i}i∈T ,T ) is defined to bemaxi∈T |Ci| − 1. The
treewidth TW (H) of an undirected graphH is the minimum treewidth over all possible tree-
decompositions ofH. An equivalent notion of treewidth can be phrased in terms ofa graph that is
a triangulation ofH.

Definition 2.2: An induced pathP = p1—p2 . . . pL in an undirected graphH is a path such that for
every non-adjacentpi, pj ∈ P there is no edge(pi—pj) inH. An induced (non-chordal) cycle is an
induced path whose endpoints are the same vertex.

Definition 2.3: A triangulated or chordal graph is an undirected graph that has no induced cycles.
Equivalently, it is an undirected graph in which every cycleof length greater than three contains a
chord.

1. The properties defining a tree-decomposition are equivalent to the correspondingfamily preservingand running
intersectionproperties of clique trees introduced by Lauritzen and Spiegelhalter (1988) at around the same time.
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It can be easily shown (Robertson and Seymour, 1987) that thetreewidth of a given triangulated
graph is the size of the maximal clique of the graph minus one.The treewidth of an undirected
graphH is then equivalently the minimum treewidth over all possible triangulations ofH.

For the underlying directed acyclic graph of a Bayesian network, the treewidth can be charac-
terized via a triangulation of the moralized graph.

Definition 2.4: A moralized graphM of a directed acyclic graphG is an undirected graph that
includes an edge(i—j) for every edge(i → j) in G and an edge(p—q) for every pair of edges
(p→ i), (q → i) in G.

The treewidth of a Bayesian network graphG is defined as the treewidth of its moralized graphM,
and corresponds to the complexity of inference in the model.It follows that the maximal clique
of any moralized triangulation ofG is an upper bound on the treewidth of the model, and thus its
inference complexity.2

3. Learning Bounded Treewidth Bayesian Networks: Overview

Our goal is to develop an efficient algorithm for learning Bayesian networks with an arbitrary
treewidth bound. As learning the optimal such network is NP-hard (Dagum and Luby, 1993), it
is important to note the properties that we would like our algorithm to have. First, we would like
our algorithm to beprovablypolynomial in the number of variablesand in the desired treewidth.
Thus, we cannot rely on methods such as that of Bodlaender (1996) to verify the boundedness of our
network as they are super-exponential in the treewidth and are practical only for small treewidths.
Second, we want to learn networks that are non-trivial. Thatis, we want to ensure that we do not
quickly get stuck in local maxima due to the heuristic employed for bounding the treewidth of our
model. Third, similar to the method of Chow and Liu (1968), wewant to employ global structure
operators that are optimal in some sense. In this section we present a brief high-level overview
of our algorithm. In the next sections we provide detailed description of the different components
along with proof of correctness and running time guarantees.

At the heart of our method is the idea of using a dynamically maintained moralized triangulated
graph to upper bound the treewidth of the current Bayesian network. When an edge is added to
the Bayesian network we update this (moralized) triangulated graph in a particular manner that is
not only guaranteed to produce a valid triangulation, but that is also treewidth-friendly. That is, our
update is guaranteed to increase the size of the maximal clique of the triangulated graph, and hence
the treewidth bound, by at most one. As we will see, the correctness of our treewidth-friendly edge
update as well as the fact that we can carry it out efficiently will both directly rely on the dynamic
nature of our method. We discuss our edge update procedure indetail in Section 4.

An important property of our edge update is that we can characterize the parts of the network
that are “contaminated” by the update by using the notion of blocks (bi-connected components) in
the triangulated graph. This allows us to define sets of edgesthat arejointly treewidth-friendly. That
is, these edge sets are guaranteed to increase the treewidthof the triangulated graph by at most one
when all edges in the set are added to the Bayesian network structure. We discuss multiple edge
updates in Section 5.

2. It also follows that the size of a family (a node and its parents) provides a lower bound on the treewidth, although we
will not make use of this property in our work.
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Figure 1: The building blocks of our method for learning Bayesian networks of bounded treewidth
and how they depend on each other.

Building on the characterization of treewidth-friendly sets, we propose a dynamic programming
approach for efficiently learning the optimal treewidth-friendly chain with respect to a node order-
ing. We present this procedure in Section 6. To encourage chains that are rich in structure (have
many edges), in Section 7 we propose a block shortest-path node ordering that is motivated by the
properties of our triangulation procedure.

Finally, we learn Bayesian networks with bounded treewidthby starting with a Chow-Liu tree
(Chow and Liu, 1968) and iteratively applying a global structure modification operator where the
current structure is augmented with a treewidth-friendly chain that is optimal with respect to the
ordering chosen. Appealingly, as each global modification can increase our estimate of the treewidth
by at most one, if our bound on the treewidth isK, at leastK such chains will be added before we
even face the problem of local maxima. In practice, as some chains do not increase the treewidth,
many more such chains are added for a given maximum treewidthbound. Figure 1 illustrates the
relationship between the different components of our approach.

Algorithm (1) shows pseudo-code of our method. Briefly, Line4 initializes our model with a
Chow and Liu (1968) tree; Line 8 produces a node ordering given the model at hand; Line 9 finds the
optimal chain with respect to that ordering; and Line 10 augments the current model with the new
edges. We then use our treewidth-friendly edge update procedure to perform the moralization and
triangulation onM+ for each edge added to the Bayesian networkG (Line 12). Once the maximal
clique size reaches the treewidth boundK, we continue to add edges greedily until no more edges
can be added without increasing the treewidth (Line 16).

Theorem 3.1:Given a treewidth boundK, Algorithm (1) runs in time polynomial in the number of
variables andK.
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Algorithm 1 : Learning A Bayesian Network with Bounded Treewidth

Input : D // training set1

K // maximum treewidth2

Output : G // a graph structure with treewidth at most K3

G ←maximum scoring spanning tree4

M+ ← undirected skeleton ofG5

k ← 16

while k < K and positive scoring edges existdo7

O ← node ordering givenG andM+ // Algorithm (7)8

C ← maximum scoring chain with respect toO // Algorithm (6)9

G ← G ∪ C10

foreach (i→ j) ∈ C do11

M+ ← EdgeUpdate(M+, (i→ j)) // Algorithm (3)12

end foreach13

k ← maximal clique size ofM+14

end15

Greedily add edges toG that do not increase treewidth beyondK16

return G17

We will prove this result gradually using the developments of the next sections. Note that we
will show that our method is guaranteed to be polynomial bothin the size of the graphand the
treewidth bound. Thus, like the greedy thin junction tree approach of Bach and Jordan (2002), it
can be used to learn a Bayesian networks given an arbitrary treewidth bound. It is also important
to note that, as in the case of the thin junction tree method, the above result is only useful if the
actual Bayesian network learned is expressive enough to be useful for generalization. As we will
demonstrate in Section 8, by making use of global treewidth-friendly updates, our method indeed
improves on the greedy approach and learns models that are rich and useful in practice.

4. Treewidth-Friendly Edge Update

In this section we consider the basic building block of our method: the manner in which we update
the triangulated graph when a single edge is added to the Bayesian network structure. Throughout
this section we will build on the dynamic nature of our methodand make use of the valid moralized
triangulation graph that was constructed before adding an edge(s → t) to the Bayesian network
structure. We will start by augmenting it with(s—t) and any edges required for moralization. We
will then triangulate the graph in a treewidth-friendly way, increasing the size of the maximal clique
in the triangulated graph by at most one. For clarity of exposition, we start with a simple variant of
our triangulation procedure in Section 4.1 and refine it in Section 4.2.

4.1 Single-source Triangulation

To gain intuition into how the dynamic nature of our update isuseful, we use the notion of induced
paths or paths with no shortcuts (see Section 2), and make explicit the following obvious fact.
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Algorithm 2 : SingleSourceEdgeUpdate: Update ofM+ when adding(s→ t) to G

Input : M+ // triangulated moralized graph of G1

(s→ t) // edge to be added to G2

Output : M+
(s→t) // a triangulated moralized graph of G ∪ (s→ t)3

M+
(s→t) ←M

+ ∪ (s—t)4

foreach p ∈ Pat do5

M+
(s→t) ←M

+
(s→t) ∪ (s—p) // moralization6

end foreach7

foreach nodev on an induced path betweens andt ∪Pat inM+ do8

M+
(s→t) ←M

+
(s→t) ∪ (s—v)9

end foreach10

return M+
(s→t)11

s

t

p

t

ps

t

ps

t

ps

(a) Bayesian network (b) Addition of (c) Addition of (d) Addition of the
G ∪ (s→ t) (s—t) toM+ moralizing edges triangulating edges

(line 4) (lines 5-7) (lines 8-10)

Figure 2: Example showing the application of the single-source triangulation procedure of Algo-
rithm (2) to a simple graph. The treewidth of the original graph is one, while the graph
augmented with(s→ t) has a treewidth of two (maximal clique of size three).

Observation 4.1: Let G be a Bayesian network structure and letM+ be a moralized triangulation
of G. LetM(s→t) beM+ augmented with the edge(s—t) and with the edges(s—p) for every
parentp of t in G. Then, every non-chordal cycle inM(s→t) involvess and eithert or a parent oft
and an induced path between the two vertices.

Stated simply, if the graph was triangulated before the addition of (s → t) to the Bayesian
network, then we only need to triangulate cycles created by the addition of the new edge or those
forced by moralization. This observation immediately suggests the straight-forwardsingle-source
triangulation outlined in Algorithm (2): add an edge(s—v) for every nodev on an induced path
betweens andt or s and a parentp of t before the edge update. Figure 2 shows an application of the
procedure to a simple graph. Clearly, this naive method results in a valid moralized triangulation of
G ∪ (s→ t). Surprisingly, we can also show that it is treewidth-friendly.

Theorem 4.2: The treewidth of the output graphM+
(s→t) of Algorithm (2) is greater than the

treewidth of the input graphM+ by at most one.
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Proof: Let C be the nodes in any maximal cliqueM+. We consider the minimal set of edges
required to increase the size ofC by more than one and show that this set cannot be a subset of the
edges added by our single-source triangulation. In order for the clique to grow by more than one
node, at least two nodesi andj not originally inC must become connected to all nodes inC. Since
there exists at least one nodek ∈ C that is not adjacent toi and similarly there exists at least one
nodel ∈ C not adjacent toj, both edges(i—k) and(j—l) are needed to form the larger clique.
There are two possibilities illustrated below (the dotted edges are needed to increase the treewidth
by two and all other edges betweeni, j and the current maximal clique are assumed to exist):

C

i j

k, l
C

i j

k l

(a) (i—j) does not exist (b)(i—j) exists

• (i—j) does not exist (a). In this casek and l can be the same node but the missing edge
(i—j) is also required to form the larger clique.

• (i—j) exists (b). In this casek andl cannot be the same node or the original clique was not
maximal sinceC ∪ i ∪ j \ k would have formed a larger clique. Furthermore one ofk or l
must not be connected to bothi andj otherwisei—j—k—l—i forms a non-chordal cycle
of length four contradicting our assumption that the original graph was triangulated. Thus, in
this case either(i—l) or (j—k) are also required to form the larger clique.

In both scenarios, at least two nodes have two incident edgesand the three edges needed cannot all
be incident to a single vertex. Now consider the triangulation procedure. Since, by construction,
all edges added in Algorithm (2) emanate froms, the above condition (requiring two nodes to have
two incident edges and the three edges not all incident to a single vertex) is not met and the size of
the maximal clique in the new graph cannot be larger than the size of the maximal clique inM+ by
more than one. It follows that the treewidth of the moralizedtriangulated graph cannot increase by
more than one.

One problem with the proposed single-source triangulation, despite it being treewidth-friendly,
is the fact that so many vertices are connected to the source node making the triangulations shallow
(the length of the shortest path between any two nodes is small). While this is not a problem when
considering a single edge update, it can have an undesirableeffect on future edges and increases the
chances of the formation of large cliques. As an example, Figure 3 shows a simple case where two
successive single-source edge updates increase the treewidth by two while an alternative approach
increases the treewidth by only one. In the next section, we present a refinement of the single-source
triangulation that is motivated by this example.
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(a) Chain network (b) Triangulation after (c) Triangulation after (d) Alternative
(v1 → v6) is added (v2 → v5) is added triangulation

Figure 3: Example demonstrating that the single-source edge update of Algorithm (2) can be prob-
lematic for later edge additions. (a) shows a simple six nodes chain Bayesian network; (b)
a single-source triangulation when(v1 → v6) is added to the network with a treewidth of
two; (c) a single-source triangulation when in addition(v2 → v5) is added to the model
with a treewidth of three; (d) an alternative triangulationto (b). This triangulation already
includes the edge(v2—v5) and the moralizing edge(v2—v4) and thus is also a valid
moralized triangulation after(v2 → v5) has been added, but has a treewidth of only two.

4.2 Alternating Cut-vertex Triangulation

To refine the single-source triangulation discussed above with the goal of addressing the problem
exemplified in Figure 3 we make use of the concepts of cut-vertices, blocks, and block trees (see,
for example, Diestel, 2005).

Definition 4.3: A block, or biconnected component, of an undirected graph isa set of connected
nodes that cannot be disconnected by the removal of a single vertex. By convention, if the edge
(u—v) is in the graph thenu andv are in the same block. Vertices that separate (are in the intersec-
tion of) blocks are called cut-vertices.

It follows directly from the definition that between every two nodes in a block (of size greater than
two), there are at least two distinct paths, that is, a cycle.There are also no simple cycles involving
nodes in different blocks.

Definition 4.4: A block treeB of an undirected graphH is a graph with nodes that correspond both
to cut-vertices and to blocks ofH. The edges in the block tree connect any block nodeBi with a
cut-vertex nodevj if and only if vj ∈ Bi inH.

It can be easily shown that the above connectivity conditionindeed forces a tree structure and that
this tree is unique (see Figure 4 for an example). In addition, any path inH between two nodes
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(a) Bayesian network,G (b) A possible triangulated
graph,M+

(c) Unique block tree,B

Figure 4: Example of a Bayesian network with a correspondingmoralized triangulated graph and
the unique block tree. Boxes in the block tree denote cut-vertices, ellipses denote blocks.

in different blocks passes through all the cut-vertices along the path between the blocks inB. An
important consequence that directly follows from the result of Dirac (1961) is that an undirected
graph whose blocks are triangulated is overall triangulated.

We can now describe our improved treewidth-friendly triangulation outlined in Algorithm (3)
and illustrated via an example in Figure 5. First, the triangulated graph is augmented by the edge
(s—t) and any edges needed for moralization (Figure 5(b) and (c)).Second, ifs andt are not in
the same block, a block level triangulation is carried out bystarting froms and zig-zagging across
the cut-vertices along the unique path between the blocks containings andt and its parents in the
block tree (Figure 5(d)). Next, within each block along the path (not containings or t), a chord
is added between the “entry” and “exit” cut-vertices along theblock path, thereby short-circuiting
any othernode paththrough the block. In addition, within each such block we perform a single-
source triangulation with respect tos′ by adding an edge(s′—v) between the first cut-vertexs′ and
any nodev on an induced path betweens′ and the second cut-vertext′. The block containings
is treated the same as other blocks on the path with the exception that the short-circuiting edge is
added betweens and the first cut-vertex along the path froms to t. For the block containingt and
its parents, instead of adding a chord between the entry cut-vertex andt, we add chords directly
from s to any nodev (within the block) that is on aninduced pathbetweens andt (or parents oft)
(Figure 5(e)). This is required to prevent moralization andtriangulation edges from interacting in a
way that will increase the treewidth by more than one (see Figure 5(f) for an example). Ifs andt
happen to be in the same block, then we only triangulate the induced paths betweens andt, that is,
the last step outlined above. Finally, in the special case that s andt are indisconnectedcomponents
of G, the only edges added are those required for moralization.

We now show that this revised edge update is a valid triangulation procedure and that it is also
treewidth-friendly. To do so we start with the following observations that are a direct consequence
of the definition of a block and block tree.
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Algorithm 3 : EdgeUpdate: Update ofM+ when adding(s→ t) to G

Input : M+ // triangulated moralized graph of G1

O // node ordering2

(s→ t) // edge to be added to G3

Output : M+
(s→t) // a triangulated moralized graph of G ∪ (s→ t)4

B ← block tree ofM+5

M+
(s→t) ←M

+ ∪ (s—t)6

foreach p ∈ Pat do7

M+
(s→t) ←M

+
(s→t) ∪ (s—p) // moralization8

end foreach9

// triangulate (cut-vertices) between blocks
C = {c1, . . . , cM} ← sequence of cut-vertices on the path froms to t ∪Pat in block treeB10

Add (s—cM ), (cM —c1), (c1—cM−1), (cM−1—c2), . . . toM+
(s→t)11

// triangulate nodes within blocks on path from s to t ∪Pat

E ← {(s—c1), (c1—c2), . . . , (cM−1—cM )}12

foreach edge(s′—t′) ∈ E do13

M+
(s→t) ←M

+
(s→t) ∪ (s′—t′)14

foreach nodev on an induced path betweens′ andt′ in theoriginal block containing15

bothdo
M+

(s→t) ←M
+

(s→t) ∪ (s′—v)16

end foreach17

end foreach18

// triangulate s with nodes in block containing t ∪Pat

foreach nodev on an induced path betweens andt ∪Pat in thenew block containing them19

do
M+

(s→t) ←M
+

(s→t) ∪ (s—v)20

end foreach21

return M+
(s→t)22

Observation 4.5: (Family Block). Let u be a node in a Bayesian networkG and letPau be the
set of parents ofu. Then the block tree for any moralized triangulated graphM+ of G has a unique
block containing{u,Pau}.

Observation 4.6: (Path Nodes).LetB = ({Bi} ∪ {cj},T ) be the block tree ofM+ with blocks
{Bi} and cut-vertices{cj}. Let s andt be nodes in blocksBs andBt, respectively. Ift is a cut-
vertex then letBt be the (unique) block that also containsPat. If s is a cut-vertex, then chooseBs

to be the block containings closest toBt in T . Then a nodev is on a path froms to t or from s to
a parent oft if and only if it is in a block that is on the unique path fromBs to Bt.

Figure 4(c) shows an example of a block tree for a small Bayesian network. Here, for example,
selectings to be the nodev6 and t to be the nodev10 in G, it is clear that all paths betweens
andt include only the vertices that are in blocks along the uniqueblock path betweenBs andBt.
Furthermore, every path betweens andt passes through all the cut-vertices on this block path, that
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(a) Bayesian network,G
augmented with(s→ t)

(b) Moralized graph
augmented with(s—t)

(c) Addition of moralizing
edges toPat

(d) Addition of between-block
zigzag edges

(e) Addition of within-block
triangulation edges (Complete

triangulation froms)

(f) An alternative final
triangulation fromcM

Figure 5: Example showing our triangulation procedure (b)-(e) fors andt in different blocks. (The
blocks are{s, v1}, {v1, cM}, and{cM , v2, v3, p1, p2, t} with corresponding cut-vertices
v1 andcM ). The original graph has a treewidth of two, while the graph augmented with
(s → t) has treewidth three (maximal clique of size four). An alternative triangulation
(f), connectingcM to t, however, would result in a clique of size five{s, cM , p1, p2, t}.

is, {v2, v1, v9}. We can now use these properties to show that our edge update procedure produces
a valid triangulation.

Lemma 4.7: If M+ is a valid moralized triangulation of the graphG then Algorithm (3) produces
a moralized triangulationM+

(s→t) of the graphG(s→t) ≡ G ∪ (s→ t).

Proof: SinceM+ was triangulated, every cycle of length greater than or equal to four in G(s→t) is
the result of the edge(s—t) or one of the moralizing edges, together with an induced path(path
with no shortcuts) between the endpoints of the edge. We consider three cases:

• s and t are disconnected inM+: There are no induced paths betweens andt so the only
edges required are those for moralization. These edges do not produce any induced cycles.

• s and t are in the same block:The edge(s—t) does not create a new block and all simple
cycles that involve boths andt must be within the block. Thus, by construction, the edges
added in Line 16 triangulate all newly introduced induced cycles. If the parents oft are in the
same block ass andt, the same reasoning holds for all induced paths between a parentp of
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t ands. Otherwise,t is a cut-vertex between the block that contains its parents and the block
that containss. It follows that all paths (including induced ones) from a parent oft to s pass
throught and the edges added for thes, t-block triangulate all newly created induced cycles
that result from the moralizing edges.

• s and t are not in the same block: As noted in Observation 4.6, all paths inM+ from s
to t or a parent oft pass through the unique cut-vertex path from the block containing s to
the block containingt and its parents. The edges added in Line 14 short-circuit thein-going
s′ and out-goingt′ of each block creating a path containing only cut-vertices betweens and
t. Line 11 triangulates this path by forming cycles of length three containings′, t′ and some
other cut-vertex. The only induced cycles remaining are contained within blocks and contain
the newly added edge(s′—t′) or involve the edge betweens and the last cut-vertex(s—cM )
and one of the edges betweens andt or a parent oft. It follows that within-block triangulation
with respect tos′ andt′ will shortcut the former induced cycles, and the edges addedfrom s
in Line 20 will shortcut the later induced cycles.

To complete the proof, we need to show that any edge added froms (or s′) to an induced nodev
does not create new induced cycles. Any such induced cycle would have to include an induced path
from the endpoints of the edge added and thus would have been asub-path of some induced cycle
that includes boths andv. This cycle would have already been triangulated by our procedure.

Having shown that our update produces a valid triangulation, we now prove that our edge update
is indeed treewidth-friendly and that it can increase the treewidth of the moralized triangulated graph
by at most one.

Theorem 4.8: The treewidth of the output graphM+
(s→t) of Algorithm (3) is greater than the

treewidth of the input graphM+ by at most one.

Proof: As shown in the proof of Theorem 4.2, the single-source triangulation within a block is guar-
anteed not to increase the maximal clique size by more than one. In addition, from the properties of
blocks it follows directly that the inner block triangulation does not add edges that are incident to
nodes outside of the block. It follows that all the inner block single-source triangulations indepen-
dently effect disjoint cliques. Thus, the only way that the treewidth of the graph can further increase
is via the zig-zag edges. Now consider two cliques in different blocks. Since our block level zig-zag
triangulation only touches two cut-vertices in each block,it cannot join two cliques of size greater
than two into a single larger one. In the simple case of two blocks with two nodes (a single edge) and
that intersect at a single cut-vertex, a zig-zag edge can indeed increase the treewidth by one. In this
case, however, there is no within-block triangulation and so the overall treewidth cannot increase by
more than one.

4.3 Finding Induced Nodes

We finish the description of our edge update (Algorithm (3)) by showing that it can be carried out
efficiently. That is, we have to be able to efficiently find the vertices onall induced paths between
two nodes in a graph. In general, this task is computationally difficult as there are potentially
exponentially many such paths between any two nodes. To copewith this problem, we again make
use of the dynamic nature of our method.

The idea is simple. As implied by Observation 4.1, any induced path betweens′ and t′ in a
triangulated graph will be part of an induced cycle if(s′—t′) is added to the graph. Furthermore,
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Algorithm 4 : InducedNodes: compute set of nodes on induced path betweens′ andt′ inM+

Input : M+ // moralized triangulated graph1

s′, t′ // two nodes in M+2

Output : I // set of nodes on induced paths between s′ and t′3

H ← block (subgraph) ofM+ ∪ (s′—t′) containings′ andt′4

I ← ∅5

while edges being addeddo6

// maximum cardinality search
X ← all nodes inH excepts′7

Y ← {s′}8

while X 6= ∅ do9

Findv ∈ X with maximum number of neighbors inY10

X ← X \ {v} andY ← Y ∪ {v} // remove from X, add to Y11

if there existsu,w ∈ Y such that(u—w) /∈ H then12

I ← I ∪ {u, v,w}13

Add edges(s′—u), (s′—v) and(s′—w) toH14

Restart maximum cardinality search15

end16

end17

end18

return I19

after adding(s′—t′) to the graph,everycycle detected will involve an induced path between the two
nodes. Using this observation, we can make use of the abilityof the maximum cardinality search
algorithm (Tarjan and Yannakakis, 1984) to iteratively detect non-chordal cycles.

The method is outlined in Algorithm (4). At each iteration weattempt to complete a maximum
cardinality search starting froms′ (Line 7 to Line 17). If the search fails, we add the node at which
it failed, v, together with its non-adjacent neighboring nodes{u,w} to the set of induced nodes and
augment the graph with triangulating edges froms′ to each of{u, v,w}. If the search completes
then we have successfully triangulated the graph and hence found all induced nodes. Note that using
the properties of blocks and cut-vertices, we only need to consider the subgraph that is the block
created after the addition of(s′—t′) to the graph.

Lemma 4.9: (Induced Nodes).LetM+ be a triangulated graph and lets′ andt′ be any two nodes
inM+. Then Algorithm (4) efficiently returns all nodes on any induced path betweens′ and t′ in
M+, unless those nodes are connected directly tos′.

Proof: During a maximum cardinality search, if the next node chosenv has two neighborsu and
w that are not connected then the tripletu—v—w is part of an induced cycle. As the graph was
triangulated before adding the edge(s′—t′), all such cycles must contains′ and adding(s′—v)
obviously shortcuts such a cycle. This is also true forv andv′ that are on the same induced cycle.
It remains to show that the edges added do not create new induced cycle. Such an induced cycle
would have to include the edge(s′—v) as well as an induced path betweens′ andv. However, such
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a path must have been part of another cycle wherev was an induced node and hence would have
been triangulated.

Thus Algorithm (4) returns exactly the set of nodes on induced paths froms′ to t′ thats′ needs
to connect to in order to triangulate the graphM+ ∪ (s—t). The efficiency of our edge update
procedure of Algorithm (3) follows immediately as all otheroperations are simple.

5. Multiple Edge Updates

In this section we define the notion of acontaminated set, or the subset of nodes that are incident to
edges added toM+ in Algorithm (3), and characterize sets of edges that are jointly guaranteed not
to increase the treewidth of the triangulated graph by more than one. We begin by formally defining
the termscontaminateandcontaminated set.

Definition 5.1: We say that a nodev is contaminated by the addition of the edge(s → t) to G if
it is incident to an edge added to the moralized triangulatedgraphM+ by a call to Algorithm (3).
The contaminated set for an edge(s→ t) is the set of all nodesv that would be contaminated (with
respect toM+) by adding(s→ t) to G, includings, t, and the parents oft.

Figure 6 shows some examples of contaminated sets for different edge updates. Note that our
definition of contaminated set only includes nodes that are incident tonewedges added toM+ and,
for example, excludes nodes that were already connected tos before(s → t) is added, such as the
two nodes adjacent tos in Figure 6(b).

Using the separation properties of cut-vertices, one mightbe tempted to claim that if the con-
taminated sets of two edges overlap at most by a single cut-vertex then the two edges jointly increase
the treewidth by at most one. This however, is not true in general as the following example shows.

Example 5.2: Consider the Bayesian network shown below in (a) and its triangulation (b) after
(v1 → v4) is added, increasing the treewidth from one to two. (c) is thesame for the case when
(v4 → v5) is added to the network. Despite the fact that the contaminated sets (solid nodes) of two
edge additions overlap only by the cut-vertexv4, (d) shows that jointly adding the two edges to the
graph results in a triangulated graph with a treewidth of three.

(a) (b) (c) (d)

The problem in the above example lies in the overlap ofblock pathsbetween the endpoints of the two
edges, a property that we have to take into account while characterizing sets of treewidth-friendly
edges.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Some examples of contaminated sets (solid nodes) that are incident to edges added
(dashed) by Algorithm (3) for different candidate edge additions(s→ t) to the Bayesian
network shown in (a). In (b), (c), (d), and (e) the treewidth is increased by one; In (f) the
treewidth does not change.

Theorem 5.3: (Treewidth-friendly pair). LetG be a Bayesian network graph structure andM+ be
its corresponding moralized triangulation. Let(s → t) and(u → v) be two distinct edges that are
topologically consistent withG. Then the addition of the edges toG does not increase the treewidth
ofM+ by more than one ifoneof the following conditions holds:

• the contaminated sets of(s→ t) and(u→ v) are disjoint.

• the endpoints of each of the two edges are not in the same blockandthe block paths between
the endpoints of the two edges do not overlapand the contaminated sets of the two edge
overlap at a single cut-vertex.

Proof: As in the proof of Algorithm (3) a maximal clique can grow by two nodes only if three
undirected edges are added so that at least two nodes are incident to two of them. Obviously, this
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Algorithm 5 : ContaminatedSet: compute contaminated set for(s→ t)

Input : G // Bayesian network1

M+ // moralized triangulated graph2

(s→ t) // candidate edge3

Output : Cs,t // contaminated set for (s→ t)4

Cs,t ← {s, t} ∪ {p ∈ Pat | (s—p) /∈M+}5

foreach edge(s′—t′) ∈ E in procedure Algorithm (3) with(s′—t′) /∈M+ do6

I = InducedNodes(M+, {s′, t′})7

Cs,t ← Cs,t ∪ {v ∈ I | (s
′—v) /∈M+}8

end foreach9

H ← {s} and block containingt ∪Pat10

H ← H ∪ {(s—p) | p ∈ Pat} ∪ (s—c) wherec is the cut-vertex closest tos in the block11

containingt
I = InducedNodes(H, {s, t})12

Cs,t ← Cs,t ∪ {v ∈ I | (s
′—v) /∈M+}13

return Cs,t14

can only happen if the contamination sets of the two edge updates are not completely disjoint. Now,
consider the case when the two sets overlap by a single cut-vertex. By construction all triangulating
edges added are along the block path between the endpoints ofeach edge. Since the block paths of
the two edge updates do not overlap there can not be an edge between a node in the contaminated
set of(s → t) and the contaminated set of(u → v) (except for the single cut-vertex). But then
no node from either contaminated set can become part of a clique involving nodes from the other
contaminated set. Thus there are no two nodes that can be added to the same clique. It follows that
the maximal clique size ofM+, and hence the treewidth bound, cannot grow by more than one.

The following result is an immediate consequence.

Corollary 5.4: (Treewidth-friendly set). Let G be a Bayesian network graph structure andM+

be its corresponding moralized triangulation. If{(si → ti)} is a set of edges so that every pair of
edges satisfies the condition of Theorem 5.3 then adding all edges toG can increase the treewidth
bound by at most one.

The above result characterizes treewidth-friendly sets. In the search for such sets that are useful
for generalization (see Section 6), we will need be able to efficiently compute the contaminated set
of candidate edges. At the block level, adding an edge between s andt in G can only contaminate
blocks between the block containings and that containingt and its parents in the block tree for
M+ (Observation 4.6). Furthermore, identifying the nodes that are incident to moralizing edges
and edges that are part of the zigzag block level triangulation is easy. Finally, within a block, the
contaminated set is easily computed using Algorithm (4) forfinding the induced nodes between two
vertices. Algorithm (5) outlines this procedure. Its correctness follows directly from the correctness
of Algorithm (4) and the fact that it mirrors the edge update procedure of Algorithm (3).
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6. Learning Optimal Treewidth-Friendly Chains

We now want to build on the results of the previous sections tofacilitate the addition of global
moves that are both optimal in some sense and are guaranteed to increase the treewidth by at most
one. Specifically, we consider adding optimal chains that are consistent with some topological node
ordering. On the surface, one might question the need for a specific node ordering altogether if chain
global operators are to be used—given the result of Chow and Liu (1968), one might expect that
learning the optimal chain with respect toanyordering can be carried out efficiently. However, Meek
(2001) showed that learning such an optimal chain over a set of random variables is computationally
difficult. Furthermore, conditioning on the current model,the problem of identifying the optimal
chain is equivalent to learning the (unconditioned) optimal chain.3 Thus, during any iteration of our
algorithm, we cannot expect to find the overall optimal chain.

Instead, we commit to a single node ordering that is topologically consistent and learn the
optimal chainwith respect to that order. In this section we will complete the development of our
algorithm and show how we can efficiently learn chains that are optimal with respect to any such
ordering. In Section 7 we will also suggest a useful node ordering motivated by the characteristics
of contaminated sets. We start by formally defining the chains that we will learn.

Definition 6.1: A treewidth-friendly chainC with respect to a node orderingO is a chain with
respect toO such that the contamination conditions of Theorem 5.3 hold for the set of edges inC.

Given a treewidth-friendly chainC to be added for Bayesian networkG, we can apply the edge
update of Algorithm (3) successively to every edge inC to produce a valid moralized triangulation
of G ∪ C. The result of Theorem 5.4 ensures that the resulting moralized triangulation will have
treewidth at most one greater than the original moralized triangulationM+.

To find the optimal treewidth-friendly chain in polynomial time, we use a straightforward dy-
namic programming approach: the best treewidth-friendly chain that contains(Os → Ot) is the
concatenation of

• the best treewidth-friendly chain from the first node in the orderO1 toOF , the first ordered
node contaminated by the edge(Os → Ot)

• the edge(Os → Ot)

• the best treewidth-friendly chain starting fromOL, the last node contaminated by the edge
(Os → Ot), to the last node in the order,ON .

O1 OsOF OL ON

optimal chain optimal chain

Ot

We note that when the end nodes are not separating cut-vertices, we maintain a gap so that the
contamination sets are disjoint and the conditions of Theorem 5.3 are met.

3. Consider, for example, the star-network where a single node acts as parent to all other nodes (with no other edges),
then learning the optimal chain amounts to learning a chain over then − 1 children.
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Formally, we defineC[i, j] as the optimal chain whose contamination starts at or afterOi and
ends at or beforeOj . To find the optimal treewidth-friendly chain with respect to a node ordering
O for a Bayesian network withN variables, our goal is then to computeC[1, N ]. Using the short-
hand notationF to denote the first node ordered in the contamination set of(s→ t) andL to denote
the last ordered node in the contamination set, we can readily computeC[1, N ] via the following
recursive update principle

C[i, j] = max







maxs,t:F=i,L=j(s→ t) no split
maxk=i+1:j−1 C[i, k] ∪ C[k, j] split
∅ leave a gap

where the maximization is with respect to the score (e.g., BIC) of the structures considered. In
simple words, the maximum chain in any sub-sequence[i, j] in the node ordering is the maximum
of three alternatives: all edges whose contamination boundaries are exactlyi andj (no split); all
two chain combinations that are in the sub-sequence[i, j] and are joined at some nodei < k < j
(split); a gap betweeni andj in the case that there is no edge whose contamination is contained in
this range and that increases the score.

Algorithm (6) outlines a simple backward recursion that computesC[1, N ]. At each node, the
algorithm maintains a list of the best partial chains evaluated so far that contaminates nodes up to,
but not preceding, that node in the ordering. That is, the list of best partial chains is indexed by where
the contamination boundary of each chain starts in the ordering. By recursing backwards from the
last node, the algorithm is able to update this list by evaluating all candidate edgesterminatingat
the current node. It follows that, once the algorithm iterates past a nodet we have the optimal
chainstarting from that node. Thus, at the end of the recursion we are left with the optimal non-
contaminating chain starting from the first node in the ordering.

The recursion starts at Line 7. If for nodeOt the best chain starting from the succeeding node
Ot+1 is better than the best chain starting fromOt, we replace the best chain fromOt with the one
fromOt+1 simply leaving a gap in the chain (Line 8). Then, for every edge terminating atOt, we
find the first ordered nodeOF and the last ordered nodeOL that would be contaminated by adding
that edge. If the score for the edge plus the score for the bestpartial non-contaminating chain from
OF is better than the current best partial chain fromOL then we replace the best chain fromOL

with the one just found (Line 19).
With the ability to learn optimal chains with respect to a node ordering, we have completed the

description of all the components of our algorithm for learning bounded treewidth Bayesian network
outlined in Algorithm (1). Its efficiency is a direct consequence of our ability to learn treewidth-
friendly chains in time that is polynomial both in the numberof variables and in the treewidth at
each iteration. For completeness we now restate and prove Theorem 3.1.

Theorem 3.1:Given a treewidth boundK, Algorithm (1) runs in time polynomial in the number of
variables andK.

Proof: The initial Chow-Liu tree and its corresponding undirectedskeleton can be obtained in
polynomial time using a standard max-spanning-tree algorithm. The maximum scoring chain can
be computed in polynomial time (using Algorithm (6)) at eachiteration. As we proved, the same is
true of the triangulation procedure of Algorithm (3). All other steps are trivial. Since the algorithm
adds at least one edge per iteration it cannot loop for more thanK ·N iterations before exceeding a
treewidth ofK (whereN is the number of variables).
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Algorithm 6 : LearnChain: learn optimal non-contaminating chain with respect to topological
node ordering

Input : O // topological node ordering1

Output : C // non-contaminating chain2

// initialize dynamic programming data
for i = 1 to |O|+ 1 do3

bestChain[i]← ∅ // best chain from i-th node4

bestScore[i]← 0 // best score from i-th node5

end6

// backward recursion
for t = |O| down to 1 do7

if (bestScore[t + 1] > bestScore[t]) then8

bestChain[t]← bestChain[t + 1]9

bestScore[t]← bestScore[t + 1]10

end11

for s = 1 to t− 1 do // evaluate edges12

V ← contaminated set for candidate edge(Os → Ot)13

f ← first ordered node inV // must be ≤ s14

l← last ordered node inV // must be ≥ t15

if bestChain[l].lastand(Os → Ot) do not satisfy the conditions of Theorem 5.3then16

l← l + 1 // leave a gap17

end18

if (∆Score(Os → Ot) + bestScore[l] > bestScore[f ]) then19

bestChain[f ]← {(Os → Ot)} ∪ bestChain[l]20

bestScore[f ]← ∆Score(Os → Ot) + bestScore[l]21

end22

end23

end24

// return optimal non-contaminating chain
return bestChain[1]25

7. Block-Shortest-Path Ordering

In the previous sections we presented an algorithm for learning bounded treewidth Bayesian net-
works given any topological ordering of the variables. In order to make the most of our method, we
would like our ordering to facilitate rich structures that will have beneficial generalization proper-
ties. Toward that end, in this section we consider the practical matter of a concrete node ordering.
We will present a block shortest-path (BSP) node ordering that is motivated by the specific proper-
ties of our triangulation method.4

4. We also considered several other strategies for orderingthe variables. As none was better than the intuitive ordering
described here, we only present results for our block-shortest-path ordering.
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To make our node ordering concrete, since the contaminationresulting from edges added within
an existing block is limited to the block, we start by grouping together all nodes that are within a
block (cut-vertices that appear in multiple blocks are included in the first block chosen). Our node
ordering is then a topologically consistent ordering over the blocks combined with a topologically
consistent ordering over the nodes within each block. We usetopological consistency to facilitate as
many edges as possible though this is not required by the theory (and, in particular, Theorem 5.3).

We now consider how to order interchangeable blocks by taking into account that our triangula-
tion following an edge addition(s → t) only involves variables that are in blocks along the unique
path between the block containings and the block containingt and its parents. The following
example motivates a natural choice for this ordering.

Example 7.1: Consider a Bayesian network with root nodeR
and three branches:R → A1 → . . . → AL, R → B1 →
. . . → BN , andR → C1 → . . . → CM . If we add an edge
Ai → Bj to the network, then by the block contamination re-
sults, our triangulation procedure will touch (almost) every node
on the path betweenAi andBj . This implies that we can not
include additional edges of the typeBk → Cl in our chain since
the block path fromBk to R overlaps with the block path from
Bj to R. Note, however, that any edgeCp → Cq>p is still al-
lowed to be added since its contaminated set does not overlap
with that of Ai → Bj. Now, consider the two obvious topo-
logical node orderings:OBFS = (R,A1, B1, C1, A2, . . .) and
ODFS = (R,A1, . . . , AL, B1, . . . , BN , C1, . . .). Only the DFS
ordering, obtained by grouping theBi’s together, allows us to
consider such edge combinations.

Motivated by the above example to order interchangeable blocks, we use a block level depth-
first ordering. The question now is whether a further characterization of the contaminated set can
be provided in order to better order topologically interchangeable nodes within a block. To answer
this question we consider the following example.

Example 7.2: Consider the Bayesian network shown below whose underlyingundirected structure
is a valid moralized triangulation and forms a single block.Numbers in the boxes indicate the (undi-
rected) distance of each node fromr, a property that we make use of below.

rv2v1 v4v3

v6v5 v9v8v7

s t

0 112 2

1 112 2 33
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The single edge addition(s→ t) will contaminate every node in the block (other than those already
adjacent to it) since all nodes lie on induced paths betweens andt. However other edge additions,
such as(v3 → t) have a much smaller contamination set:{v3, t}.

Based on the above example, one may think that no within-block ordering can improve the
expected contamination of edges added, and that we may be forced to only add a single edge per
block, making our method greedier than we would like. Fortunately, there is a straightforward way
to characterize the within-block contamination set using the notion of shortest path length. LetG
be a Bayesian network over variablesX . We denote bydM

min (u, v) the minimum distance (shortest
path) between nodesu, v ∈ X inM+. We note the following useful properties ofdM

min (·, ·):

• dM
min (u, v) ≥ 0 with equality if and only ifu = v

• dM
min (u,w) + dM

min (v,w) ≥ dM
min (u, v) with equality if and only ifw is on the (possibly non-

unique) shortest path betweenu andv

• if u andv are disconnected inM+ then, by convention,dM
min (u, v) =∞

Theorem 7.3:Let r, s andt be nodes in some blockB (of size≥ 3) in the triangulated graphM+

with dM
min (r, s) ≤ dM

min (r, t). Then for anyv on an induced path betweens andt we have

dM
min (r, v) ≤ dM

min (r, t)

Proof: Since the nodes are all in the same block we know that there must be at least two paths
between any two nodes. Letp andq be the shortest paths from nodesr to s andr to t, respectively
(denotedr p

. . . s andr
q

. . . t). If p andq meet at some node other thanr then they will share the path
from that node tor (otherwise they cannot be shortest paths). Let such a sharednode furthest from
r ber′. ThendM

min (r, t) = dM
min (r, r′) + dM

min (r′, t) anddM
min (r, v) ≤ dM

min (r, r′) + dM
min (r′, v) so if the

result holds forr′ it holds for r. Without loss of generality assume that there is no suchr′. Now
consider the following cases:

• If q containsv thendM
min (r, v) = dM

min (r, t)− dM
min (v, t) < dM

min (r, t).

• If p containsv thendM
min (r, v) = dM

min (r, s)− dM
min (v, s) < dM

min (r, s) ≤ dM
min (r, t).

• Otherwisev is on some other (induced) path betweens andt. But nowr
p

. . . s . . . v . . . t
q

. . . r
forms a cycle of length≥ 4. SinceM+ is triangulated there must be an edge fromv to some
node onp or q. There cannot be an edge betweens and t or else there would not be any
induced paths betweens andt. But thendM

min (r, v) ≤ dM
min (r, t).
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Algorithm 7 : Block-Shortest-Path Ordering

Input : G // input Bayesian network1

M+ // corresponding moralized triangulation2

Output : O // an ordering X1, . . . ,XN3

O ← ∅4

OT ← topological ordering of the nodes inG5

OB ← depth-first search ordering of blocks inM+6

while OB 6= ∅ do7

B ← popOB8

R← cut-vertex ofB with lowestOT9

Push nodes inB toO in order of(OT , dM
min (R, ·))10

end11

return O12

(a) Bayesian Network,G (b) Block Tree,B (c) BSP Ordering

Figure 7: Concrete example of BSP ordering using the Bayesian network from Figure 4. Nodes in
parentheses are the same distance from the root cut-vertex and can be ordered arbitrarily.

We now use this result to order nodes according to their distance from the cut-vertex in the block
that connects it to the blocks already ordered (which we callthe root cut-vertex). Algorithm (7)
shows how our Block-Shortest-Path (BSP) ordering is constructed and Figure 7 demonstrates the
application of that ordering to a concrete example.

Finally, we note that the above ordering, while almost strict, still allows for variables that are
the same distance from the root cut-vertex of the block to be ordered arbitrarily. Indeed, as the
following example shows two nodes that are the same distancefrom the block cut-vertex can be
symmetrically contaminating. We break such ties arbitrarily.
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Example 7.4: Consider, again, the example network shown in Example 7.2. The set of nodes
{v2, v3, v6, v7, v8} are all the adjacent tor and so can be ordered arbitrarily. An edge fromv2 to
v8 (or vice versa) will contaminatev7. Likewise an edge fromv3 to v6 (or vice versa) will also
contaminatev7. It turns out that for any ordering of these nodes, it is always possible to add an
edge that will contaminate other nodes in the set. This is consistent with the contamination result of
Theorem 7.3 since these nodes are all equi-distant fromr.

8. Experimental Evaluation

In this section we perform experimental validation of our approach and show that it is beneficial
for learning Bayesian networks of bounded treewidth. Specifically, we demonstrate that by making
use of global structure modification steps, our approach leads to superior generalization. In order to
evaluate our method we compare against two strong baseline approaches.

The first baseline is an improved variant of the thin junctiontree approach of Bach and Jordan
(2002). We start, as in our method, with a Chow-Liu forest anditeratively add the single best scoring
edge. To make the approach as comparable to ours as possible,at each iteration, we triangulate the
model using either the maximum cardinality search or minimum fill-in heuristics (see, for example,
Koster et al., 2001), as well as using our treewidth friendlytriangulation, and take the triangulation
that results in a lower treewidth.5 As in our method, when the treewidth bound is reached, we
continue to add edges that improve the model selection scoreuntil no such edges can be found that
do not also increase the treewidth bound.

The second baseline is an aggressive structure learning approach that combines greedy edge
modifications with a TABU list (e.g., Glover and Laguna, 1993) and random moves. This approach
is not constrained by a treewidth bound. Comparison to this baseline allows us to evaluate the merit
of our method with respect to an unconstrained state-of-the-art search procedure.

We evaluate our method on four real-world data sets that are described below. Where relevant
we also compare our results to the results of Chechetka and Guestrin (2008).

8.1 Gene Expression

In our first experiment, we consider a continuous data set based on a study that measures the expres-
sion of the baker’s yeast genes in 173 experiments (Gasch et al., 2000). In this study, researchers
measured the expression of 6152 yeast genes in response to changes in the environmental condi-
tions, resulting in a matrix of173 × 6152 measurements. The measurements are real-valued and,
in our experiments, we learn sigmoid Bayesian networks using the Bayesian Information Criterion
(BIC) (Schwarz, 1978) for model selection. For practical reasons, we consider the fully observed
set of 89 genes that participate in general metabolic processes (Met). This is the larger of the two
sets used by Elidan et al. (2007), and was chosen since part ofthe response of the yeast to changes
in its environment is in altering the activity levels of different parts of its metabolism. We treat the
genes as variables and the experiments as instances so that the learned networks indicate possible
regulatory or functional connections between genes (Friedman et al., 2000).

Figure 8 shows test log-loss results for the 89 variable geneexpression data set as a function of
the treewidth bound. The first obvious phenomenon is that both our method (solid blue squares) and

5. We note that in all of our experiments there was only a smalldifference between the minimum fill-in and maximum
cardinality search heuristics for upper bounding the treewidth of the model at hand.
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Figure 8: Average test set log-loss per instance over five folds (y-axis) versus the treewidth bound
(x-axis) for the 89 variable gene expression data set. Compared are our method (solid blue
squares) with theThin junction tree approach (dashed red circles), and anAggressive
greedy approach of unbounded treewidth that also uses a TABUlist and random moves
(dotted black).

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

11

Iteration

Treewidth bound

Length of chain

Figure 9: Plot showing the number of edges (in the learned chain) added during each iteration for a
typical run with treewidth bound of 10 for the 89 variables gene expression data set. The
graph also shows our treewidth estimate at the end of each iteration.
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the greedy junction tree approach (dashed red circles) are superior to the aggressive baseline (dotted
black). As one might expect, the aggressive baseline achieves a higher BIC score on training data
(not shown), but overfits due to the scarcity of the data. By greedy edge addition (the junction tree
approach) or global chain addition (our approach), this overfitting is avoided. Indeed, a better choice
of edges, that is, ones chosen using a global operator, can lead to increased robustness and better
generalization. This is evident by the consistent superiority of our method (solid blue squares) over
the greedy variant (dashed red circles). Importantly, evenwhen the treewidth bound is increased
passed the saturation point our method surpasses both the thin junction tree approach of Bach and
Jordan (2002) and the aggressive search strategy. In this case, we are learning unbounded Bayesian
networks and all of the benefit comes from the global nature ofour structure modifications.

To qualitatively illustrate the progression of our algorithm from iteration to iteration, we plot
the number of edges in the chain (solid blue squares) and treewidth estimate (dashed red) at the end
of each iteration. Figure 9 shows a typical run for the 89 variable gene expression data set with
treewidth bound set to 10. Our algorithm aggressively adds many edges (making up an optimal
chain) per iteration until parts of the network reach the treewidth bound. At that point (iteration 24)
the algorithm resorts to adding the single best edge per iteration until no more edges can be added
without increasing the treewidth (or that have an adverse effect on the score). To appreciate the
non-triviality of some of the chains learned with 4, 5 or 7 edges, we recall that the example shows
edges addedafter a Chow-Liu model was initially learned. It is also worth noting that despite their
complexity, some chains do not increase the treewidth estimate and for a given treewidth boundK,
we typically have more thanK iterations (in this example 24 chains are added before reaching the
treewidth bound). The number of such iterations is still polynomially bounded as for a Bayesian
network withN variables adding more thanK ·N edges will necessarily result in a treewidth that
is greater thanK.

In order to verify the efficiency of our method we measured therunning time of our algorithm as
a function of treewidth bound. Figure 10 shows results for the 89 variable gene expression data set.
Observe that our method (solid blue squares) and the greedy thin junction tree approach (dashed red
circles) are both approximately linear in the treewidth bound. Appealingly, the additional computa-
tion required by our method is not significant and the differences between the two approaches are at
most 25%. This should not come as a surprise since the bulk of the time is spent on the collection
of sufficient statistics from the data.

It is also worthwhile to discuss the range of treewidths considered in the above experiment as
well as the Haplotype sequence experiment considered below. While treewidths of 30 and beyond
may seem excessive for exact inference, state-of-the-art exact inference techniques (e.g., Darwiche,
2001; Marinescu and Dechter, 2005) can often handle inference in such networks (for some exam-
ples see Bilmes and Dechter, 2006). Since, as shown in Figure8, it is beneficial to learn models with
large treewidth, methods such as ours for learning and the state-of-the-art techniques for inference
allow practitioners to push the envelope of the complexity of models learned for real applications.

8.2 The Traffic and Temperature Data Sets

We now compare our method to the mutual-information based LPACJT method for learning bounded
treewidth model of Chechetka and Guestrin (2008) (we compare to better of the variants presented
in that work). While providing theoretical guarantees (under some assumptions), their method is
exponential in the treewidth and cannot be used in a setting similar to the gene expression experi-
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Figure 10: Running time in minutes on the 89 variable gene expression data set (y-axis) as a func-
tion of treewidth bound (x-axis). The graph compares our method (solid blue squares)
with the thin junction tree approach (dashed red circles). The markers show times for
the 5 different fold runs for each treewidth while the line shows the average running
time.

ment above. Instead, we compare on the two discrete real-life data set considered in Chechetka and
Guestrin (2008). The temperature data is from a two-month deployment of 54 sensor nodes (15K
data points) (Deshpande et al., 2004) where each variable was discretized into 4 bins. The traffic
data set contains traffic flow information measured every fiveminutes in 32 locations in California
for one month (Krause and Guestrin, 2005). Values were discretized into 4 bins. For both data sets,
to make the comparison fair, we used the same discretizationand train/test splits as in Chechetka
and Guestrin (2008). Furthermore, as their method can only be applied to a small treewidth bound,
we also limited our model to a treewidth of two. Figure 11 compares the different methods. Both
our method and the thin junction tree approach significantlyoutperform the LPACJT on small sam-
ple size. This result is consistent with that reported in Chechetka and Guestrin (2008) and is due
to the fact that the LPACJT method does not naturally use regularization which is crucial in the
sparse-data regime. The performance of our method is comparable to the greedy thin junction tree
approach with no obvious superiority to either method. Thisshould not come as a surprise since
the fact that the unbounded aggressive approach is not significantly better suggests that the strong
signal in the data can be captured rather easily. In fact, Chechetka and Guestrin (2008) show that
even a Chow-Liu tree does rather well on these data sets (compare this to the gene expression data
set where the aggressive variant was superior even at a treewidth of four).

8.3 Haplotype Sequences

Finally we consider a more difficult discrete data set consisting of a sequence of binary single nu-
cleotide polymorphism (SNP) alleles from the Human HapMap project (Consortium, 2003). Our
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(a) Temperature (54 variables) (b) Traffic (32 variables)

Figure 11: Average test set log-loss per instance over five folds (y-axis) versus the number of
training instances (x-axis) for the temperature and trafficdata sets. Compared are our
method (solid blue squares), theThin junction tree approach (dashed red circles), an
Aggressivegreedy approach of unbounded treewidth that also uses a TABUlist and
random moves (dotted black), and the mutual-information based method of Chechetka
and Guestrin (2008) (dash-dot magenta diamonds). For all ofour methods except the
unboundedAggressive, the treewidth bound was set to two.

model is defined over 200 SNPs (variables) from chromosome 22of a European population consist-
ing of 60 individuals.6 In this case, there is a natural ordering of variables that corresponds to the
position of the SNPs in the DNA sequence. Figure 12 shows testlog-loss results when this ordering
is enforced (thicker lines) and when it is not (thinner) lines. Our small benefit over the greedy thin
junction tree approach of Bach and Jordan (2002) when the treewidth bound is non-trivial (>2)
grows significantly when we take advantage of the natural variable order. Interestingly, this same
order decreases the performance of the thin junction tree method. This should not come as a surprise
as the greedy method does not make use of a node ordering, while our method provides optimality
guarantees with respect to a variable ordering at each iteration. Whether constrained to the natural
variable ordering or not, our method ultimately also surpasses the performance of the aggressive
unbounded search approach.

9. Discussion and Future Work

In this work we presented a novel method for learning Bayesian networks of bounded treewidth
in time that is polynomial inboth the number of variables and the treewidth bound. Our method
builds on an edge update algorithm that dynamically maintains a valid moralized triangulation in a
way that facilitates the addition of chains that are guaranteed to increase the treewidth by at most
one. We demonstrated the effectiveness of our treewidth-friendly method on real-life data sets, and

6. We considered several different sequences along the chromosome with similar results.
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Figure 12: Average test set log-loss per data instance over five folds (y-axis) versus the treewidth
bound (x-axis) for the 200 variable Hapmap data set. The graph compares our method
(solid blue squares) with the greedy approach (dashed red circles), and an aggressive
greedy approach of unbounded treewidth that also uses a TABUlist and random moves
(dotted black). The thicker lines show the results for a fixedordering of the variables
according to the location along the DNA sequence. The thinner lines show the results
without any constraint on the node ordering.

showed that by using global structure modification operators, we are able to learn better models
than competing methods even when the treewidth of the modelslearned is not constrained.

Our method can be viewed as a generalization of the work of Chow and Liu (1968) that is
constrained to a chain structure but that provides an optimality guarantee (with respect to a node
ordering) at every treewidth. In addition, unlike the thin junction trees approach of Bach and Jordan
(2002), we also provide a guarantee that our estimate of the treewidth bound will not increase by
more than one at each iteration. Furthermore, we add multiple edges at each iteration, which in
turn allows us to better cope with the problem of local maximain the search. To our knowledge,
ours is the first method for efficiently learning bounded treewidth Bayesian networks with structure
modifications that are not fully greedy.

Several other methods aim to generalize the work of Chow and Liu (1968). Karger and Srebro
(2001) propose a method that is guaranteed to learn a good approximation of the optimal Markov
network given a treewidth bound. Their method builds on a hyper-graph that is exponential in the
treewidth bound. Chechetka and Guestrin (2008) also propose an innovative method with theoretical
guarantees on the quality of the learned model (given some mild assumptions on the generating
distribution), but in the context of Bayesian networks. However, like the approach of Karger and
Srebro (2001), the method is exponential in the treewidth bound. Thus, both approaches are only
practical for treewidths that are much smaller than the oneswe consider in this work. In addition,
the work of Chechetka and Guestrin (2008) does not naturallyallow for the use of regularization.
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This has significant impact on performance when the number oftraining samples is limited, as
demonstrated in Section 8.

Meila and Jordan (2000) suggested the use of a mixture of trees, generalizing the Chow-Liu
tree on an axis that is orthogonal to a more complex Bayesian network. They provide an efficient
method for obtaining a (penalized) likelihood local maximabut their work is limited to a particular
and relatively simple structure. Dasgupta (1999) suggested the use of poly-trees but proved that
learning the optimal poly-tree is computationally difficult. Other works study this question but in
the context where thetrue distributionis assumed to have bounded treewidth (e.g., Beygelzimer and
Rish, 2004; Abbeel et al., 2006, and references within).

Our method motivates several exciting future directions. It would be interesting to see to what
extent we could overcome the limitation of having to commit to a specific node ordering at each
iteration. While we provably cannot consider any node ordering, it may be possible to polynomially
provide a reasonable approximation. Second, it may be possible to refine our characterization of the
contamination that results from an edge update, which in turn may facilitate the addition of more
complex treewidth-friendly structures at each iteration.Finally, we are most interested in explor-
ing whether tools similar to the ones employed in this work could be used to dynamically update
the bounded treewidth structure that is the approximating distribution in a variational approximate
inference setting.
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