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Abstract

With the increased availability of data for complex domaihs desirable to learn Bayesian net-
work structures that are sufficiently expressive for gelimaion while at the same time allow for
tractable inference. While the method of thin junction $rean, in principle, be used for this pur-
pose, its fully greedy nature makes it prone to overfittirgtipularly when data is scarce. In this
work we present a novel method for learning Bayesian netswofbounded treewidth that employs
global structure modifications and that is polynomial batthie size of the graph and the treewidth
bound. At the heart of our method is a dynamic triangulatit tve update in a way that facilitates
the addition of chain structures that increase the bountd®mbdel’s treewidth by at most one. We
demonstrate the effectiveness of our “treewidth-friehdigthod on several real-life data sets and
show that it is superior to the greedy approach as soon astiedon the treewidth is nontrivial.
Importantly, we also show that by making use of global opesatwe are able to achieve better
generalization even when learning Bayesian networks obuntied treewidth.

Keywords: Bayesian networks, structure learning, model selectionnlded treewidth

1. Introduction

Recent years have seen a surge of readily available datarfgulex and varied domains. Accord-
ingly, increased attention has been directed towards tharedic learning of large scale proba-
bilistic graphical models (Pearl, 1988), and in particutathe learning of the graph structure of a
Bayesian network. With the goal of making predictions ovmtmg probabilistic explanations, it is
desirable to learn models that generalize well and at thedam® have low inference complexity
or a small treewidth (Robertson and Seymour, 1987).

Chow and Liu (1968) showed that the optimal Markov or Bayesiatwork can be learned
efficiently when the underlying structure of the network émstrained to be a tree. Learning the
structure of general Bayesian networks, however, is coatipually difficult (Dagum and Luby,
1993), as is the learning of simpler structures such as fpebs (Dasgupta, 1999) or even uncon-
strained chains (Meek, 2001). Several works try to germralie work of Chow and Liu (1968)
either by making assumptions about the generating disiitoge.g., Narasimhan and Bilmes, 2003;
Abbeel et al., 2006), by searching for a local maxima of a unxif trees model (Meila and Jor-
dan, 2000), or by providing an approximate method that ignmohial in the size of the graph but
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exponential in the treewidth bound (e.g., Karger and Sre2961; Chechetka and Guestrin, 2008).
In the context of general Bayesian networks, Bach and Jof@@0R2) propose a local greedy ap-
proach that upper bounds the treewidth of the model at eagh 8ecause evaluating the bound
on the treewidth of a graph is super-exponential in the tigtdwBodlaender, 1996), their approach
relies on heuristic techniques for producing tree-decaitions (clique trees) of the model at hand,
and uses that decomposition as an upper bound on the truedtie®f the model. This approach,
like standard structure search, does not provide guamaoteéhe performance of the model, but is
appealing in its ability to efficiently learn Bayesian netiswith an arbitrary treewidth bound.

While tree-decomposition heuristics such as the one eragltey Bach and Jordan (2002) are
efficient and useful on average, there are two concerns wéiag sauch a heuristic in a fully greedy
manner. First, even the best of heuristics exhibits somanee in the treewidth estimate (see,
for example, Koster et al., 2001) and thus a single edge neatih can result in a jump in the
treewidth estimate despite the fact that adding a single ¢olghe network can increase the true
treewidth by at most one. More importantly, most structeaahing scores (e.g., BIC, MDL, BDe,
BGe) tend to learn spurious edges that result in overfittihgmthe number of samples is relatively
small, a phenomenon that is made worse by a fully greedy aphprdntuitively, to generalize well,
we want to learn bounded treewidth Bayesian networks whenetare modifications are globally
beneficial (contribute to the score in many regions of thevagk).

In this work we propose a novel approach for efficiently l@agrBayesian networks of bounded
treewidth that addresses these concerns. At the heart ofethiod is the idea of dynamically updat-
ing a valid moralized triangulation of our model in a partaouvay, and using that triangulation to
upper bound the model’s treewidth. Briefly, we use a novahtyulation procedure that is treewidth-
friendly: the treewidth of the triangulated graph is guéead to increase by at most one when an
edge is added to the Bayesian network. Building on the sieddge triangulation, we are also able
to characterize sets of edges tfahtly increase the treewidth of the triangulation by at most one.
We make use of this characterization of treewidth-frieretlge sets in a dynamic programming ap-
proach that learns the optimal treewidth-friendly chaithwespect to a node ordering. Finally, we
learn a bounded treewidth Bayesian network by iterativatynaenting the model with such chains.

Importantly, instead of local edge modifications, our mdtpoogresses by making use of chain
structure operators that are more globally beneficial,itgatb greater robustness and improving
our ability to generalize. At the same time, we are ablguaranteethat the bound on the model’s
treewidth grows by at most one at each iteration. Thus, odhogeresembles the global nature of
the method of Chow and Liu (1968) more closely than the thircfion tree approach of Bach and
Jordan (2002), while being applicable in practice to anyrddgreewidth.

We evaluate our method on several challenging real-lifa dats and show that our method
is able to learn richer models that generalize better onda&ist than a greedy variant for a range
of treewidth bounds. Importantly, we show that even when etwodith unbounded treewidth are
learned, by employing global structure modification opestwe are better able to cope with the
problem of local maxima in the search and learn models thatngdize better.

The rest of the paper is organized as follows. After brieflgcdssing background material
in Section 2, we provide a high-level overview of our appfoat Section 3. In Section 4 we
present our treewidth-friendly triangulation procedurelétail, followed by a multiple edge update
discussion in Section 5. In Section 6 we show how to learneaiidth-friendly chain given a node
ordering and in Section 7 we propose a practical node orgié¢nat is motivated by the properties of
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our triangulation procedure. We evaluate the merits of oethod in Section 8 and conclude with a
discussion in Section 9.

2. Background

In this section we provide a basic review of Bayesian Netwak well as introduce the graph
theoretic concepts of treewidth-decompositions and ticktew

2.1 Bayesian Networks

Consider a finite set’ = { X1, ..., X,,} of random variables. Bayesian networkPearl, 1988) is
an annotated directed acyclic graph that encodes a joibvapility distribution overX’. Formally,

a Bayesian network oveY' is a pairB = (G, ©). The first componenty = (V, E), is a directed
acyclic graph whose verticeég correspond to the random variablesh The edgesE in the
graph represent direct dependencies between the varialibesgraphG represents independence
properties that are assumed to hold in the underlying Higidn: eachX; is independent of its non-
descendants given its parela; C X denoted by(X; L NonDescendanis Pa;). The second
component@, represents the set of parameters that quantify the netvigakh node is annotated
with a conditional probability distributionP(X; | Pa;), representing the conditional probability of
the nodeX;; given its parents i, defined by the parametegsy, p,,. A Bayesian network defines
a unique joint probability distribution oveY' given by

P(X1,...,X,) = [[ P(X; | Pay).
=1

A topological orderingOr of variables with respect to a Bayesian network structuemisrdering
where each variable appears before all of its descendatite imetwork.

Given a Bayesian network model, we are interested in the dagkobabilistic inference, or
evaluating queries of the forRg (Y | Z) whereY and Z are arbitrary subsets of. This task
is, in general, NP-hard (Cooper, 1990), except wes tree structured. The actual complexity
of inference in a Bayesian network (whether by variable lation, by belief propagation in a
clique tree, or by cut-set conditioning on the graph) is prapnal to itstreewidth(Robertson and
Seymour, 1987) which, roughly speaking, measures howIgltise network resembles a tree (see
Section 2.2 for more details).

Given a network structur€, the problem of learning a Bayesian network can be stated as
follows: given a training seD = {x[1],...,x[M]} of instances ofX C X, we want to learn
parameters for the network. In tidaximum Likelihoodsetting we want to find the parameter
values@ that maximize the log-likelihood function

log P(D | G,0) = ZlogP 11G,6).

This function can be equivalently (up to a multiplicativenstant) written a€£ 5 [log P(X | G, 6)]
where P is the empirical distribution irD. When all instances i® are complete (that is, each
training instance assigns values to all of the variablegjmnating themaximum likelihoogharame-
ters can be done efficiently using a closed form solution fanyrchoices of conditional probability
distributions (for more details see Heckerman, 1998).
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Learning the structure of a network poses additional chgle as the number of possible struc-
tures is super-exponential in the number of variables aadask is, in general, NP-hard (Chicker-
ing, 1996; Dasgupta, 1999; Meek, 2001). In practice, gstinectearning is typically done using a
local search procedure, which examines local structuregdsthat are easily evaluated (add, delete
or reverse an edge). This search is usually guided by a gcfuniction such as the MDL principle
based score (Lam and Bacchus, 1994) oBhgesian scor€BDe) (Heckerman et al., 1995). Both
scores penalize the likelihood of the data to limit the madehplexity. An important characteristic
of these scoring functions is that when the data instaneesanplete the score decomposable
More precisely, a decomposable score can be rewritten asithe

Score(G : D) = ZFamScoreXi(Pai : D).

(2

whereFamScorex, (Pa; : D) is thelocal contribution ofX; to the total network score. This term
depends only on values of; andPay; in the training instances.

Chow and Liu (1968) showed that maximum likelihood trees lsarearned efficiently via a
maximum spanning tree whose edge weights correspond tartpeieal information between the
two variables corresponding to the edge’s endpoints. Tresirlt can be easily generalized for any
decomposable score.

2.2 Tree-Decompositions and Treewidth

The notions of tree-decompositions (or clique trees) agevirdth were introduced by Robertson
and Seymour (1987).

Definition 2.1: A tree-decomposition of an undirected gragh= (V', E) is a pair({C; }ic7,7T)
with {C; };c7 a family of subsets oV, one for each node d&f, and7 a tree such that

L] UiET CZ - V
o for all edgesv, w) € E there exists an € 7 with v € C; andw € C;.

o foralli,j,k € 7T:if jis onthe (unique) path fromto k in 7, thenC; N C}, C C;.

The treewidth of a tree-decompositidfC'; }ic7, 7)) is defined to benax;c7 |C;| — 1. The
treewidth TW (H) of an undirected graph is the minimum treewidth over all possible tree-
decompositions of{. An equivalent notion of treewidth can be phrased in terms gfaph that is
a triangulation ofH.

Definition 2.2 An induced path® = p;—ps ... pr, in an undirected grapHK is a path such that for
every non-adjacent;, p; € P there is no edgép;—p;) in H. An induced (non-chordal) cycle is an
induced path whose endpoints are the same velitex.

Definition 2.3: A triangulated or chordal graph is an undirected graph thatro induced cycles.
Equivalently, it is an undirected graph in which every cyaldength greater than three contains a
chord.ll

1. The properties defining a tree-decomposition are eaernivab the correspondinfamily preservingand running
intersectionproperties of clique trees introduced by Lauritzen and @plealter (1988) at around the same time.
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It can be easily shown (Robertson and Seymour, 1987) thardkeiidth of a given triangulated
graph is the size of the maximal clique of the graph minus oftee treewidth of an undirected
graph™ is then equivalently the minimum treewidth over all possitllangulations of+.

For the underlying directed acyclic graph of a Bayesian ngtwthe treewidth can be charac-
terized via a triangulation of the moralized graph.

Definition 2.4: A moralized graphM of a directed acyclic grapty is an undirected graph that
includes an edgé—;j) for every edgg: — j) in G and an edgép—q) for every pair of edges
(p—1i),(¢g—14)ing.1

The treewidth of a Bayesian network gra@lis defined as the treewidth of its moralized graph

and corresponds to the complexity of inference in the moteiollows that the maximal clique

of any moralized triangulation of is an upper bound on the treewidth of the model, and thus its
inference complexity.

3. Learning Bounded Treewidth Bayesian Networks: Overview

Our goal is to develop an efficient algorithm for learning Bsign networks with an arbitrary
treewidth bound. As learning the optimal such network isiibd (Dagum and Luby, 1993), it
is important to note the properties that we would like ouodthm to have. First, we would like
our algorithm to beprovably polynomial in the number of variablemd in the desired treewidth.
Thus, we cannot rely on methods such as that of Bodlaendg6) 18 verify the boundedness of our
network as they are super-exponential in the treewidth amgiactical only for small treewidths.
Second, we want to learn networks that are non-trivial. Thawe want to ensure that we do not
quickly get stuck in local maxima due to the heuristic empbbyor bounding the treewidth of our
model. Third, similar to the method of Chow and Liu (1968), went to employ global structure
operators that are optimal in some sense. In this sectionresept a brief high-level overview
of our algorithm. In the next sections we provide detailedadiption of the different components
along with proof of correctness and running time guarantees

At the heart of our method is the idea of using a dynamicalljntained moralized triangulated
graph to upper bound the treewidth of the current Bayesianwark. When an edge is added to
the Bayesian network we update this (moralized) triangdlgraph in a particular manner that is
not only guaranteed to produce a valid triangulation, bat ihalso treewidth-friendly. That is, our
update is guaranteed to increase the size of the maximakctifithe triangulated graph, and hence
the treewidth bound, by at most one. As we will see, the coress of our treewidth-friendly edge
update as well as the fact that we can carry it out efficienili/bmth directly rely on the dynamic
nature of our method. We discuss our edge update proceddegdit in Section 4.

An important property of our edge update is that we can cleniae the parts of the network
that are “contaminated” by the update by using the notionlatks (bi-connected components) in
the triangulated graph. This allows us to define sets of etthgesrgointly treewidth-friendly. That
is, these edge sets are guaranteed to increase the treefiléhtriangulated graph by at most one
when all edges in the set are added to the Bayesian netwaidtige. We discuss multiple edge
updates in Section 5.

2. It also follows that the size of a family (a node and its pgsgprovides a lower bound on the treewidth, although we
will not make use of this property in our work.
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Find induced nodes
(Section 4.3; Algorithm 4)

Treewidth-friendly edge update: Contaminated set
bound increases by at most one (Algorithm 5)
(Section 4; Algorithm 3) 9

| ‘ I

[Multiple treewidth-friendly edges Block-SP ordering ]

(Section 5) (Section 7; Algorithm 7)

! —

Learn optimal treewidth-friendly chain
(Section 6; Algorithm 6)

v

Learn bounded treewidth Bayesian network
(Algorithm 1)

Figure 1. The building blocks of our method for learning Bsiga networks of bounded treewidth
and how they depend on each other.

Building on the characterization of treewidth-friendl\tseve propose a dynamic programming
approach for efficiently learning the optimal treewidtkefrdly chain with respect to a node order-
ing. We present this procedure in Section 6. To encourage<lhiaat are rich in structure (have
many edges), in Section 7 we propose a block shortest-path oxalering that is motivated by the
properties of our triangulation procedure.

Finally, we learn Bayesian networks with bounded treewldtistarting with a Chow-Liu tree
(Chow and Liu, 1968) and iteratively applying a global stame modification operator where the
current structure is augmented with a treewidth-friendiain that is optimal with respect to the
ordering chosen. Appealingly, as each global modificatanmincrease our estimate of the treewidth
by at most one, if our bound on the treewidth/is at least” such chains will be added before we
even face the problem of local maxima. In practice, as sorashdo not increase the treewidth,
many more such chains are added for a given maximum treewaihd. Figure 1 illustrates the
relationship between the different components of our aggro

Algorithm (1) shows pseudo-code of our method. Briefly, Léhmitializes our model with a
Chow and Liu (1968) tree; Line 8 produces a node orderinggive model at hand; Line 9 finds the
optimal chain with respect to that ordering; and Line 10 aegts the current model with the new
edges. We then use our treewidth-friendly edge update guoeedo perform the moralization and
triangulation onM* for each edge added to the Bayesian netwpikine 12). Once the maximal
clique size reaches the treewidth bouiidwe continue to add edges greedily until no more edges
can be added without increasing the treewidth (Line 16).

Theorem 3.1 Given a treewidth bound’, Algorithm (1) runs in time polynomial in the number of
variables andy.
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Algorithm 1: Learning A Bayesian Network with Bounded Treewidth

1lnput : D // training set
2 K /] maximumtreew dth
Output: G // a graph structure with treewidth at nmost K

w

G « maximum scoring spanning tree

M™T «— undirected skeleton af

k—1

while & < K and positive scoring edges exdt

O « node ordering gived and M ™ /1 Al gorithm (7)
C «— maximum scoring chain with respect@® // Al gorithm (6)
10 g—guc

11 | foreach(i — j) € Cdo

12 | M — EdgeUpdateft™, (i — j)) /1 Al gorithm(3)
13 end foreach

14 | k « maximal clique size oM+

15 end

16 Greedily add edges @ that do not increase treewidth beyoid

© 00 N o O »

17 return G

We will prove this result gradually using the developmeritthe next sections. Note that we
will show that our method is guaranteed to be polynomial botthe size of the grapland the
treewidth bound. Thus, like the greedy thin junction treprapch of Bach and Jordan (2002), it
can be used to learn a Bayesian networks given an arbitreewidth bound. It is also important
to note that, as in the case of the thin junction tree methwe above result is only useful if the
actual Bayesian network learned is expressive enough tedfelufor generalization. As we will
demonstrate in Section 8, by making use of global treewfidéimdly updates, our method indeed
improves on the greedy approach and learns models thatchrarrd useful in practice.

4. Treewidth-Friendly Edge Update

In this section we consider the basic building block of outhnd: the manner in which we update
the triangulated graph when a single edge is added to thesBayaetwork structure. Throughout
this section we will build on the dynamic nature of our metland make use of the valid moralized
triangulation graph that was constructed before addingdge & — ¢) to the Bayesian network
structure. We will start by augmenting it wits—¢) and any edges required for moralization. We
will then triangulate the graph in a treewidth-friendly wancreasing the size of the maximal clique
in the triangulated graph by at most one. For clarity of ekog we start with a simple variant of
our triangulation procedure in Section 4.1 and refine it iotiea 4.2.

4.1 Single-source Triangulation

To gain intuition into how the dynamic nature of our updatassful, we use the notion of induced
paths or paths with no shortcuts (see Section 2), and maltieiexpe following obvious fact.
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Algorithm 2: SingleSourceEdgeUpdate: Update/ef™ when addings — t) to G

1 Input : M™T /1 triangul ated noralized graph of §
2 (s = t) /1 edge to be added to G
3 Output: Mﬂsqt) /1 a triangul ated noralized graph of GU(s—t)

4 M+(s—>t) — M*Tu (S—t)

5 foreachp € Pa; do

6 | MT(py — MV _pyU(s—p)// noralization

7 end foreach

8 foreach nodev on an induced path betwearandt U Pa; in M™ do
9 ‘ M+(s—>t) — M+(s—>t) U (s—v)

10 end foreach

11 return M™*

(a) Bayesian network (b) Addition of (c) Addition of (d) Addin of the
GU(s—1) (s—t) to MT moralizing edges triangulating edges
(line 4) (lines 5-7) (lines 8-10)

Figure 2: Example showing the application of the singlerseuriangulation procedure of Algo-
rithm (2) to a simple graph. The treewidth of the originalgras one, while the graph
augmented witlis — t) has a treewidth of two (maximal clique of size three).

Observation 4.1: Let G be a Bayesian network structure and.et™ be a moralized triangulation
of G. Let M(,_; be M™ augmented with the edge—t) and with the edge$s—p) for every
parentp of ¢ in G. Then, every non-chordal cycle i ,_; involves s and eithert or a parent of
and an induced path between the two vertices.

Stated simply, if the graph was triangulated before thetiwidof (s — ¢) to the Bayesian
network, then we only need to triangulate cycles createchbyatdition of the new edge or those
forced by moralization. This observation immediately seglg the straight-forwardingle-source
triangulation outlined in Algorithm (2): add an edge—uv) for every nodev on an induced path
betweens andt or s and a parenp of ¢ before the edge update. Figure 2 shows an application of the
procedure to a simple graph. Clearly, this naive methodtsesua valid moralized triangulation of
G U (s — t). Surprisingly, we can also show that it is treewidth-frignd

Theorem 4.2: The treewidth of the output graph4+(s_,t) of Algorithm (2) is greater than the
treewidth of the input grapM™ by at most one.
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Proof: Let C be the nodes in any maximal cliquet™. We consider the minimal set of edges
required to increase the size ©fby more than one and show that this set cannot be a subset of the
edges added by our single-source triangulation. In ordethio clique to grow by more than one
node, at least two nodésnd; not originally inC' must become connected to all node€InSince

there exists at least one nodlec C that is not adjacent tband similarly there exists at least one
nodel € C not adjacent tg, both edgesgi—k) and (j—I) are needed to form the larger clique.
There are two possibilities illustrated below (the dottddes are needed to increase the treewidth
by two and all other edges betwegn and the current maximal clique are assumed to exist):

(@) (i—j) does not exist (bi—;j) exists

e (i—j) does not exist (a) In this casek andl can be the same node but the missing edge
(i—y) is also required to form the larger clique.

e (i—j) exists (b) In this case: and/ cannot be the same node or the original cligue was not
maximal sinceC' Ui U j \ k would have formed a larger cliqgue. Furthermore oné of [
must not be connected to bottand j otherwisei—j—k—I—i forms a non-chordal cycle
of length four contradicting our assumption that the omddjigraph was triangulated. Thus, in
this case eithefi—I) or (j—k) are also required to form the larger clique.

In both scenarios, at least two nodes have two incident ealygt¢he three edges needed cannot all
be incident to a single vertex. Now consider the triangakaprocedure. Since, by construction,
all edges added in Algorithm (2) emanate frephe above condition (requiring two nodes to have
two incident edges and the three edges not all incident toglesiertex) is not met and the size of
the maximal clique in the new graph cannot be larger thanitlesof the maximal clique ioVi™ by
more than one. It follows that the treewidth of the moraligéahgulated graph cannot increase by
more than ondl

One problem with the proposed single-source triangulatiespite it being treewidth-friendly,
is the fact that so many vertices are connected to the soodmmaking the triangulations shallow
(the length of the shortest path between any two nodes id)sitile this is not a problem when
considering a single edge update, it can have an undesgtibt# on future edges and increases the
chances of the formation of large cliques. As an exampleyrgi§ shows a simple case where two
successive single-source edge updates increase thedtiedwitwo while an alternative approach
increases the treewidth by only one. In the next section,resgmt a refinement of the single-source
triangulation that is motivated by this example.
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Vi
VZT
Vs
Vy

Vs

Yo

(a) Chain network (b) Triangulation after (c) Triangulatiafter (d) Alternative
(v — vg) is added (vy — v5) is added triangulation

Figure 3: Example demonstrating that the single-source eg@gdate of Algorithm (2) can be prob-
lematic for later edge additions. (a) shows a simple six s@tl@in Bayesian network; (b)
a single-source triangulation whém, — v) is added to the network with a treewidth of
two; (c) a single-source triangulation when in additiea — v5) is added to the model
with a treewidth of three; (d) an alternative triangulattor{b). This triangulation already
includes the edgévs—us) and the moralizing edgévs—uv,) and thus is also a valid
moralized triangulation aftgly, — v5) has been added, but has a treewidth of only two.

4.2 Alternating Cut-vertex Triangulation

To refine the single-source triangulation discussed abatrethe goal of addressing the problem
exemplified in Figure 3 we make use of the concepts of cuieest blocks, and block trees (see,
for example, Diestel, 2005).

Definition 4.3: A block, or biconnected component, of an undirected graghdgst of connected
nodes that cannot be disconnected by the removal of a sileglexv By convention, if the edge
(u—wv) is in the graph them andwv are in the same block. Vertices that separate (are in thesede
tion of) blocks are called cut-vertices.

It follows directly from the definition that between everyawodes in a block (of size greater than
two), there are at least two distinct paths, that is, a cyfeere are also no simple cycles involving
nodes in different blocks.

Definition 4.4: A block treeB3 of an undirected grapH is a graph with nodes that correspond both
to cut-vertices and to blocks @f. The edges in the block tree connect any block nBjevith a
cut-vertex node; if and only ifv; € B; in H. I

It can be easily shown that the above connectivity conditimteed forces a tree structure and that
this tree is unique (see Figure 4 for an example). In additany path inH between two nodes
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(a) Bayesian networlgG (b) A possible triangulated (c) Unique block tree3
graph, M+

Figure 4: Example of a Bayesian network with a correspondirogalized triangulated graph and
the unique block tree. Boxes in the block tree denote cuiteesy, ellipses denote blocks.

in different blocks passes through all the cut-verticem@lthe path between the blocks/fh An
important consequence that directly follows from the rest@iDirac (1961) is that an undirected
graph whose blocks are triangulated is overall triangdlate

We can now describe our improved treewidth-friendly triglatjon outlined in Algorithm (3)
and illustrated via an example in Figure 5. First, the tridated graph is augmented by the edge
(s—t) and any edges needed for moralization (Figure 5(b) and 889¢ond, ifs and¢ are not in
the same block, a block level triangulation is carried oustarting froms and zig-zagging across
the cut-vertices along the unique path between the blodktairing s andt and its parents in the
block tree (Figure 5(d)). Next, within each block along treghp(not containings or t), a chord
is added between the “entry” and “exit” cut-vertices alohghlock path thereby short-circuiting
any othemode paththrough the block. In addition, within each such block wefpren a single-
source triangulation with respect £bby adding an edgés’—uv) between the first cut-vertex and
any nodev on an induced path betweefiand the second cut-verték The block containings
is treated the same as other blocks on the path with the ésndpit the short-circuiting edge is
added between and the first cut-vertex along the path franto ¢. For the block containing and
its parents, instead of adding a chord between the entryentgx andt, we add chords directly
from s to any nodev (within the block) that is on amduced pattbetweens andt (or parents of)
(Figure 5(e)). This is required to prevent moralization tmahgulation edges from interacting in a
way that will increase the treewidth by more than one (seergig(f) for an example). 1§ andt
happen to be in the same block, then we only triangulate theced paths betweenandt, that is,
the last step outlined above. Finally, in the special cagesthndt are indisconnecteg@omponents
of G, the only edges added are those required for moralization.

We now show that this revised edge update is a valid triatignigprocedure and that it is also
treewidth-friendly. To do so we start with the following @pgations that are a direct consequence
of the definition of a block and block tree.
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Algorithm 3: EdgeUpdate: Update o¥1™ when addings — t) to G

1 Input : M™T /1 triangul ated noralized graph of §
2 (@) /'l node ordering
3 (s —t) /'l edge to be added to G

4 Output: M+(s_,t) /1 a triangul ated noralized graph of GU(s—t)

5 B « block tree ofM™
6 M+(s—>t) — M*T U (s—t)
7 foreachp € Pa; do
8 | Mty —Mt_yU(s—p)// noralization
9 end foreach
/1 triangulate (cut-vertices) between bl ocks
10 C ={c1,...,car} < sequence of cut-vertices on the path fremo ¢t U Pa, in block treeB
11 Add (s—ecypy), (epr—e1), (e1—epr—1), (epr—1—c2), ... 10 M+(s_,t)
/1 triangul ate nodes within blocks on path froms to tUPa;
12 £ « {(S—Cl), (61—02), ey (CM—I_CM)}
13 foreach edge(s'—') € £ do
14 M+(s—>t) — M+(s—>t) U (S/—t/)
15 foreach nodev on an induced path betweahandt’ in theoriginal block containing
bothdo
16 ‘ M+(s—>t) — M+(s—>t) U (3/—2))
17 end foreach
18 end foreach
/1 triangulate s with nodes in block containing tUPa;
19 foreach nodewv on an induced path betweerandt U Pa; in thenew block containing them
do
20 ‘ M+(s—>t) — M+(s—>t) U (s—v)
21 end foreach

22 return M _y

Observation 4.5: (Family Block). Let « be a node in a Bayesian netwagkand letPa,, be the
set of parents ofi. Then the block tree for any moralized triangulated gragh of G has a unique
block containing{u, Pa,, }.

Observation 4.6: (Path Nodes)Let B = ({B;} U {c;},T) be the block tree oM™ with blocks
{B;} and cut-verticeqc;}. Lets andt be nodes in blockd3, and B;, respectively. If is a cut-
vertex then letB; be the (unique) block that also contaiBs;. If s is a cut-vertex, then chood8,
to be the block containing closest toB; in 7. Then a node is on a path froms to ¢ or from s to
a parent ot if and only if it is in a block that is on the unique path fraBy to B;.

Figure 4(c) shows an example of a block tree for a small Bayesetwork. Here, for example,
selectings to be the nodeys andt to be the nodey in G, it is clear that all paths between
andt include only the vertices that are in blocks along the unigjoek path betweerB, and B;.
Furthermore, every path betweemndt passes through all the cut-vertices on this block path, that
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(a) Bayesian networlg (b) Moralized graph (c) Addition of moralizing
augmented witlfs — t) augmented wittfs—t) edges tdPay

(d) Addition of between-block  (e) Addition of within-block () An alternative final
zigzag edges triangulation edges (Complete triangulation frome),
triangulation froms)

Figure 5: Example showing our triangulation procedure(@))for s andt in different blocks. (The
blocks are{s,v:}, {v1, car}, and{cas, v, v3, p1, P2, t} with corresponding cut-vertices
v1 andcyy). The original graph has a treewidth of two, while the grapbgraented with
(s — t) has treewidth three (maximal clique of size four). An aleive triangulation
(f), connectinge;, to t, however, would result in a clique of size fiye, cys, p1, p2, t}.

is, {va,v1,v9}. We can now use these properties to show that our edge updetedpre produces
a valid triangulation.

Lemma 4.7: If M is a valid moralized triangulation of the gragh then Algorithm (3) produces
a moralized triangulationMJf(s_,t) of the graphG,_.,) =G U (s — ).

Proof: SinceM™ was triangulated, every cycle of length greater than or leguiaur in G(s—u) IS
the result of the edgés—t) or one of the moralizing edges, together with an induced fyzdth
with no shortcuts) between the endpoints of the edge. Weademthree cases:

e s andt are disconnected inM™: There are no induced paths betweeandt so the only
edges required are those for moralization. These edgestgwathce any induced cycles.

e s andt are in the same block: The edgg s—t) does not create a new block and all simple
cycles that involve botls andt must be within the block. Thus, by construction, the edges
added in Line 16 triangulate all newly introduced inducedey. If the parents afare in the
same block as andt, the same reasoning holds for all induced paths betweenreatgaof
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t ands. Otherwiset is a cut-vertex between the block that contains its paremddize block
that contains. It follows that all paths (including induced ones) from agya oft¢ to s pass
throught and the edges added for thg-block triangulate all newly created induced cycles
that result from the moralizing edges.

e s andt are not in the same block: As noted in Observation 4.6, all paths M ™ from s
to ¢t or a parent ot pass through the unigue cut-vertex path from the block @oint s to
the block containing and its parents. The edges added in Line 14 short-circuintigeing
s’ and out-going’ of each block creating a path containing only cut-verticesvieens and
t. Line 11 triangulates this path by forming cycles of lendttee containing’, ¢ and some
other cut-vertex. The only induced cycles remaining ar@ainoad within blocks and contain
the newly added edge’—t’) or involve the edge betweenand the last cut-vertefs—cy/)
and one of the edges betweeandt or a parent of. It follows that within-block triangulation
with respect tos’ and¢’ will shortcut the former induced cycles, and the edges afided s
in Line 20 will shortcut the later induced cycles.

To complete the proof, we need to show that any edge added4r@ms’) to an induced node
does not create new induced cycles. Any such induced cyalddvirve to include an induced path
from the endpoints of the edge added and thus would have bgen-path of some induced cycle
that includes botk andwv. This cycle would have already been triangulated by ourgutace i

Having shown that our update produces a valid triangulati@now prove that our edge update
is indeed treewidth-friendly and that it can increase teewidth of the moralized triangulated graph
by at most one.

Theorem 4.8: The treewidth of the output grapMJf(sqt) of Algorithm (3) is greater than the
treewidth of the input grap1™ by at most one.

Proof. As shown in the proof of Theorem 4.2, the single-source gudettion within a block is guar-
anteed not to increase the maximal clique size by more thanloraddition, from the properties of
blocks it follows directly that the inner block triangulati does not add edges that are incident to
nodes outside of the block. It follows that all the inner B@ingle-source triangulations indepen-
dently effect disjoint cliques. Thus, the only way that treetvidth of the graph can further increase
is via the zig-zag edges. Now consider two cliques in difietdocks. Since our block level zig-zag
triangulation only touches two cut-vertices in each bldatkannot join two cliques of size greater
than two into a single larger one. In the simple case of twoksavith two nodes (a single edge) and
that intersect at a single cut-vertex, a zig-zag edge caremhihcrease the treewidth by one. In this
case, however, there is no within-block triangulation amthe overall treewidth cannot increase by
more than ondl

4.3 Finding Induced Nodes

We finish the description of our edge update (Algorithm (3))showing that it can be carried out
efficiently. That is, we have to be able to efficiently find treztices orall induced paths between
two nodes in a graph. In general, this task is computatiprdifficult as there are potentially
exponentially many such paths between any two nodes. Towithehis problem, we again make
use of the dynamic nature of our method.

The idea is simple. As implied by Observation 4.1, any indupath between’ andt’ in a
triangulated graph will be part of an induced cyclddf—t’) is added to the graph. Furthermore,
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Algorithm 4 : InducedNodes: compute set of nodes on induced path betstaedt’ in M™

1 Input : M* // noralized triangul ated graph
2 st Il tw nodes in MT
3 Qutput: 7 /'l set of nodes on induced paths between s and ¢

H «+ block (subgraph) of\i™ U (s’—t’) containings’ and#’
Z—0
while edges being addedio

o 0 b

/1 maxi mum cardinality search
7 X « all nodes inH excepts’
8 | YV {s}
9 | while X # 0 do
10 Findv € X with maximum number of neighbors i
11 X — X\ {v}andy — YU{v} I/ renmove from&, add to Y
12 if there exists:, w € Y such thatlu—w) ¢ H then
13 T —ZU{u,v,w}
14 Add edgeqs'—u), (s'—v) and(s'—w) to H
15 Restart maximum cardinality search
16 end
17 end
18 end
19 return 7

after adding s’'—t’) to the grapheverycycle detected will involve an induced path between the two
nodes. Using this observation, we can make use of the abfiitie maximum cardinality search
algorithm (Tarjan and Yannakakis, 1984) to iterativelyeg¢ton-chordal cycles.

The method is outlined in Algorithm (4). At each iteration ateempt to complete a maximum
cardinality search starting frogi (Line 7 to Line 17). If the search fails, we add the node at Whic
it failed, v, together with its non-adjacent neighboring nolesw} to the set of induced nodes and
augment the graph with triangulating edges frehto each of{u, v, w}. If the search completes
then we have successfully triangulated the graph and henoel fall induced nodes. Note that using
the properties of blocks and cut-vertices, we only need tsider the subgraph that is the block
created after the addition ¢§'—t’) to the graph.

Lemma 4.9 (Induced Nodes)Let M™ be a triangulated graph and lef andt’ be any two nodes
in M™. Then Algorithm (4) efficiently returns all nodes on any iceltl path betwees’ andt’ in
M, unless those nodes are connected directly to

Proof: During a maximum cardinality search, if the next node chaséas two neighbors and

w that are not connected then the triplet-v—uw is part of an induced cycle. As the graph was
triangulated before adding the edg€—t'), all such cycles must contaist and adding(s'—uv)
obviously shortcuts such a cycle. This is also truedf@nd«’ that are on the same induced cycle.
It remains to show that the edges added do not create neweddiycle. Such an induced cycle
would have to include the edge’—uv) as well as an induced path betweéandv. However, such
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a path must have been part of another cycle whenas an induced node and hence would have
been triangulatedl

Thus Algorithm (4) returns exactly the set of nodes on indygaths froms’ to ¢’ thats’ needs
to connect to in order to triangulate the graph™ U (s—t). The efficiency of our edge update
procedure of Algorithm (3) follows immediately as all otlegrerations are simple.

5. Multiple Edge Updates

In this section we define the notion otantaminated sebr the subset of nodes that are incident to
edges added td* in Algorithm (3), and characterize sets of edges that argljoguaranteed not
to increase the treewidth of the triangulated graph by mwae bne. We begin by formally defining
the termscontaminateandcontaminated set

Definition 5.1: We say that a node is contaminated by the addition of the edge— ¢) to G if

it is incident to an edge added to the moralized triangulgreggh M ™ by a call to Algorithm (3).
The contaminated set for an edge— t) is the set of all nodes that would be contaminated (with
respect taM ™) by adding(s — t) to G, including s, ¢, and the parents af i

Figure 6 shows some examples of contaminated sets for afiffexdge updates. Note that our
definition of contaminated set only includes nodes thatrariglent tonewedges added ta1™ and,
for example, excludes nodes that were already connectetdefore(s — ¢) is added, such as the
two nodes adjacent toin Figure 6(b).

Using the separation properties of cut-vertices, one niightempted to claim that if the con-
taminated sets of two edges overlap at most by a single ctéxviien the two edges jointly increase
the treewidth by at most one. This however, is not true in gerees the following example shows.

Example 5.2: Consider the Bayesian network shown below in (a) and iteguéation (b) after
(v; — v4) is added, increasing the treewidth from one to two. (c) issdwme for the case when
(vy — v5) is added to the network. Despite the fact that the contaemihsets (solid nodes) of two
edge additions overlap only by the cut-vertgx (d) shows that jointly adding the two edges to the
graph results in a triangulated graph with a treewidth cfet

Vi s O v
V, A v,
Vs Vs L . Vs
. Vy 1, S> V4
(d)

(@) (b) ()

The problem in the above example lies in the overlaplotk pathdetween the endpoints of the two
edges, a property that we have to take into account whileactenizing sets of treewidth-friendly
edges.
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Figure 6: Some examples of contaminated sets (solid nothes)are incident to edges added
(dashed) by Algorithm (3) for different candidate edge &dds (s — t) to the Bayesian
network shown in (a). In (b), (c), (d), and (e) the treewidtlnicreased by one; In (f) the
treewidth does not change.

Theorem 5.3 (Treewidth-friendly pair). LetG be a Bayesian network graph structure #id be
its corresponding moralized triangulation. Let— ¢) and(u — v) be two distinct edges that are
topologically consistent wity. Then the addition of the edgesdodoes not increase the treewidth
of M™ by more than one ibneof the following conditions holds:

¢ the contaminated sets ¢f — ¢) and(u — v) are disjoint.

¢ the endpoints of each of the two edges are not in the same atatthe block paths between
the endpoints of the two edges do not overéap the contaminated sets of the two edge
overlap at a single cut-vertex.

Proof: As in the proof of Algorithm (3) a maximal clique can grow byawodes only if three
undirected edges are added so that at least two nodes atenhtd two of them. Obviously, this
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Algorithm 5: ContaminatedSet: compute contaminated set{or ¢)

1 lnput : G /| Bayesi an network
2 MT /] noralized triangul ated graph
3 (s —t)// candidate edge

4 Output: C, /1 contam nated set for (s—1t)

5 Cot — {s,t}U{p e Pa;| (s—p) ¢ Mt}

6 foreach edge(s’—t’) € & in procedure Algorithm (3) withs'—¢') ¢ M™ do

7 | Z =InducedNodegM ™, {s',t'})

8 Csp — Cs U{veTl|(d—v)¢ MT}

9 end foreach

10 H « {s} and block containing U Pa;

11 H — HU{(s—p) | p € Pa;} U (s—c) wherec is the cut-vertex closest toin the block
containingt

12 7 = InducedNodegH, {s,t})

13 Coy — Cs U{v €T | (s'—v) ¢ MT}

14 return Cs

can only happen if the contamination sets of the two edgetapdae not completely disjoint. Now,
consider the case when the two sets overlap by a single dgxvdy construction all triangulating
edges added are along the block path between the endpoidelnoiedge. Since the block paths of
the two edge updates do not overlap there can not be an edgedoet node in the contaminated
set of (s — t) and the contaminated set @f — v) (except for the single cut-vertex). But then
no node from either contaminated set can become part of @eclityolving nodes from the other
contaminated set. Thus there are no two nodes that can bd twttee same clique. It follows that
the maximal cligue size of1™, and hence the treewidth bound, cannot grow by more tharlione.
The following result is an immediate consequence.

Corollary 5.4: (Treewidth-friendly set). LetG be a Bayesian network graph structure and™

be its corresponding moralized triangulation. {lfs; — t;)} is a set of edges so that every pair of
edges satisfies the condition of Theorem 5.3 then addingigli®tog can increase the treewidth
bound by at most one.

The above result characterizes treewidth-friendly setthé search for such sets that are useful
for generalization (see Section 6), we will need be ableficieftly compute the contaminated set
of candidate edges. At the block level, adding an edge betwaadt in G can only contaminate
blocks between the block containingand that containing and its parents in the block tree for
M™ (Observation 4.6). Furthermore, identifying the nodes #ra incident to moralizing edges
and edges that are part of the zigzag block level triangras easy. Finally, within a block, the
contaminated set is easily computed using Algorithm (4jifating the induced nodes between two
vertices. Algorithm (5) outlines this procedure. Its catness follows directly from the correctness
of Algorithm (4) and the fact that it mirrors the edge updatecedure of Algorithm (3).
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6. Learning Optimal Treewidth-Friendly Chains

We now want to build on the results of the previous sectionfatditate the addition of global
moves that are both optimal in some sense and are guaraot@entdase the treewidth by at most
one. Specifically, we consider adding optimal chains thatansistent with some topological node
ordering. On the surface, one might question the need faecifspnode ordering altogether if chain
global operators are to be used—given the result of Chow @and1968), one might expect that
learning the optimal chain with respectanyordering can be carried out efficiently. However, Meek
(2001) showed that learning such an optimal chain over & sahdom variables is computationally
difficult. Furthermore, conditioning on the current modble problem of identifying the optimal
chain is equivalent to learning the (unconditioned) optiohain3 Thus, during any iteration of our
algorithm, we cannot expect to find the overall optimal chain

Instead, we commit to a single node ordering that is topoldlyi consistent and learn the
optimal chainwith respect to that orderin this section we will complete the development of our
algorithm and show how we can efficiently learn chains thataatimal with respect to any such
ordering. In Section 7 we will also suggest a useful noderardanotivated by the characteristics
of contaminated sets. We start by formally defining the chéiat we will learn.

Definition 6.1: A treewidth-friendly chainC with respect to a node ordering is a chain with
respect taD such that the contamination conditions of Theorem 5.3 hmidhe set of edges ifi. I

Given a treewidth-friendly chai@ to be added for Bayesian netwogk we can apply the edge
update of Algorithm (3) successively to every edg€ ito produce a valid moralized triangulation
of G U C. The result of Theorem 5.4 ensures that the resulting nzescliriangulation will have
treewidth at most one greater than the original moralizesgulationAM ™.

To find the optimal treewidth-friendly chain in polynomiaine, we use a straightforward dy-
namic programming approach: the best treewidth-friendigirc that containgO; — ;) is the
concatenation of

¢ the best treewidth-friendly chain from the first node in thees O, to O, the first ordered
node contaminated by the edg@; — ;)

e the edge(Os — Ot)

¢ the best treewidth-friendly chain starting frof?y,, the last node contaminated by the edge
(Os — O), to the last node in the ordef)y.

optimal chain optimal chain
O\ NNN0

@ G Os a A @y

We note that when the end nodes are not separating cute&rticee maintain a gap so that the
contamination sets are disjoint and the conditions of Té¥e05.3 are met.

3. Consider, for example, the star-network where a singterazts as parent to all other nodes (with no other edges),
then learning the optimal chain amounts to learning a chaén then — 1 children.
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Formally, we define’[i, j] as the optimal chain whose contamination starts at or &ffeand
ends at or befor€;. To find the optimal treewidth-friendly chain with respecta node ordering
O for a Bayesian network wittV variables, our goal is then to computgl, N]. Using the short-
hand notatior¥’ to denote the first node ordered in the contamination sgt ef ¢) and L to denote
the last ordered node in the contamination set, we can yeediihputeC|[1, N| via the following
recursive update principle

maXg . p—i 1—j(s — t) no split
C[Z,]] = max maXg—i41:5—1 C[Z, k] U C[k,]] Sp'lt
0 leave a gap

where the maximization is with respect to the score (e.gG)RIf the structures considered. In
simple words, the maximum chain in any sub-sequéigcg in the node ordering is the maximum
of three alternatives: all edges whose contamination bawesl are exactly andj (no split); all
two chain combinations that are in the sub-sequéige and are joined at some node< k < j
(split); a gap betweenandj in the case that there is no edge whose contamination isinedtan
this range and that increases the score.

Algorithm (6) outlines a simple backward recursion that patesC|[1, N|. At each node, the
algorithm maintains a list of the best partial chains evigdao far that contaminates nodes up to,
but not preceding, that node in the ordering. That s, thefibest partial chains is indexed by where
the contamination boundary of each chain starts in the irgleBy recursing backwards from the
last node, the algorithm is able to update this list by evalgaall candidate edgegrminatingat
the current node. It follows that, once the algorithm itesapast a nodé we have the optimal
chainstarting from that node. Thus, at the end of the recursion we are ldft thie optimal non-
contaminating chain starting from the first node in the argger

The recursion starts at Line 7. If for nod® the best chain starting from the succeeding node
O.+1 Is better than the best chain starting frd, we replace the best chain frofh with the one
from O 1 simply leaving a gap in the chain (Line 8). Then, for everyestiyminating atD;, we
find the first ordered nod@y and the last ordered nod#;, that would be contaminated by adding
that edge. If the score for the edge plus the score for thepagal non-contaminating chain from
Or is better than the current best partial chain frély then we replace the best chain frafl,
with the one just found (Line 19).

With the ability to learn optimal chains with respect to a eadldering, we have completed the
description of all the components of our algorithm for leagbounded treewidth Bayesian network
outlined in Algorithm (1). Its efficiency is a direct consemee of our ability to learn treewidth-
friendly chains in time that is polynomial both in the numloéwariables and in the treewidth at
each iteration. For completeness we now restate and proserdim 3.1.

Theorem 3.1: Given a treewidth bound’, Algorithm (1) runs in time polynomial in the number of
variables andx.

Proof: The initial Chow-Liu tree and its corresponding undirecgeleton can be obtained in
polynomial time using a standard max-spanning-tree dlgori The maximum scoring chain can
be computed in polynomial time (using Algorithm (6)) at ed@ehation. As we proved, the same is
true of the triangulation procedure of Algorithm (3). Alhatr steps are trivial. Since the algorithm
adds at least one edge per iteration it cannot loop for mareAh- N iterations before exceeding a
treewidth of K (whereN is the number of variablesj.
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Algorithm 6 : LearnChain: learn optimal non-contaminating chain wétkgect to topological
node ordering

1 lnput : O /'l topol ogi cal node ordering
2 Output: C /1 non-contani nating chain

/1 initialize dynami c programr ng data
3 fori=1to|O|+1do

4 | bestChaif] « 0 /1 best chain fromi-th node
5 bestScorg] — 0 /'l best score fromi-th node
6 end

/1 backward recursion
7 for t = |O| down to 1 do

8 if (bestScorg + 1] > bestScorg]) then

9 bestChaift] «+ bestChaift + 1]

10 bestScorg| < bestScorg + 1]

11 end

12 fors=1tot—1do /'l eval uat e edges

13 V — contaminated set for candidate edd® — O;)

14 f « first ordered node iw /] must be <s

15 | « last ordered node iw /] nmust be >¢

16 if bestChaifi].lastand (O, — O;) do not satisfy the conditions of Theorem &8n
17 | l—1+1 /1 |eave a gap

18 end

19 if (AScore(Os; — Oy) + bestScorf] > bestScorgf]) then
20 bestChaifif] < {(Os — O;)} U bestChaifi]

21 bestScorgf] < AScore(Os — O,) + bestScorg|

22 end

23 end

24 end

[l return optiml non-contam nating chain
25 return bestChaifi |

7. Block-Shortest-Path Ordering

In the previous sections we presented an algorithm for ilegribounded treewidth Bayesian net-
works given any topological ordering of the variables. Idarrto make the most of our method, we
would like our ordering to facilitate rich structures thatllave beneficial generalization proper-
ties. Toward that end, in this section we consider the prakcthatter of a concrete node ordering.
We will present a block shortest-path (BSP) node orderiagjisimotivated by the specific proper-
ties of our triangulation methotl.

4. We also considered several other strategies for ordénmgariables. As none was better than the intuitive orderin
described here, we only present results for our block-sktgath ordering.
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To make our node ordering concrete, since the contaminegsuiting from edges added within
an existing block is limited to the block, we start by groupiogether all nodes that are within a
block (cut-vertices that appear in multiple blocks areudeld in the first block chosen). Our node
ordering is then a topologically consistent ordering ober blocks combined with a topologically
consistent ordering over the nodes within each block. Weapsaogical consistency to facilitate as
many edges as possible though this is not required by thewtli@od, in particular, Theorem 5.3).

We now consider how to order interchangeable blocks by tpikito account that our triangula-
tion following an edge additiofis — t) only involves variables that are in blocks along the unique
path between the block containingand the block containing and its parents. The following
example motivates a natural choice for this ordering.

Example 7.1: Consider a Bayesian network with root nofte
and three branchesR — A4, — ... — A, R — B —

. — By,andR — C7; — ... — Cy;. If we add an edge
A; — Bj to the network, then by the block contamination re-
sults, our triangulation procedure will touch (almost) pveode
on the path betweerd; and B;. This implies that we can not
include additional edges of the ty@®, — C; in our chain since
the block path fromBy, to R overlaps with the block path from
Bj to R. Note, however, that any eddg, — C,~, is still al-
lowed to be added since its contaminated set does not overlap i

with that of A; — B;. Now, consider the two obvious topo-
logical node orderings©OBFS = (R, A, By,Cy, As,...) and AL
OPFS = (R, A,..., AL, By,...,By,Cy,...). Only the DFS
ordering, obtained by grouping th8;'s together, allows us to
consider such edge combinatiols.

Motivated by the above example to order interchangeablekblowve use a block level depth-
first ordering. The question now is whether a further charagdtion of the contaminated set can
be provided in order to better order topologically interudp@able nodes within a block. To answer
this question we consider the following example.

Example 7.2: Consider the Bayesian network shown below whose underlyimtirected structure
is a valid moralized triangulation and forms a single blddkimbers in the boxes indicate the (undi-
rected) distance of each node fratra property that we make use of below.

0]
Vi Vs r V3 V4

~ 5 Vs V7 Vg Vo
~~‘ "'
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The single edge additiofs — t) will contaminate every node in the block (other than thosesaly
adjacent to it) since all nodes lie on induced paths betwesamd:. However other edge additions,
such agvs — t) have a much smaller contamination sgt3, ¢}. i

Based on the above example, one may think that no withinkbtmdering can improve the
expected contamination of edges added, and that we may ¢edfte only add a single edge per
block, making our method greedier than we would like. Faataly, there is a straightforward way
to characterize the within-block contamination set ushmg otion of shortest path length. L&t
be a Bayesian network over variablés We denote byl (u,v) the minimum distance (shortest
path) between nodes v € X in M*. We note the following useful properties @f”. (-, -):

o dM (u,v) > 0 with equality if and only ifu = v

o dM (u,w) + dM (v,w) > dM (u,v) with equality if and only ifw is on the (possibly non-

unigue) shortest path betweerandv

e if 4 andv are disconnected iM T then, by conventiond (u,v) = oo

Theorem 7.3:Letr, s andt be nodes in some blocB (of size> 3) in the triangulated grapM ™
with d (r,s) < dM (r,t). Then for any on an induced path betweerandt we have

d]\/[ ( ) d]\/[ ( )

min min

Proof: Since the nodes are all in the same block we know that ther¢ Ineuat least two paths
between any two nodes. Lgtandq be the shortest paths from node® s andr to ¢, respectively
(denoted- -2~ s andr - t). If p andg meet at some node other thathen they will share the path
from that node to- (otherwise they cannot be shortest paths). Let such a shadsdfurthest from
r ber’. Thend™ (r,t) = d™ (r,7") + dM (+',t) andd™ (r,v) < dM (r,r") + d* (v, v) so if the

result holds for’ it holds forr. Without loss of generality assume that there is no sticiNow
consider the following cases:

e If g containsv thend?, (r,v) = dM (r,t) — d (v,t) < dM (r,1).

min min min

e If p containsv thend™ (r,v) = dM (r,s) — dM (v,s) < dM (r,s) < dM (r,t).

min min min min

e Otherwisev is on some other (induced) path betweemdt. But nowr £~ s — v —t —=r
forms a cycle of length> 4. SinceM™ is triangulated there must be an edge fromo some
node onp or q. There cannot be an edge betweeandt or else there would not be any
induced paths betweenandt. But thend™ (r,v) < dM (r,t).

min

min
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Algorithm 7 : Block-Shortest-Path Ordering

=

Input : G /1 input Bayesi an network
M* || corresponding noralized triangul ation
Output: O [l an ordering Xi,...,Xn

O
Or « topological ordering of the nodes ¢h
Op «+ depth-first search ordering of blocks M ™
while Op # () do

B — popOp

R « cut-vertex ofB with lowestOr
10 Push nodes itB to O in order of(Or, dM (R, -))
11 end

w N

© 0o N o 0 b

12 return O

node order

Vi, V2
(v3,v4),(Vs5,V6),v7
Vs
Vg
Vio
Vii
Vi2
Vi3
Via

Vis

(a) Bayesian Networky (b) Block Tree,3 (c) BSP Ordering

=x
=
C
s}
~
C
=
[=9
@
—

Figure 7. Concrete example of BSP ordering using the Bagesavork from Figure 4. Nodes in
parentheses are the same distance from the root cut-vertiecaa be ordered arbitrarily.

We now use this result to order nodes according to theirmistfrom the cut-vertex in the block
that connects it to the blocks already ordered (which wetballroot cut-vertex). Algorithm (7)
shows how our Block-Shortest-Path (BSP) ordering is canttd and Figure 7 demonstrates the
application of that ordering to a concrete example.

Finally, we note that the above ordering, while almost ststll allows for variables that are
the same distance from the root cut-vertex of the block tordered arbitrarily. Indeed, as the
following example shows two nodes that are the same distiiooe the block cut-vertex can be
symmetrically contaminating. We break such ties arbifrari
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Example 7.4: Consider, again, the example network shown in Example 7.2e Set of nodes
{va,v3,v6,v7,vs} are all the adjacent to and so can be ordered arbitrarily. An edge frogto
vg (or vice versa) will contaminate;. Likewise an edge fromvs to vg (or vice versa) will also
contaminatev;. It turns out that for any ordering of these nodes, it is abvpgssible to add an
edge that will contaminate other nodes in the set. This isistant with the contamination result of
Theorem 7.3 since these nodes are all equi-distant fr.dn

8. Experimental Evaluation

In this section we perform experimental validation of oupryach and show that it is beneficial
for learning Bayesian networks of bounded treewidth. Syadiy, we demonstrate that by making
use of global structure modification steps, our approaatsléasuperior generalization. In order to
evaluate our method we compare against two strong baseipreaches.

The first baseline is an improved variant of the thin juncti@e approach of Bach and Jordan
(2002). We start, as in our method, with a Chow-Liu forestiger@tively add the single best scoring
edge. To make the approach as comparable to ours as poasibésh iteration, we triangulate the
model using either the maximum cardinality search or mimmniili-in heuristics (see, for example,
Koster et al., 2001), as well as using our treewidth frientdgngulation, and take the triangulation
that results in a lower treewidth.As in our method, when the treewidth bound is reached, we
continue to add edges that improve the model selection seileno such edges can be found that
do not also increase the treewidth bound.

The second baseline is an aggressive structure learningagpthat combines greedy edge
modifications with a TABU list (e.g., Glover and Laguna, 1988d random moves. This approach
is not constrained by a treewidth bound. Comparison to théeline allows us to evaluate the merit
of our method with respect to an unconstrained state-eitheearch procedure.

We evaluate our method on four real-world data sets thateseribed below. Where relevant
we also compare our results to the results of Chechetka ardtfdu(2008).

8.1 Gene Expression

In our first experiment, we consider a continuous data se&tthais a study that measures the expres-
sion of the baker’s yeast genes in 173 experiments (Gasdh 2080). In this study, researchers
measured the expression of 6152 yeast genes in responsangeshin the environmental condi-
tions, resulting in a matrix of73 x 6152 measurements. The measurements are real-valued and,
in our experiments, we learn sigmoid Bayesian networksgusia Bayesian Information Criterion
(BIC) (Schwarz, 1978) for model selection. For practicalsens, we consider the fully observed
set of 89 genes that participate in general metabolic psese@Met). This is the larger of the two
sets used by Elidan et al. (2007), and was chosen since pidue ofsponse of the yeast to changes
in its environment is in altering the activity levels of difent parts of its metabolism. We treat the
genes as variables and the experiments as instances sheahaatned networks indicate possible
regulatory or functional connections between genes (Rraadet al., 2000).

Figure 8 shows test log-loss results for the 89 variable gepeession data set as a function of
the treewidth bound. The first obvious phenomenon is thédt bot method (solid blue squares) and

5. We note that in all of our experiments there was only a sdififrence between the minimum fill-in and maximum
cardinality search heuristics for upper bounding the tigwof the model at hand
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Figure 8: Average test set log-loss per instance over fivasff-axis) versus the treewidth bound
(x-axis) for the 89 variable gene expression data set. Coed@ae our method (solid blue
squares) with th@hin junction tree approach (dashed red circles), andAggressive
greedy approach of unbounded treewidth that also uses a T&Bbnd random moves
(dotted black).
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Figure 9: Plot showing the number of edges (in the learnethghdded during each iteration for a
typical run with treewidth bound of 10 for the 89 variablesige&xpression data set. The
graph also shows our treewidth estimate at the end of eactide.
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the greedy junction tree approach (dashed red circlesupegisr to the aggressive baseline (dotted
black). As one might expect, the aggressive baseline aehiawhigher BIC score on training data
(not shown), but overfits due to the scarcity of the data. Bedy edge addition (the junction tree
approach) or global chain addition (our approach), thisfatiag is avoided. Indeed, a better choice
of edges, that is, ones chosen using a global operator, adrtdeincreased robustness and better
generalization. This is evident by the consistent supiéyiof our method (solid blue squares) over
the greedy variant (dashed red circles). Importantly, avban the treewidth bound is increased
passed the saturation point our method surpasses bothitheribtion tree approach of Bach and
Jordan (2002) and the aggressive search strategy. In #8swa are learning unbounded Bayesian
networks and all of the benefit comes from the global natuuoitructure modifications.

To qualitatively illustrate the progression of our algnit from iteration to iteration, we plot
the number of edges in the chain (solid blue squares) anditfgeestimate (dashed red) at the end
of each iteration. Figure 9 shows a typical run for the 89alale gene expression data set with
treewidth bound set to 10. Our algorithm aggressively addeaynedges (making up an optimal
chain) per iteration until parts of the network reach thewnelth bound. At that point (iteration 24)
the algorithm resorts to adding the single best edge peatiber until no more edges can be added
without increasing the treewidth (or that have an advergeiebn the score). To appreciate the
non-triviality of some of the chains learned with 4, 5 or 7 eslgwe recall that the example shows
edges addedfter a Chow-Liu model was initially learned. It is also worth mgjithat despite their
complexity, some chains do not increase the treewidth astimnd for a given treewidth bourid,
we typically have more thak iterations (in this example 24 chains are added before iregthe
treewidth bound). The number of such iterations is stillypolmially bounded as for a Bayesian
network with NV variables adding more thaid - /N edges will necessarily result in a treewidth that
is greater thark'.

In order to verify the efficiency of our method we measuredtimaning time of our algorithm as
a function of treewidth bound. Figure 10 shows results ferg8 variable gene expression data set.
Observe that our method (solid blue squares) and the graedjnhction tree approach (dashed red
circles) are both approximately linear in the treewidth fehuAppealingly, the additional computa-
tion required by our method is not significant and the diffiess between the two approaches are at
most 25%. This should not come as a surprise since the bulledfrhe is spent on the collection
of sufficient statistics from the data.

It is also worthwhile to discuss the range of treewidths wered in the above experiment as
well as the Haplotype sequence experiment considered b&hite treewidths of 30 and beyond
may seem excessive for exact inference, state-of-thexact exference techniques (e.g., Darwiche,
2001; Marinescu and Dechter, 2005) can often handle inferensuch networks (for some exam-
ples see Bilmes and Dechter, 2006). Since, as shown in Ragitris beneficial to learn models with
large treewidth, methods such as ours for learning and #te-sf-the-art techniques for inference
allow practitioners to push the envelope of the complexitsnodels learned for real applications.

8.2 The Traffic and Temperature Data Sets

We now compare our method to the mutual-information bas&dJF method for learning bounded
treewidth model of Chechetka and Guestrin (2008) (we coenfzabetter of the variants presented
in that work). While providing theoretical guarantees (@ndome assumptions), their method is
exponential in the treewidth and cannot be used in a setimdgs to the gene expression experi-
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Figure 10: Running time in minutes on the 89 variable geneesgion data set (y-axis) as a func-
tion of treewidth bound (x-axis). The graph compares outhoet(solid blue squares)
with the thin junction tree approach (dashed red circles)e arkers show times for
the 5 different fold runs for each treewidth while the lineosis the average running
time.

ment above. Instead, we compare on the two discrete reaitdifa set considered in Chechetka and
Guestrin (2008). The temperature data is from a two-monghogenent of 54 sensor nodes (15K
data points) (Deshpande et al., 2004) where each varialdalisaretized into 4 bins. The traffic
data set contains traffic flow information measured everyrfiirgutes in 32 locations in California
for one month (Krause and Guestrin, 2005). Values weredtized into 4 bins. For both data sets,
to make the comparison fair, we used the same discretizatidrtrain/test splits as in Chechetka
and Guestrin (2008). Furthermore, as their method can anbpiplied to a small treewidth bound,
we also limited our model to a treewidth of two. Figure 11 cangs the different methods. Both
our method and the thin junction tree approach significamtitperform the LPACJT on small sam-
ple size. This result is consistent with that reported in cle¢ka and Guestrin (2008) and is due
to the fact that the LPACJT method does not naturally uselaggation which is crucial in the
sparse-data regime. The performance of our method is catleatio the greedy thin junction tree
approach with no obvious superiority to either method. Hhisuld not come as a surprise since
the fact that the unbounded aggressive approach is nofisatly better suggests that the strong
signal in the data can be captured rather easily. In factclktka and Guestrin (2008) show that
even a Chow-Liu tree does rather well on these data sets @entipis to the gene expression data
set where the aggressive variant was superior even at adibeyf four).

8.3 Haplotype Sequences

Finally we consider a more difficult discrete data set caimgjsof a sequence of binary single nu-
cleotide polymorphism (SNP) alleles from the Human HapMageget (Consortium, 2003). Our
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Figure 11: Average test set log-loss per instance over filds fy-axis) versus the number of
training instances (x-axis) for the temperature and trafita sets. Compared are our
method (solid blue squares), tii@in junction tree approach (dashed red circles), an
Aggressivegreedy approach of unbounded treewidth that also uses a TisBlEnd
random moves (dotted black), and the mutual-informaticsetdanethod of Chechetka
and Guestrin (2008) (dash-dot magenta diamonds). For @lofnethods except the
unboundeddggressive the treewidth bound was set to two.

model is defined over 200 SNPs (variables) from chromosonu# 2 E uropean population consist-
ing of 60 individuals® In this case, there is a natural ordering of variables thaesponds to the
position of the SNPs in the DNA sequence. Figure 12 showdagdoss results when this ordering
is enforced (thicker lines) and when it is not (thinner) §n®ur small benefit over the greedy thin
junction tree approach of Bach and Jordan (2002) when tlesvitéh bound is non-trivial %2)
grows significantly when we take advantage of the naturablbe order. Interestingly, this same
order decreases the performance of the thin junction tréleadeThis should not come as a surprise
as the greedy method does not make use of a node ordering, aulimethod provides optimality
guarantees with respect to a variable ordering at eachigrraVhether constrained to the natural
variable ordering or not, our method ultimately also suspasthe performance of the aggressive
unbounded search approach.

9. Discussion and Future Work

In this work we presented a novel method for learning Bayesetworks of bounded treewidth

in time that is polynomial irboththe number of variables and the treewidth bound. Our method
builds on an edge update algorithm that dynamically maistaivalid moralized triangulation in a
way that facilitates the addition of chains that are gua@ahtto increase the treewidth by at most
one. We demonstrated the effectiveness of our treewidkthely method on real-life data sets, and

6. We considered several different sequences along thencismme with similar results.
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Figure 12: Average test set log-loss per data instance oxefdids (y-axis) versus the treewidth
bound (x-axis) for the 200 variable Hapmap data set. Thehgcampares our method
(solid blue squares) with the greedy approach (dashed relé), and an aggressive
greedy approach of unbounded treewidth that also uses a T&B&hd random moves
(dotted black). The thicker lines show the results for a figedkering of the variables
according to the location along the DNA sequence. The thitines show the results
without any constraint on the node ordering.

showed that by using global structure modification opesatare are able to learn better models
than competing methods even when the treewidth of the méehaised is not constrained.

Our method can be viewed as a generalization of the work ofaCdred Liu (1968) that is
constrained to a chain structure but that provides an optinguarantee (with respect to a node
ordering) at every treewidth. In addition, unlike the thimgtion trees approach of Bach and Jordan
(2002), we also provide a guarantee that our estimate ofdlegvidth bound will not increase by
more than one at each iteration. Furthermore, we add meiléghges at each iteration, which in
turn allows us to better cope with the problem of local maxim¢he search. To our knowledge,
ours is the first method for efficiently learning boundedvnekh Bayesian networks with structure
modifications that are not fully greedy.

Several other methods aim to generalize the work of Chow am@1968). Karger and Srebro
(2001) propose a method that is guaranteed to learn a goodxapation of the optimal Markov
network given a treewidth bound. Their method builds on aelmgpaph that is exponential in the
treewidth bound. Chechetka and Guestrin (2008) also peoposnovative method with theoretical
guarantees on the quality of the learned model (given sonie amsumptions on the generating
distribution), but in the context of Bayesian networks. Hwer, like the approach of Karger and
Srebro (2001), the method is exponential in the treewidiinbdo Thus, both approaches are only
practical for treewidths that are much smaller than the evesonsider in this work. In addition,
the work of Chechetka and Guestrin (2008) does not natuadithyv for the use of regularization.
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This has significant impact on performance when the numberagiing samples is limited, as
demonstrated in Section 8.

Meila and Jordan (2000) suggested the use of a mixture of,tgEneralizing the Chow-Liu
tree on an axis that is orthogonal to a more complex Bayesamank. They provide an efficient
method for obtaining a (penalized) likelihood local maxima their work is limited to a particular
and relatively simple structure. Dasgupta (1999) sugdette use of poly-trees but proved that
learning the optimal poly-tree is computationally difficuDther works study this question but in
the context where thieue distributionis assumed to have bounded treewidth (e.g., Beygelzimer and
Rish, 2004; Abbeel et al., 2006, and references within).

Our method motivates several exciting future directiomsvduld be interesting to see to what
extent we could overcome the limitation of having to comnaittspecific node ordering at each
iteration. While we provably cannot consider any node onggiit may be possible to polynomially
provide a reasonable approximation. Second, it may belgedsirefine our characterization of the
contamination that results from an edge update, which im toay facilitate the addition of more
complex treewidth-friendly structures at each iteratiéinally, we are most interested in explor-
ing whether tools similar to the ones employed in this worldldde used to dynamically update
the bounded treewidth structure that is the approximatistgildution in a variational approximate
inference setting.
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