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Abstract
A central challenge in learning probabilistic graphical models is dealing with domains that involve
hidden variables. The common approach for learning model parameters in such domains is the
expectation maximization(EM) algorithm. This algorithm, however, can easily get trapped in sub-
optimal local maxima. Learning the modelstructureis even more challenging. Thestructural EM
algorithm can adapt the structure in the presence of hidden variables, but usually performs poorly
without prior knowledge about the cardinality and locationof the hidden variables. In this work, we
present a general approach for learning Bayesian networks with hidden variables that overcomes
these problems. The approach builds on theinformation bottleneckframework of Tishby et al.
(1999). We start by proving formal correspondence between the information bottleneck objective
and the standard parametric EM functional. We then use this correspondence to construct a learning
algorithm that combines an information-theoretic smoothing term with a continuation procedure.
Intuitively, the algorithm bypasses local maxima and achieves superior solutions by following a
continuous path from a solution of, an easy and smooth, target function, to a solution of the desired
likelihood function. As we show, our algorithmic frameworkallows learning of the parameters
as well as the structure of a network. In addition, it also allows us to introduce new hidden vari-
ables during model selection and learn their cardinality. We demonstrate the performance of our
procedure on several challenging real-life data sets.

Keywords: Bayesian networks, hidden variables, information bottleneck, continuation, variational
methods

1. Introduction

Probabilistic graphical models have been widely used to model real world domains and are par-
ticularly appealing due to their natural interpretation. Despite extensive research in learning these
models from data (Pearl, 1988; Heckerman, 1998), learning withhidden(or latent) variables has
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remained a central challenge in learning graphical models in general, and Bayesian networks in
particular. Hidden entities play a central role in many real-life problems: an unknown regulating
mechanism can be the key to complex biological systems; correlating symptoms might hint at a hid-
den fundamental problem in a diagnostic system; an intentionally masked economic power might
be the cause of related financial phenomena. Indeed, hidden variablestypically serve as a summa-
rizing mechanism that “captures” information from some of the observed variables and “passes”
this information to some other part the network. As such, hidden variables can simplify the network
structure and consequently lead to better generalization.

When learning the parameters of a Bayesian network with missing values or hidden variables,
the most common approach is to use some variant of theexpectation maximization(EM) algorithm
(Dempster et al., 1977; Lauritzen, 1995). This algorithm performs a greedy search of the likelihood
surface and converges to a local stationary point (usually a local maximum). Unfortunately, in
challenging real-life learning problems, there are many local maxima that can trap EM in a poor
solution. Attempts to address this problem use a variety of strategies (e.g., Glover and Laguna
(1993); Kirkpatrick et al. (1983); Rose (1998); Elidan et al. (2002)). When learning structure, the
structural EM(SEM) algorithm (Friedman, 1997; Meila and Jordan, 1998; Thiesson etal., 1998)
can adapt the network topology. In this approach, as in the classical parametric EM algorithm, we
use the distribution induced by our current model, to probabilisticallycompletethe data. Unlike
parametric EM, we then use the completed data to evaluate different candidatestructures. This
allows us to perform structure improvement steps in theM-Stepof a structural EM iteration. As
in the case of EM, while convergence is guaranteed, the algorithm typically converges to a local
maximum.

An even more challenging problem is that ofmodel selectionwith hidden variables. This in-
volves choosing the number of hidden variables, their cardinalities and the dependencies between
them and the observed entities of the domain. These decisions are crucial toachieve good gen-
eralization. In particular, in hard real-life learning problems, structural EM will perform poorly
unless some prior knowledge of the interaction between the hidden and observed variables exists or
if the cardinality of the hidden variables is not (at least approximately) known. These challenging
problems have received surprisingly little attention.

In this paper, we introduce a new approach to learning Bayesian networks with hidden variables.
We pose the learning problem as an the optimization of a target function that includes a tradeoff
between two information theoretic objectives. The first objective is to compress information about
the training data. Intuitively, this is required when we want to generalize from the training data
to new unseen instances. The second objective is to make the hidden variables informative about
the observed attributes to ensure they preserve therelevantinformation. This objective is directly
related to maximizing the likelihood of the training data. By exploring different relative weightings
of these two objectives, we are able to bypass local maxima and learn better models.

Our approach builds on theinformation bottleneckframework of Tishby et al. (1999) and its
multivariate extension (Friedman et al., 2001). This framework provides methods for constructing
a set of new variablesT that are stochastic functions of one set of variablesY and at the same time
provide information on another set of variablesX. The intuition is that the new variablesT capture
the relevant aspects ofY that are informative aboutX. We show how to pose the learning problem
within the multivariate information bottleneck framework and derive a target Lagrangian for the
hidden variables. We then show that this Lagrangian is an extension of the Lagrangian formulation
of EM of Neal and Hinton (1998), with an additional regularization term. By controlling the strength
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of this information theoretic regularization term using ascale parameter, we can explore a range of
target functions. On the one end of the spectrum there is a trivial target where compression of the
data is total and all relevant information is lost. On the other extreme is the targetfunction of EM.

This continuum of target functions allow us to learn using a procedure motivated by thedeter-
ministic annealingapproach (Rose, 1998). We start with the optimum of the trivial target function
and slowly change the scale parameter while tracking the local optimum solution at each step on
the way. To do so, we present an alternative view of the optimization problem inthe joint space of
the model parameters and the scale parameter. This provides an appealing method for scanning the
range of solutions as inhomotopy continuation(Watson, 2000).

We generalize ourinformation bottleneck expectation maximization(IB-EM) framework for
multiple hidden variables and any Bayesian network structure. To make learning feasible for large,
real-life problems we show how to introduce variational approximation assumptions into the frame-
work. We further show that, similarly to the case of standard parametric EM, there is a formal
relation between the information bottleneck objective in this case and thevariational EM func-
tional (Jordan et al., 1998).

We then extend the approach to deal with structure learning. As we show, we can easily in-
corporate our method into the structural EM framework to deal withmodel selectionwith hidden
variables. In doing so, we perform continuation interleaved with model selection steps that change
the structure and the scope of the model. On top of standard structure modification steps of adding
and removing edges, we introduce two model enrichment operators that take advantage of emergent
information cues during the continuation process. The first operator canadapt the cardinality of a
hidden variable. Specifically, the cardinality of a hidden variable can increase during the contin-
uation process, increasing the likelihood as long as it is beneficial to do so.The second operator
introduces new hidden variables into the network structure. Intuitively, a hidden variable is intro-
duced as a parent of a subset of nodes whose interactions are poorlyexplained by the current model.

We demonstrate the effectiveness of our information bottleneck EM algorithmin several learn-
ing scenarios. First, we learn parameters in general Bayesian networksfor several challenging
real-life data sets and show significant improvement in generalization performance on held-out test
data. Second, we demonstrate the importance of cardinality adaptation for good generalization. We
then show how our operator for enriching the network structure with new hidden variables leads to
significantly superior models, for several complex real-life problems. Finally, we show that com-
bining both structure enrichment and cardinality adaptation results in furtherimprovement of test
performance.

The paper is organized as follows. In Section 2, we give a short background on learning
Bayesian networks and on theMultivariate information bottleneckof Friedman et al. (2001). In
Section 3, we present the basic framework of our IB-EM algorithm. In Section 4, we show how
to combine this algorithm with continuation to bypass local maxima. In Section 5 we extend the
framework to multiple hidden variables. In Section 6, we demonstrate the method for parameter
learning in real-life scenarios. In Section 7, we show how our method can be combined with the
structural EM algorithm to learn the structure of a network with hidden variables. In Section 8,
we take advantage of emergent structure during the continuation process, and present a method for
learning the cardinality of the hidden variables. We apply this method to real-lifedata in Section 9.
In Section 10, we address the model selection challenge of learning new hidden variables. We
present experimental evaluation for several real-life problems in Section11. In Section 12, we give
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a brief overview of relevant works, and in Section Section 13 we end with adiscussion and future
directions.

2. Background

In this section we briefly present the basics of learning Bayesian networks from data followed by the
essentials of themultivariate information bottleneckframework that forms the basis of our approach.

2.1 Bayesian Networks

Consider a finite setX = {X1, . . . ,Xn} of random variables, where each variableXi may take on
values from a finite set, denoted byVal(Xi). We use capital letter such asX,Y,Z for variable names
and lower case letters such asx,y,z to denote specific values taken by those variables. We use bold
letters such asX,Y,Z when referring to sets of variables. ABayesian network(Pearl, 1988) is
an annotated directed acyclic graph that encodes a joint probability distribution overX . Formally,
a Bayesian network overX is a pairB = 〈G ,Θ〉. The first component,G , is a directed acyclic
graph whose vertices correspond to the random variables inX . The edges in the graph represent
direct dependencies between the variables. The graphG represents independence properties that are
assumed to hold in the underlying distribution: EachXi is independent of its non-descendants given
its parentsPai denoted by(Xi ⊥ NonDescendantsi | Pai). The second component,Θ, represent the
set of parameters that quantify the network. Each node is annotated with aconditional probability
distribution P(Xi | Pai), representing the conditional probability of the nodeXi given its parents in
G , defined by the parametersθxi |pai

for each value ofXi andPai . A Bayesian network defines a
unique joint probability distribution overX given by

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi | Pai).

In this distribution, a variableXi is independent of the rest of the variables given itsMarkov blanket
variables. These include the variable’s parents, direct children and theparents of those children
(spouses).

Given a network structureG , the problem of learning a Bayesian network can be stated as fol-
lows: Given a training setD = {x[1], . . . ,x[M]} of instances ofX ⊂ X , we want to learn parameters
for the network. In theMaximum Likelihoodsetting we want to find the parameter valuesθ that
maximize the log-likelihood function

logP(D | G ,θ) = ∑
m

logP(x[m] | G ,θ).

This function can be equivalently (up to a multiplicative constant) written asIEP̂[logP(X | G ,θ)]
whereP̂ is the empirical distribution inD. When all instances inD are complete, estimating the
maximum likelihoodparameters can be done efficiently using a closed form solution. This involves
empirical sufficient statistics in the form of joint counts

N(xi ,pai) = ∑
m

1{Xi [m] = xi ,Pai [m] = pai}, (1)

where 1{} is the indicator function. When learning multinomial conditional parameterization,using
Dirichlet priors (DeGroot, 1970) amounts to augmenting the empirical counts with pseudo-counts
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α(xi ,pai).
1 These can thought of as adding imaginary instances that are distributed according to a

certain distribution (e.g., uniform) to the training data (Heckerman, 1998). Consequently, from this
point on we view priors as modifying the empirical distributionP̂ with additional instances, and
then apply the maximum likelihood principle.

When learning with hidden variables, the problem is more complex. Since we observe only
partial instances, learning also involves “guessing” the values of the hidden variables. In theexpec-
tation maximization(EM) algorithm (Dempster et al., 1977; Lauritzen, 1995) and its variants (Neal
and Hinton, 1998), this issue is addressed by using an auxiliary distributionQ that provides a proxy
for the empirical distribution. In the M-step of EM we estimate parameters as though this was the
true empirical distribution. In the E-step, we use the data and the current model to optimize the
auxiliary distribution over the hidden values resulting in acompletedempirical distribution. Each of
these steps is simpler than the original problem and is guaranteed not to decrease the likelihood. Un-
fortunately, EM iterations are prone to getting trapped at local maxima, since each step is biased by
the choices made by the previous ones. Attempts to address this problem use avariety of strategies
(e.g., Glover and Laguna (1993); Kirkpatrick et al. (1983); Rose (1998); Elidan et al. (2002)).

Learning the structure of a network poses additional challenges as the number of possible struc-
tures is super-exponential. In practice, structure learning is typically done using a local search
procedure, which examines local structure changes that are easily evaluated (add, delete or reverse
an edge). This search is usually guided by a scoring function such as theMDL principle based
score (Lam and Bacchus, 1994) or theBayesian score(BDe) (Heckerman et al., 1995). Both scores
penalize the likelihood of the data to limit the model complexity. An important characteristic of
these scoring functions is that when the data instances are complete (that is,each training instance
assigns values to all of the variables) the score isdecomposable. More precisely, the score can be
rewritten as the sum

Score(G : D) = ∑
i

FamScoreXi (Pai : D),

where FamScoreXi is thelocal contribution ofXi to the total network score. This term depends only
on values ofXi andPaXi in the training instances. In particular, the BDe score is defined as

ScoreBDe(G : D) = ∑
i

∑
pai

(
log

Γ(α(pai))

Γ(N(pai)+α(pai))
+∑

xi

log
Γ(N(xi ,pai)+α(xi ,pai))

Γ(α(xi ,pai))

)
, (2)

whereΓ is the Gamma function that generalizes the factorial function for real numbers, the terms
α() are hyper-parameters of the prior distributions over the parameterizationsand the termsN() are
the corresponding empiricalsufficient statistics.

In the presence of incomplete data or hidden variables, the structural EM framework (Fried-
man, 1997; Meila and Jordan, 1998; Thiesson et al., 1998) can adapt the network structure. In this
approach, as in classicalparametricEM, we use the distribution induced by our current model to
probabilistically complete the data. Unlike parametric EM, we then use the completeddata to eval-
uate different candidate structures, and perform structure improvement steps in theM-stepof the
structural EM iteration. As in the case of EM, convergence is guaranteed, albeit to a local maxi-
mum. Scoring candidate structures in this scenario is more complex, and computation of the score is
typically intractable. Thus, we need to resort to approximations such as theCheeseman-Stutz(CS)

1The use of pseudo-counts is slightly different depending on whether wedo MAP or Bayesian estimation and depends
on the representation used (see (Thiesson, 1997) for more details).
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score (Cheeseman et al., 1988; Chickering and Heckerman, 1997), which combines the likelihoods
of the parameters found by EM, with an estimate of the penalty term associated withstructure.

2.2 Multivariate Information Bottleneck

The information bottleneckmethod (Tishby et al., 1999) is a general non-parametric information-
theoretic clustering framework. Given a joint distributionQ(Y,X) of two variables, it attempts to
extract the relevant information thatY contains aboutX. We can think of such information extraction
as partitioning the possible values ofY into coarser distinctions that are still informative aboutX.
(The actual details are more complex, as we shall see shortly). For example, we might want to
partition the words (Y) appearing in several documents in a way that is most relevant to the topics
(X) of these documents.

To achieve this goal, we first need a relevance measure between two random variablesX andY
with respect to some probability distributionQ(X,Y). The symmetricmutual informationmeasure
(Cover and Thomas, 1991)

IIQ(X;Y) = ∑
x,y

Q(x,y) log
Q(x,y)

Q(x)Q(y)

is a natural choice as it measures the average number of bits needed to convey the informationX
contains aboutY and vice versa. It is bounded from below by zero when the variables are indepen-
dent, and attains its maximum when one variable is a deterministic function of the other.

The next step is to introduce a new variableT. This variable provides thebottleneckrelation
betweenX andY. In our words and documents example, we wantT to maintain the distinctions
between words (Y) that provide information for determining the topic of a document (X). For
example, the words ’music’ and ’lyrics’ typically occur together and are typical of the same topic,
and thus the distinction between them does not contribute to the prediction of thetopic. At the
same time, we wantT to distinguish between ’music’ and ’politics’ as they correlate with markedly
different topics. Formally, we defineT using a stochastic functionQ(T | Y). On the one hand we
wantT to compressY, while on the other hand we want it to preserve information that is relevant
to X. Using the mutual information defined above, a balance between these two competing goals is
achieved by minimization of the Lagrangian

L [Q] = IIQ(Y;T)−βIIQ(T;X), (3)

where the parameterβ controls the tradeoff. Tishby et al. (1999) show that the optimal partition for
a given value ofβ satisfies

Q(t | y) =
Q(t)

Z(y,β)
exp{−βID(Q(X | y)||Q(X | t))} ,

where

ID(P(X)||Q(X)) = ∑
x

P(x) log
P(x)

Q(x)

is the Kulback Leibler divergence between the distributionsP andQ over the set of random variables
X (Cover and Thomas, 1991). Repeated iterations of these equations for all t andy converge to a
(local) maximum where all equations are satisfied. Practical application of thisapproach for various
clustering problems was demonstrated in several works (e.g., (Slonim and Tishby, 2000, 2001)).
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Figure 1: Definition ofGin andGout for the multivariate information bottleneck framework.Gin

encodes the distributionQ that compressesY. Gout encodes the distributionP that we
want to approximate usingQ.

The multivariate extension of this framework (Friedman et al., 2001) allows usto consider the
interactions of multiple observed variables using several bottleneck variables. For example, we
might want to compress words (Y) in a way that preserves information both on the topic of the
document (X1) and on the author of that document (X2). In addition, there probably is a strong
correlation between the author and the topics he writes about. Evidently, the number of possible
interactions may be large, and so the framework allows us to specify the interactions we desire.
These interactions are represented via two Bayesian networks. The first, calledGin, represents the
required compression, and the second, calledGout, represents the independencies that we are striving
for between the bottleneck variables and the target variables. In Figure 1, Gin specifies thatT is a
stochastic function of its parent in the graphY. Gout specifies that we wantT to makeY and the
variablesXi ’s independent of each other.

Formally, the framework of Friedman et al. (2001), attempts to minimize the Lagrangian

L (1)[Gin,Gout] = I Gin −βI Gout,

where
I G = ∑

i

II (Xi ;PaG
i )

and the information is computed with respect to the probability distribution represented by the net-
work G . This objective is a direct generalization of Eq. (3), and as before, tractable self-consistent
equations characterize the optimal partitioning. Note that, as in the basic information bottleneck
formulation, the two objective of the above Lagrangian are competing. On theone hand we want to
compress the information between all bottleneck variablesT and their parents inGin. On the other
hand we want to preserve, or maximize, the information between the variablesand their parents in
Gout.

Friedman et al. (2001) also present an analogous variational principalthat will be useful in our
framework. Briefly, the problem is reformulated as a tradeoff between compression of mutual in-
formation inGin so that the bottleneck variable(s)T help us describe a joint distribution that follows
that form of a target Bayesian networkGout. Formally, they attempt to minimize the following
objective function

L (2)[Q,P] = IIQ(Y;T)+ γID(Q(Y,T,X)||P(Y,T,X)), (4)
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whereQ and P are joint probabilities that can be represented by the networks ofGin and Gout,
respectively. The two principals are analogous under the transformationβ = γ

1+γ and assuming

I Gin = IIQ(Y;T). See Friedman et al. (2001) for more details of the relation between the two princi-
pals.

The minimization of the above Lagrangian is over possible parameterizations ofQ(T |Y) (the
marginalQ(Y,X) is given and fixed) and over possible parameterizations ofP(Y,T,X) that can be
represented byGout. In other words, we want to compressY in such a way that the distribution
defined byGin is as close as possible to desired distribution ofGout. The analogous principal gives
us a new view on why these two objectives are conflicting: Consider a distribution that is consistent
with Gin so thatT is independent ofX givenY. On the other hand, a distribution consistent with a
specific choice ofGout may require thatX is independent ofY givenT. Constructing a distribution
where both of these requirements actually hold is not useful, may results inT that is equal to either
X or Y, making this bottleneck variable redundant.

The scale parameterγ balances the above two factors. Whenγ is zero we are only interested in
compressing the variableY and we resort to the trivial solution of a single cluster (or an equivalent
parameterization). Whenγ is high we concentrate on choosingQ(T |Y) that is close to a distribution
satisfying the independencies encoded byGout. Returning to our word-document example. We
might be willing to forgo the distinction between ’football’ and ’baseball’ in which case we would
setγ to a relatively low value. On the other hand, we might even want to make a minute distinction
between ’Pentium’ and ’Celeron’ in which case we would setγ to a high value. Obviously, there is
no single correct value ofγ but rather a range of possible tradeoffs. Accordingly, several approaches
were devised to explore the spectrum of solutions asγ varies. These include Deterministic annealing
like approaches that start with small value ofγ and progressively increase it (Friedman et al., 2001),
as well as agglomerative approaches that start with a highly refined solution and gradually compress
it (Slonim and Tishby, 2000, 2001; Slonim et al., 2002).

3. Information Bottleneck Expectation Maximization

The main focus of the multivariate information bottleneck (see is on distributionQ(T | Y) that
is a local maxima solution of the Lagrangian This distribution can be thought of as a soft clus-
tering of the original data. Our emphasis in this work is somewhat different. Given a data set
D = {x[1], . . . ,x[M]} over the observed variablesX, we are interested in learning a better genera-
tive model describing the distribution of the observed attributesX. That is, we want to give high
probability to new data instances from the same source. In the learned network, the hidden variables
will serve to summarize some part of the data while retaining the relevant information on (some) of
the observed variablesX.

We start by extending the multivariate information bottleneck framework for thetask of gener-
alization where, in addition to the task of clustering, we are also interested in learning the generative
modelP. We emphasize that this is a conceptually different task. In particular, the common view
of the information bottleneck framework is as a non-parametric information-theoretic method for
clustering (the obvious exception is the work of Slonim and Weiss (2002) mentioned below). In
generative learning, on the other hand, we are interested in modeling the distribution. That is, we
are ultimately interested inparameterizinga specific model so that our generalization prediction on
unseen future instances is improved. We start by considering this task forthe case of a single hidden
variableT and then, in Section 5, extend the framework to several hidden variables.

88



LEARNING HIDDEN VARIABLE NETWORKS

3.1 The Information Bottleneck EM Lagrangian

If we were only interested in thetraining data and the cardinality of the hidden variable allows
it, each state of the hidden variable would have been assigned to a different instance. Consider,
for example, a variableT with |T| states that defines a soft clustering on the specific identity of
words (Y) appearing in documents while preserving the information relevant to the topic(X) of
these documents. Now suppose we are given a set of instancesD = {word[i], topic[i]} where i
goes from 1 toM, the number of instances. If|T| = M then we could simply deterministically set
Q(T = i |word[i]) = 1 and then predicttopic[i] perfectly. While this model achieves perfect training
performance, it will clearly have no generalization abilities. Since we are also interested in unknown
future samples, we intuitively require that the learned model “forget” the specifics of the training
examples. However, in doing so we will also deteriorate the (previously deterministic) prediction of
the observed variables. Thus, there is a tradeoff between the compression of the identity of specific
instances and the preservation of the information relevant to the observedvariables.

We now formalize this idea for the task of learning a generative model over the variablesX and
the hidden variableT. We define an additional variableY to be the instance identity in the training
dataD. That is,Y takes values in{1, . . . ,M} andY[m] = m. We defineQ(Y,X) to be the empirical
distribution of the variablesX in the data, augmented with the distribution of the new variableY.
For each instancey, x[y] are the valuesX take in the specific instance. We now apply the information
bottleneck framework with the graphGin of Figure 1. The choice of the graphGout depends on the
network model that we want to learn. We take it to be the target Bayesian network, augmented by
the additional variableY, where we setT asY’s parent. For simplicity, we consider as a running
example the simple clustering model ofGout whereT is the parent ofX1, . . . ,Xn. In practice, and
as we show in Section 6 any choice ofGout can be used. We now want to optimize the Bottleneck
objective as defined by these two networks. This will attempt to define a conditional probability
Q(T |Y) so thatQ(T,Y,X) = Q(T |Y)Q(Y,X) can be approximated by a distribution that factorizes
according toGout. This construction will aim to findT that captures the relevant information the
instance identity has about the observed attributes. The following proposition concretely defines the
objective function for the particular choice ofGin andGout we are dealing with.

Proposition 1
Let

1. Y be the instance identity as defined above;

2. Gin be a Bayesian network structure such that such that T is independent ofX given Y; and

3. Gout be a Bayesian network structure such that Y is a leaf with T as its only parent.

Then, minimizing the information bottleneck objective function in Eq. (4) is equivalent to minimizing
the Lagrangian

LEM = IIQ(T;Y)− γ(IEQ[logP(X,T)]− IEQ[logQ(T)]) ,

as a function of Q(T |Y) and P(X,T).

Note that once the above conditions are satisfied, we can still arbitrarily choose the structure of
Gout, which encodes independencies of the distributionP we ultimately wish to learn.
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Proof: Using the chain rule and the fact thatY andX are independent givenT in Gout), we can
write P(Y,X,T) = P(Y | T)P(X,T). Similarly, using the chain rule and the fact thatX andT are
independent givenY in Gin, we can writeQ(Y,X,T) = Q(Y | T)Q(T)Q(X |Y). Thus,

ID(Q(Y,X,T)||P(Y,X,T)) = IEQ

[
log

Q(Y | T)Q(T)Q(X |Y)

P(Y | T)P(X,T)

]

= ID(Q(Y | T)||P(Y | T))

+ IEQ[logQ(X |Y)]

+ IEQ[logQ(T)]

− IEQ[logP(X,T)].

By settingP(Y | T) = Q(Y | T), the first term reaches zero, its minimal value. The second term is
a constant since we cannot change the input distributionQ(X |Y). Thus, we need to minimize the
last two terms and the result follows immediately.

An immediate question is how this target function relates to standard maximum likelihood learn-
ing. To explore the connection, we use a formulation of EM introduced by Neal and Hinton (1998).
Although EM is usually thought of in terms of changing the parameters of the target functionP,
Neal and Hinton show how to view it as a dual optimization ofP and an auxiliary distributionQ.
This auxiliary distribution replaces the given empirical distributionQ(X) with a completed empir-
ical distributionQ(X,T). Using our notation in the above discussion, we can write the functional
defined by Neal and Hinton as

F [Q,P] = IEQ[logP(X,T)]+ IHQ(T |Y), (5)

whereIHQ(T |Y) = IEQ[− logQ(T |Y)], andQ(X,Y) is fixed to be the observed empirical distribu-
tion.

Theorem 2 (Neal and Hinton, 1998)If (Q∗,P∗) is a stationary point ofF , then P∗ is a stationary
point of the log-likelihood functionIEQ[logP(X)].

Moreover, Neal and Hinton show that an EM iteration corresponds to maximizing F [Q,P] with
respect toQ(T | Y) while holdingP fixed, and then maximizingF [Q,P] with respect toP while
holdingQ(T |Y) fixed. The form ofF [Q,P] is quite similar to the IB-EM Lagrangian, and indeed
we can relate the two.

Theorem 3 LEM = (1− γ)IIQ(T;Y)− γF [Q,P] .

Proof: Plugging the identityIHQ(T |Y) = −IEQ[logQ(T)]− IIQ(T;Y) into the EM functional we
can write

F [Q,P] = IEQ[logP(X,T)]− IEQ[logQ(T)]− IIQ(T;Y).

If we now multiply this byγ, and re-arrange terms, we get the form of Proposition 1.

As a consequence,minimizingthe IB-EM Lagrangian is equivalent tomaximizingthe EM func-
tional combined with an information theoretic regularization term. Whenγ = 1, the solutions of
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the Lagrangian and the EM functional coincide and finding a local minimum ofLEM is equivalent
to finding a local maximum of the likelihood function. Slonim and Weiss (2002) provide a similar
result for the specific case where the generative model is a mixture model of a univariateX. Their
formulation is different than ours in several subtle details that do not allow adirect relation between
the two methods. Nonetheless, both Slonim and Weiss (2002) and Theorem 3show that for a par-
ticular value ofγ, the information bottleneck Lagrangian coincides with the likelihood objective of
EM. The main difference between the two results is the choice of generativemodels, in our case
general multi-variate Bayesian networks, and in the case of Slonim and Weiss (2002), univariate
mixture models.

3.2 The Information Bottleneck EM Algorithm

Using the above results, we can now describe theInformation Bottleneck EMalgorithm given a
specific value ofγ. The algorithm can be described similarly to the EM iterations of Neal and
Hinton (1998).

• E-step: Maximize−LEM by varyingQ(T |Y) while holdingP fixed.

• M-step: Maximize−LEM by varyingP while holdingQ fixed.

Note that the algorithm is formulated in terms of maximizing−LEM rather than minimizingLEM to
enhance the relation between the Lagrangian and the EM objective.

The M-Step is essentially the standard maximum likelihood optimization of Bayesian networks.
To see that, note that the only term that involvesP is IEQ[logP(X,T)]. This term has the form of a
log-likelihood function, whereQ plays the role of the empirical distribution. Since the distribution
is over all the variables, we can use sufficient statistics ofP for efficient estimates, just as in the case
of complete data. Thus, theM step consists of computing expected sufficient statistics givenQ, and
then using a closed form formula for choosing the parameters ofP.

The E-step is a bit more involved. We need to maximize with respect toQ(T |Y). To do this we
use the following two results that are variants of Theorem 7.1 and Theorem8.1 of Friedman et al.
(2001) and proved using similar techniques (see Appendix A for the full proof).

Proposition 4 Let LEM be defined viaGin and Gout as in Proposition 1. Q(T | Y) is a stationary
point of LEM with respect to a fixed choice of P if and only if for all values t and y of T andY,
respectively,

Q(t | y) =
1

Z(y,γ)
Q(t)1−γP(x[y], t])γ, (6)

where Z(y,γ) is a normalizing constant:

Z(y,γ) = ∑
t ′

Q(t ′)1−γP(x[y], t ′])γ.

Note that, as can be expected from Theorem 3, whenγ = 1 the update equation reduces toQ(t | y) ∝
P(x[y], t) which is equivalent to the standard EM update equation.

Proposition 5 A stationary point ofLEM is achieved by iteratively applying the self-consistent equa-
tions of Proposition 4.
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Combining this result with the result of Neal and Hinton that show that optimizationof P increases
F(P,Q), we conclude that both the E-step and the M-step increase−LEM until we reach a stationary
point. As in standard EM, in most cases the stationary convergence point reached by applying these
self-consistent equations will be a local maximum of−LEM, or a local minimum ofLEM.

4. Bypassing Local Maxima using Continuation

As discussed in the previous section, the parameterγ balances between compression of the data
and the fit of parameters toGout. When γ is close to 0, our only objective is compressing the
data and the effective dimensionality ofT will be 1, leading to a trivial solution (or an equivalent
parameterization). At larger values ofγ we pay more and more attention to the distribution ofGout,
and we can expect additional states ofT to be utilized. Ultimately, we can expect each sample to
be assigned to a different cluster (if the dimensionality ofT allows it), in which case there is no
compression ofY and the information about theXs is fully preserved. Theorem 3 also tells us that
at the limit of γ = 1 our solution will actually converge to one of the standard EM solutions. In
this section we show how to utilize the inherent tradeoff determined byγ to bypass local maxima
towards a better solution atγ = 1.

Naively, we could allow a large cardinality for the hidden variable, setγ to a high value and find
the solution of the bottleneck problem. There are several drawbacks to thisapproach. First, we will
typically converge to a sub-optimal solution for the given cardinality andγ, all the more so forγ = 1
where there are many such maxima. Second, we often do not know the cardinality that should be
assigned to the hidden variable. If we use a cardinality forT that is too large, learning will be less
robust and might become intractable. IfT has too low a dimensionality, we will not fully utilize
the potential of the hidden variable. We would like to somehow identify the beneficial number of
clusters without having to simply try many options.

To cope with this task, we adopt thedeterministic annealingstrategy (Rose, 1998). In this
strategy, we start withγ = 0 where a single cluster solution is optimal and compression is total.
We then progress toward higher values ofγ. This gradually introduces additional structure into the
learned model. Intuitively, the algorithm starts at a place where a single, easy to compute solution
exists, and tracks it through various stages of progressively complex solutions hopefully bypassing
local maxima by staying close to the optimal solution at each value ofγ. There are several ways of
executing this general strategy. The common approach is simply to increaseγ in fixed steps, and
after each increment apply the iterative algorithm to re-attain a (local) maxima withthe new value
of γ. On the problems we examine in Section 6, this naive approach did not provesuccessful.

Instead, we use a more refined approach that utilizescontinuation methodsfor executing the
annealing strategy. This approach automatically tunes the magnitude of changes in the value ofγ,
and also tracks the solution from one iteration to the next. To perform continuation, we view the
optimization problem in the joint space of the parameters andγ. In this space we want to follow a
smooth path from the trivial solution atγ = 0 to a solution atγ = 1. Furthermore, we would like this
path to follow a local maximum ofLEM. As was shown above, this is equivalent to requiring that the
fixed point equations hold at all points along the path. Continuation theory (Watson, 2000) guaran-
tees that, excluding degenerate cases, such a path, free of discontinuities, indeed exists. Figure 2
shows a synthetic illustration of the setup. (a) shows the likelihood function ofthe two extremes of
the easy solution atγ = 0 and the EM function atγ = 1 in the joint(γ,Q)-space. (b) shows the range
of solutions between these extremes and marks the desired path we would like tofollow.
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Figure 2: Synthetic illustration of the continuation process. (a) shows the easy likelihood function
at γ = 0 and the complex EM function atγ = 1. (b) spans the full range of functions and
marks the desired path for following the maximum. (c) demonstrates a single step inthe
continuation process. The gradient∇Q,γG is computed and then the orthogonal direction
is taken.

We start by characterizing such paths. Note that once we fix the parametersQ(T |Y), the M-step
maximization of the parameters inP is fully determined as a function ofQ. Thus, we takeQ(T |Y)
andγ as the only free parameters in our problem. As we have shown in Proposition4, when the
gradient of the Lagrangian is zero, Eq. (6) holds for each value oft andy. Thus, we want to consider
paths where all of these equations hold. Rearranging terms and taking a logof Eq. (6) we define

Gt,y(Q,γ) = − logQ(t | y)+(1− γ) logQ(t)+ γ logP(x[y],y)− logZ(y,γ). (7)

Clearly, Gt,y(Q,γ) = 0 exactly when Eq. (6) holds for allt andy. Our goal is then to follow an
equi-potential path where allGt,y(Q,γ) functions are zero starting from some small value ofγ up to
the desired EM solution atγ = 1.

Suppose we are at a point(Q0,γ0), whereGt,y(Q0,γ0) = 0 for all t andy. We want to move in a
direction∆ = (dQ,dγ) so that(Q0 +dQ,γ0 +dγ) also satisfies the fixed point equations. To do so,
we want to find a direction∆, so that

∀t,y, ∇Q,γGt,y(Q0,γ0) ·∆ = 0, (8)

where∇Q,γGt,y(Q0,γ0) is the gradient ofGt,y(Q0,γ0) with respect to the parametersQ andγ. Com-
puting these derivatives with respect to each of the parameters results in aderivative matrix

Ht,y(Q,γ) =
(

∂Gt,y(Q,γ))
∂Q(t|y)

∂Gt,y(Q,γ)
∂γ

)
. (9)

Rows of the matrix correspond to each of theL = |T|× |Y| functions of Eq. (7), corresponding to
joint combinations of the|T| states of the bottleneck variableT and the|Y|= M number of possible
values of the instance identity variableY. The columns correspond to theL parameters ofQ as well
asγ. The entries correspond to the partial derivative of the function associated with the row with
respect to the parameter associated with the column.
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To find a direction∆ that satisfies Eq. (8) we need to satisfy the matrix equation

Ht,y(Q0,γ0)∆ = 0. (10)

In other words, we are trying to find a vector in the null-space ofHt,y(Q0,γ0)(Q0,γ0). The matrixH
is anL× (L+1) matrix and its null-space is defined by the intersection ofL tangent planes, and is
of dimensionL+1−Rank(Ht,y(Q,γ)). Numerically, excluding measure zero cases (Watson, 2000),
we expect Rank(Ht,y(Q0,γ0)) to be full, i.e., L. Thus, a unique line that (up to scaling) defines the
null space, and we can choose any vector along it. To follow the path to ourtarget objective at
γ = 1 we choose the direction that always increasesγ (we discuss the choice of the length of this
vector below). Returning to Figure 2, (c) illustrates this process. Shown isjoint (γ,Q)-space with
the grey-level denoting the value of the likelihood function. At each point inthe learning process
the gradient ofG is evaluated and the orthogonal direction is taken to follow the desired path.

Finding this direction, however, can be costly. Notice thatHt,y(Q,γ) is of sizeL(L + 1). This
number is quadratic in the training set size, and full computation of the matrix is impractical even
for small data sets. Instead, we resort to approximatingHt,y(Q,γ) by a matrix that contains only

the diagonal entries∂Gt,y(Q,γ)
∂Q(t|y) and the last column∂Gt,y(Q,γ)

∂γ . While we cannot bound the extent of
this diagonal approximation, we note that the diagonal terms are also the most significant ones and
many off diagonal terms are zero. Once we make the approximation, we can solve Eq. (10) in time
linear in L. (See Appendix B for a full development ofH and the computation of the orthogonal
direction. )

Note that once we find a vector∆ that satisfies Eq. (10), we still need to decide on its length,
or the size of the step we want to take in that direction. There are various standard approaches,
such as normalizing the direction vector to a predetermined size. However, inour problem, we have
a natural measure of progress that stems from the tradeoff defined by the target LagrangianLEM ,
whereII (T;Y) increases whenT captures more and more information about the samples during the
annealing procedure. That is, the “interesting” steps in the learning process occur whenII (T;Y)
grows. These are exactly the points where the balance between the two termsin the Lagrangian
changes and the second term grows sufficiently to allow the first term to increaseII (T;Y). Using
II (T;Y) to gauge the progress of the annealing procedure is appealing since it is anon-parametric
measure that does not involve the form of the particular distribution of interest P. In addition, in
all runsII (T;Y) starts at 0, and is upper-bounded by the log of the cardinality ofT and we are thus
given a scale of progress.

With this intuition at hand, we want to normalize the step size by the expected change inII (T;Y).
That is, we calibrate our progress with respect to theactualamount of regularization applied at the
current value ofγ. At regions whereII (T;Y) is not sensitive to changes in the parameters, we can
proceed rapidly. On the other hand, if small changes in the parameters result in significant changes
of II (T;Y), then we want to carefully track the solution. Figure 3 illustrates the difference between
using a predetermined step ofγ and partitioningII (T;Y) in order to determine the step size. It is
evident the usingII (T;Y) causes the method to concentrate on the region of interest in terms of rapid
change of the Lagrangian.

Formally, we compute∇Q,γII (T;Y) and rescale the direction vector so that

(∇Q,γIIQ(T;Y))′ ·∆ = ε, (11)
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Figure 3: Illustration of the step size calibration process. Both graphs show the change in informa-
tion betweenT andY as a function ofγ. The circles denote values ofγ to be evaluated.
(a) shows naive calibration when fixed steps are taken in theγ range. (b) shows calibra-
tion that uses fixed steps in the information range. The grey circle shows theregion of
dramatic change of the Lagrangian.

whereε is a predetermined step size that is a fraction of log|T|. We also bound the minimal and
maximal change inγ so that we do not get trapped in too many steps or alternatively overlook the
regions of change.

Finally, although the continuation method takes us in the correct direction, the approximation as
well as inherent numerical instability can lead us to a suboptimal path. To copewith this situation,
we adopt a commonly used heuristic used in deterministic annealing. At each value ofγ, we slightly
perturb the current solution and re-iterate the self-consistent equationsto converge on a solution. If
the perturbation leads to a better value of the Lagrangian, we take it as our current solution.

To summarize, our procedure works as follows: we start withγ = 0 for which only trivial
solutions exists. At each stage we compute the joint direction ofγ andQ(T |Y) that will leave the
fixed point equations intact. We then take a small step in this direction and apply IB-EM iterations
to attain the fixed point equilibrium at the new value ofγ. We repeat these iterations until we reach
γ = 1.

5. Multiple Hidden Variables

The framework we described in the previous sections can easily accommodate learning networks
with multiple hidden variables simply by treatingT as a vector of hidden variables. In this case, the
distributionQ(T |Y) describes thejoint distribution of the hidden variables for each value ofY, and
P(T,X) describes their joint distribution with the attributesX in the desired network. Unfortunately,
if the number of variablesT is large, the representation ofQ(T | Y) grows exponentially, and this
approach becomes infeasible.

One strategy to alleviate this problem is to forceQ(T |Y) to have a factorized form. This reduces
the cost of representingQ and also the cost of performing inference. As an example, we can require
that Q(T | Y) is factored as a product∏i Q(Ti | Y). This assumption is similar to themean field
variational approximation(e.g., Jordan et al. (1998)).
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Figure 4: Definition of networks for the multivariate information bottleneck framework with mul-
tiple hidden variables. Shown areGin with the mean fieldassumption, and a possible
choice forGout.

In the multivariate information bottleneck framework, different factorizations of Q(T |Y) cor-
respond to different choices of networksGin. For example, the mean field factorization is achieved
whenGin is such that the only parent of eachTi is Y, as in Figure 4. In general, we can consider
other choices where we introduce edges between the differentTi ’s. For any such choice ofGin, we
get exactly the same Lagrangian as in the case of a single hidden variable. The main difference is
that sinceQ has a factorized form, we can decomposeIIQ(T;Y). For example, if we use the mean
field factorization, we get

IIQ(T;Y) = ∑
i

IIQ(Ti ;Y).

Similarly, we can decomposeIEQ[logP(X,T)] into a sum of terms, one for each family inP. These
two factorization can lead to tractable computation of the first two terms of the Lagrangian as written
in Proposition 1. Unfortunately, the last termIEQ[logQ(T)] cannot be evaluated efficiently. Thus, we
approximate this term as∑i IEQ[logQ(Ti)]. For the mean field factorization, the resulting Lagrangian
(with this lower bound approximation) has the form

L
+

EM = ∑
i

IIQ(Ti ;Y)− γ

(
IEQ[logP(X,T)]−∑

i

IEQ[logQ(Ti)]

)
. (12)

The form ofL
+

EM is valid, if Proposition 1 still holds for the case of multiple hidden variables.
This is immediate if we make the following requirements, similar to those made for the case of a
single hidden variable:

1. Y is the instance identity;

2. Gin is a Bayesian network structure such that all of the variablesT are independent ofX given
Y; and

3. Gout is a Bayesian network structure such thatY is a child ofT and has no other parents. This
implies that inGout, Y is independent of allX givenT.
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The last requirement is needed so that we can setP(Y | T) = Q(Y | T) in the proof of Proposition 1.
As in the case of a single hidden variable, we can now characterize fixed point equations that hold
in stationary points of the Lagrangian.

Proposition 6 Let L
+

EM be defined viaGin andGout as in Eq. (12). Assuming amean fieldapproxi-
mation for Q(T |Y), a (local) maximum ofL

+

EM is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

Q(ti | y) =
1

Z(i,y,γ)
Q(ti)

1−γ exp{γEP(ti ,y)} ,

where
EP(ti ,y) ≡ IEQ(T|ti ,y)[logP(x[y],T)]

and Z(i,y,γ) is a normalizing constant that equals to

Z(i,y,γ) = ∑
t ′i

Q(t ′i )
1−γ exp

{
γEP

(
t ′i ,y
)}

.

See Appendix A for the proof.
The only difference from the case of a single hidden variables is in the form of the expecta-

tion EP(ti ,y). It is easy to see that when a single hidden variable is considered, andEP(ti ,y) ≡
logP(x[y], t), the two forms coincide. It is also easy to see that this term decomposes into a sum of
expectations, one for each factor in the factorization ofP. We note that only terms that average over
factors that involveTi are of interest inEP(ti ,y). All other terms do not depend on the value ofTi ,
and can be absorbed by the normalizing constant. Thus,EP(ti ,y) can still be computed efficiently.

A more interesting consequence (see theorem below) of this discussion is that whenγ = 1,
maximizingL

+

EM is equivalent to performingmean field EM(Jordan et al., 1998). Thus, by using
the modified Lagrangian we generalize this variational learning principle, and as we show below
manage to reach better solutions.

The formulation is easily extensible to a general variational approximation ofQ whereGin

allows, in addition to the dependence of eachTi onY, dependencies between the differentTi ’s. In
this case, we get

IIQ(T;Y) = ∑
i

IIQ(Ti ;PaGin
i ).

Similarly, IEQ[logP(X,T)] decomposes according to thejoint families ofTi in P and inQ. That is,

each term in the decomposition depends onTi , its parentsPaGin
i in Gin, and its parentsPaGout

i in Gout.
As in the case of the mean field variational approximation, the last termIEQ[logQ(T)] cannot be
evaluated efficiently. We approximate it using a decomposition that follows the structure ofGin as

IEQ[logQ(T)] ≈ ∑
i

IEQ

[
logQ(Ti | T∩PaGin

i )
]
. (13)

We can now reformulate the results of Theorem 3 for this general case:

Theorem 7 Let Q(T |Y) decompose according to any structureGin where all Ti ’s are descendents
of Y and replaceIEQ[logQ(T)] by a decomposition as defined in Eq. (13). Then for the resulting
Lagrangian

L
+

EM = (1− γ)∑
i

IIQ(Ti ;PaGin
i )− γF + [Q,P] ,
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Figure 5: (a) A quadrant based hierarchy structure with 21 hidden variables for modeling 16×16
images in theDigit domain. (b) Test log-loss of theIB-EM algorithm for the model of (a)
compared to the cumulative performance of 50 random EM and mean field EM runs.

whereF + [Q,P] is defined as in Eq. (5), except that the above decomposition for bothIEQ[logP(X,T)]
andIHQ(T |Y) is used.

Proof: This is a direct result of the fact that in the proof of Theorem 3, no assumptions were made
of the form ofQ.

The above theorem extends the formal relation of the information bottleneck target Lagrangian
and the EM functional for any form of variational approximation encodedby Gin. In particular, when
γ = 1, finding a local minimum ofL

+

EM is equivalent to finding a local maximum of the likelihood
function when the same variational approximation is used in the EM algorithm. Similarly, we can
derive the fixed point equations with each for different choices ofGin. The change to Proposition 6
is simply a different decomposition forEP(i,y)

To summarize, the IB-EM algorithm of Section 3.2 can be easily generalized to handle multiple
hidden variables by simply altering the form ofEP(ti ,y) in the fixed point equations. All other
details, such as the continuation method, remain unchanged.

6. Experimental Validation: Parameter Learning

To evaluate the IB-EM method for the task of parameter learning, we examine itsgeneralization
performance on several types of models on three real-life data sets. In each architecture, we consider
networks with hidden variables of different cardinality, where for now we use the same cardinality
for all hidden variables in the same network. We now briefly describe the data sets and the model
architectures we use.

• The Stock data set records up/same/down daily changes of 20 major US technology stocks
over a period of several years (Boyen et al., 1999). The training setincludes 1213 samples and
the test set includes 303 instances. We trained a Naive Bayes hidden variable model where
the hidden variable is a parent of all the observations.
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• The Digits data set contains 7291 training instances and 2007 test instances from theUSPS
(US Postal Service) data set of handwritten digits (see http://www.kernel-machines.org/data.html).
An image is represented by 256 variables, each denoting the gray level ofone pixel in a
16×16 matrix. We discretized pixel values into 10 equal bins.

On this data set we tried several network architectures. The first is a Naive Bayes model with
a single hidden variable. In addition, we examined more complex hierarchicalmodels. In
these models we introduce a hidden parent to each quadrant of the image recursively. The
3-level hierarchy has a hidden parent to each 8x8 quadrant, and thenanother hidden variable
that is the parent of these four hidden variables. The 4-level hierarchy starts with 4x4 pixel
blocks each with a hidden parent. Every 4 of these are joined into an 8x8 quadrant by another
level of hidden variables, totaling 21 hidden variables, as illustrated in Figure 5(a).

• TheYeast data set contains measurements of the expression of the Baker’s yeast genes in 173
experiments (Gasch et al., 2000). These experiments measure the yeast response to changes
in its environmental conditions. For each experiment the expression of 6152 genes were
measured. We discretized the expression levels of genes into ranges down/same/up by using a
threshold of one standard deviation from above and below the gene’s mean expression across
all experiments. In this data set, we treat each gene as an instance that is described by its
behavior in the different experiments. We randomly partitioned the data into 4922 training
instances (genes) and 1230 test instances.

The model we use for this data set has an hierarchical structure with 19 hidden variables in
a 4-level hierarchy that was determined by the biological expert based on the nature of the
different experiments, as illustrated schematically in Figure 6. In this structure, 5–24 similar
conditions (filled nodes) such as different hypo-osmotic shocks are children of a common
hidden parent (unfilled nodes). These hidden parents are in their turn children of further ab-
straction of conditions. For example, the heat shock and heat shock with oxidative stress
hidden nodes, are both children of a common more abstract heat node. A root hidden vari-
able is the common parents of these high-level abstractions. Intuitively, each hidden variable
encodes how the specific instance (a gene) is altered in the relevant groups of conditions.

As a first sanity check, for each model (and each cardinality of hidden variables) we performed
50 runs of EM with random starting points. The parameter sets learned in these different runs have
a wide range of likelihoods both on the training set and the test set. These results (on which we
elaborate below), indicate that these learning problems are challenging in thesense that EM runs
can be trapped in markedly different local maxima.

Next, we considered the application of IB-EM on these problems. We performed a single IB-EM
run on each problem and compared it to the 50 random EM runs, and also to50 random mean field
EM runs. For example, Figure 5 compares the test set performance (log-likelihood per instance) of
these runs on theDigit data set with a 4-level hierarchy of 21 hidden variables with 2 states each.
The solid line shows the performance of the IB-EM solution atγ = 1. The two dotted lines show
the cumulative performance of the random runs. As we can see, the IB-EM model is superior to
all the mean field EM runs, as well as all of the exact EM runs. Figure 6 shows the result for the
biological expert constructed hierarchy ofYeast data set with binary variables. As can be seen, in
this harder domain, the superiority of the exact EM runs over mean field EM runs is more evident.
Yet, the IB-EM run which also use the mean field approximation, is still able to surpass all of the
50 random exact EM runs.
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Figure 6: (a) A structure constructed by the biological expert for theYeast data set based on prop-
erties of different experiments. 5-24 similar conditions (filled nodes) are aggregated by
a common hidden parent (unfilled nodes). These hidden nodes are themselves children
of further abstraction nodes of similar experiments, which in their turn are children of
the single root node. (b) Comparison of test performance when learningthe parameters
of the structure of (a) with binary variables. Shown is test log-likelihood per instance of
the IB-EM algorithm and the cumulative performance of 50 random EM as well as 50
random mean field EM runs.

It is important to note the time required by these runs, all on a Pentium IV 2.4 GHzmachine.
For theDigit data set, a single mean field EM run requires approximately 2.5 hours, an exact EM
run requires roughly 17 hours, and the single IB-EM run requires justover 85 hours. As the IB-EM
run reaches a solution that is better than all of this runs, it offers an appealing performance to time
tradeoff. This is even more evident for theYeast data set where the structure is somewhat more
complex and the difference between exact learning and the mean field approximation is greater. For
this data set, the single IB-EM is still superior and takes significantly less time thana single exact
EM.

Figure 7 compares the test log-likelihood per instance performance of ourIB-EM algorithms
and 50 random EM runs for a range of models for theStock, Digit andYeast data sets. In most
cases, IB-EM is better than 80% of the EM runs and is often as good or better than the best of
them. The advantage of IB-EM is particularly pronounced for the more complex models with
higher cardinalities. Table 1 provides more details of these runs including train performance and
comparison to 50 random mean field EM runs.

We also compared the IB-EM method to the perturbation method of Elidan et al. (2002). Briefly,
their method alters the landscape of the likelihood by perturbing the relative weight of the samples
and progressively diminishing this perturbation as a factor of the temperature parameter. In the
Stockdata set, the perturbation method initialized with a starting temperature of 4 and cooling factor
of 0.95, had performance similar to that of IB-EM. However, the running time of the perturbation
method was an order of magnitude longer. For the other data sets we considered above, running
the perturbation method with the same parameters proved to be impractical. When we used more
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Train Log-Likelihood Test Log-Likelihood
Model IB-EM Random EM Mean Field EM IB-EM Random EM Mean Field EM

%< 100% 80% %< 100% 80% %< 100% 80% %< 100% 80%
Stock
C=3 -19.91 62% -19.90 -19.90 -19.90 76% -19.88 -19.89
C=4 -19.47 98% -19.46 -19.52 -19.52 96% -19.52 -19.62
C=5 -19.16 94% -19.15 -19.24 -19.31 98% -19.30 -19.39
Digit
C=5 -429.95 36% -428.67 -429.11 -439.91 56% -439.03 -439.47
C=10 -411.44 100% -411.72 -413.96 -425.33 100% -425.36 -427.05
DigH3
C=2 -442.02 100% -442.02 -442.29 100% -442.03 -442.20 -450.812 92% -450.76 -450.92 82% -450.76 -450.84
C=3 -428.77 100% -428.85 -429.02 100% -428.83 -429.02 -437.798 98% -437.74 -438.20 98% -437.74 -438.04
DigH4
C=2 -425.43 100% -425.54 -425.81 100% -425.61 -425.94 -433.279 100% -433.30 -433.55 100% -433.40 -433.71
C=3 -407.60 100% -407.75 -408.56 100% -408.49 -408.83 -415.798 100% -415.88 -416.48 100% -416.37 -416.77
Yeast
C=2 -148.13 100% -148.32 -148.79 100% -148.89 -149.71 -147.48 100% -147.51 -147.87 100% -147.92 -148.78
C=3 -139.44 100% -139.58 -140.05 100% -140.09 -140.87 -138.38 100% -138.57 -139.00 100% -139.06 -139.92
C=4 -136.36 100% -136.72 -136.97 100% -137.72 -138.28 -135.65 100% -135.96 -136.16 100% -136.92 -137.34

Table 1: Comparison of the IB-EM algorithm, 50 runs of EM with random starting points, and 50 runs of mean field EM from the same
random starting points. Shown are train and test log-likelihood per instancefor the best and 80th percentile of the random runs.
Also shown is the percentile of the runs that are worse than the IB-EM results. Data sets shown include a Naive Bayes model for the
Stock data set and theDigit data set; a 3 and 4 level hierarchical model for theDigit data set (DigH3 andDigH4); and an hierarchical
model for theYeast data set. For each model we show several cardinalities for the hidden variables, shown in the first column.
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Figure 7: Comparison of log-likelihood per instance test performance of the IB-EM algorithm
(black ’X’) and 50 runs of EM with random starting points. The vertical lineshows
the range of the random runs and boxes mark the 20%-80% range. Data sets shown (x-
axis) include a Naive Bayes model for theStock data set and theDigit data set; a 4 level
hierarchical model for theDigit data set (Digit Hier); a hierarchical model for theYeast
data set. For each model we show several cardinalities for the hidden variables, shown in
the x-axis.

efficient parameter settings, the perturbation method’s performance was significantly inferior to
that of IB-EM. These results do not contradict those of Elidan et al. (2002) who showed some
improvement for the case of parameter learning but mainly focused on structure learning, with and
without hidden variables.

To demonstrate the effectiveness of the continuation method we examineIB-EM during the
progress ofγ. Figure 8 illustrates the progression of the algorithm on theStock data set. (a) shows
training log-likelihood per instance of parameters in intermediate points in the process. This panel
also shows the values ofγ evaluated during the continuation process (circles). These were evaluated
using the predicted change inII (T;Y) shown in (b). As we can see, the continuation procedure fo-
cuses on the region where there are significant changes inII (T;Y) approximately corresponding the
areas of significant changes in the likelihood. For both theStock andDigit data sets, we also tried
changingγ naively from 0 to 1 as in standard annealing procedures, without performing continua-
tion. This procedure often “missed” the superior local maxima even when a large number (1000) of
γ values were used in the process. In fact, in most runs the results were nobetter than the average
random EM run emphasizing the importance of the continuation in the annealing process.

7. Learning Structure

Up until now, we were only interested in parameter learning. However, in real life it is often not
the case that the structure is given. A structure that is too simple will not be able to faithfully cap-
ture the distribution, while an overly complex structure will deteriorate our abilityto learn. In this
section we consider the case where the set of hidden variables is fixed and their cardinalities are
known, and we want to learn the network structure. Clearly, this problem isharder than simple
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Figure 8: The continuation process for a Naive Bayes model on theStock data set. (a) Shows the
progress of training likelihood as a function ofγ compared to the best of 50 EM random
runs. Black circles illustrate the progress of the continuation procedure by denoting the
value of γ at the end of each continuation step. Calibration is done using information
between the hidden variableT and the instance identityY shown in (b) as a function ofγ.

parameter learning, which is just one of the tasks we have to perform in this scenario. The common
approach to this model selection task is to use ascore-based approachwhere we search for a struc-
ture that maximizes some score. Common scores such as the BDe score (Heckerman et al., 1995)
balance the likelihood achieved by the model and its complexity. Thus, model selection is achieved
independently of the search procedure used (see Section 2.1 for more details).

We now aim to extend theIB-EM framework for the task of structure learning using a score-
based approach. Naively, we could simply consider different structures and for each one apply the
IB-EM procedure to estimate parameters, and then evaluate its generalizationability using the score.
Such an approach is extremely inefficient, since it spends a non-trivial amount of time to evaluate
each potential candidate structure. In this work we advocate a strategy that is based on the structural
EM framework of Friedman (1997). In structural EM, we use the completiondistributionQ that is
a result of the E-Step to computeexpected sufficient statistics. That is, instead of Eq. (1), we use

IEQ(T|Y)[N(xi ,pai)] = ∑
m

∑
t

Q(X [m] = xi ,Pai = pai , t |Y = m).

These statistics are then used in theM-stepwhen structure modification steps are evaluated. Thus,
instead of assuming that the target structureGout is fixed, we define the Lagrangian as a function of
the pair(Gout,θ). Then, in the M-step, we can consider different choices ofGout and evaluate how
each of them changes the score. Given the expected statistics, the problem is identical in form to
learning from a fully observed data set and computation of the score is similar. This facilitates an
efficient greedy search procedure that uses local edge modification tothe network structure. The
EM procedure of Section 3.2 is thus revised as follows:

• E-step: Maximize−LEM by varyingQ(T |Y) while holdingP fixed.

• M-step: While holdingQ fixed:
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– Search for the structureGout of P that maximizes ScoreBDe(G : D), using the sufficient
statistics ofQ.

– Maximize−LEM by varying the parameters ofP using the structureGout selected.

In practice, since the BDe score is not a linear function of the sufficient statistics, we approx-
imate it in theM-step using the Cheeseman-Stutz (Cheeseman et al., 1988) approximation. It is
important to note the distinction between the optimization of the Lagrangian and thatof the score.
Specifically, optimizing the Lagrangian involves maximization of the likelihood alongwith an infor-
mation theoretic regularization term that does not depend onP. On the other hand, optimization of
the structure is performed using the BDe model selection score. This is mathematically valid since
each optimization step is ignorant of the inner mechanics of the other step. However, one might
wonder why the use of a score is needed at all if regularization is alreadypresent in the form of the
information theoretic term in the Lagrangian. It is easy to understand the reason for this if we look
at the final stage of learning whenγ = 1. At this point, as we have shown, optimizing the Lagrangian
is equivalent to optimizing the EM objective. Using the same objective to adapt structure will result
in dense structures. In particular, it will be beneficial to add an edge between any two variables
that are not perfectly independent in the training data. Thus, while the regularization encoded in the
Lagrangian is needed to smooth the parametric EM problem, a model selection regularization via a
score is also needed to constrain the network structure.

Using the structural EM framework allows us to apply our framework to structure learning and
to use various search operators as simple plug-ins. For general Bayesian networks, for example, one
can consider the standard add, delete and reverse edge operators. The only requirement in this case
is that a hidden variable is constrained to be non-leaf, in which case it becomes redundant and can
be marginalized out. In addition, as in the case of learning parameters, we are still guaranteed to
converge for a given value ofγ. However, as in parametric EM, convergence is typically to a local
maximum. In fact, the problem now has two facets: First, local maxima that resultfrom evaluation
of Q in the E-step. Second, local maxima in the discrete structure search space due to the greedy
nature of the search algorithm.

Although the method described above applies for any Bayesian network structure, for concrete-
ness we focus on learninghierarchiesof hidden variables in the following sections. In this sub-class
of networks each variable has at most one parent, and that parent hasto be a hidden variable. This
implies that the hierarchy of hidden variables captures the dependencies between the observed at-
tributes. Since we are dealing with hierarchies we consider search steps that replace the parent of a
variable by one of the hidden variables. Such moves preserve the overall hierarchy structure, repo-
sitioning a single observed variable, or a sub-hierarchy. We apply thesesteps in a greedy manner,
from the one that leads to the largest improvement, as long as the resulting hierarchy is acyclic.

8. Learning Cardinality

In real life, it is often the case that we do not know the cardinality of a hidden variable. In a
clustering application, for example, we typically do not know of a beneficialnumber of clusters
and need to either use some arbitrary choice or spend time evaluating several possibilities. Naively,
we might try to set a high cardinality so that we can capture all potential clusters. However, this
approach can lead to bad generalization performance due to over-representation. The discussion in
Section 4 on the behavior of the model as a function ofγ provides insight on the effect of cardinality
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Figure 9: Effective cardinality as a function ofγ during the learning process for theStock data set
using a Naive Bayes model. Cardinality is evaluated using local decompositionof the
BDe score.

selection. When examining the models during the continuation process, we observe that for lower
values ofγ theeffectivecardinality of the hidden variable is smaller than its cardinality in the model
(we elaborate on how this is measured below). Figure 9 shows an example ofthis phenomenon for
the Naive Bayes model of theStock data set. Thus, limiting the cardinality of the hidden variable is
in effect similar to stopping the continuation process at someγ < 1. This is, by definition, equivalent
to using a regularized version of the EM objective, which can avoid overfitting.

The most straightforward approach to learning the cardinality of a hidden variable is simply to
try a few values, and for each value apply IB-EM independently. We canthen compare the value
of the EM objective (atγ = 1) corresponding to the different cardinalities. However, models with
higher cardinality will achieve a higher likelihood and will thus always be chosen as preferable by
the Lagrangian, at the risk of overfitting the training data. In the previous section we discussed
the use of a model selection score as a measure for preferring one network structure over another.
The same score can also be readily applied for this scenario of cardinality selection. Whether the
complexity is a result of a dense structure or an increased number of parameters due to a high
cardinality of a variable, all common scores balance the likelihood with the modelcomplexity,
either explicitly as in the case of the MDL score (Lam and Bacchus, 1994) or implicitly as in the
case of the Bayesian (BDe) score (Heckerman et al., 1995). Thus, similarly to structure learning, we
use the Lagrangian when estimating parameters and turn to the score when performing the black-
box model selection step. One problem with this simple approach is that it can beextremely time
consuming. If we want to tryK different cardinalities for each hidden variable, we have to carry out
|H|K independent IB-EM runs, where|H| is the number of hidden variables.

The intuition that the “effective” cardinality of the hidden variable will increase as we consider
larger values ofγ suggests that we increasing the model complexity during the continuation process.
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A simple method is as follows. At each stage allow the model an extra, seemingly redundant, state
for the hidden variable. As soon as this state is utilized, we increase the cardinality by adding a
new “spare” state. The annealing process, by nature, automatically utilizesthis new state when it
is beneficial to do so. The task we face is to determine when all the states of a hidden variables
are being utilized and therefore a new redundant state is needed. Intuitively, a state of a variable is
being used if it captures a distinct behavior that is not captured by other states. That is, for any state
i, no other statej is similar.

To determine whether statei is different than all other states, we start by evaluating the cost
that we incur due to the merging of statei with another statej. We denote bŷi j a new state that
combines bothi and j and alterQ so that

Q(T = î j |Y = y) = Q(T = i |Y = y)+Q(T = j |Y = y). (14)

We then use this to reestimate the parameters ofP in the M-step, and examine the resulting change
to the Lagrangian. As shown in Slonim et al. (2002), the difference in the Lagrangian before and
after the merge is a sum of Jensen-Shannon divergence terms that measure the difference between
the conditional distribution of each child variable given the two states of the hidden variable. This is
in fact the change in likelihood of the model resulting from merging the states and can be computed
efficiently.

Now that we have the change in the Lagrangian due to the merging of statei with state j, we
have to determine whether this change is significant. As already noted, usingmore states will always
improve the likelihood so that the difference in the Lagrangian is not sufficient for model selection.
Instead, we can use the BDe score to take into account both the improvementto the likelihood and
the change in the model complexity as in Elidan and Friedman (2001). One appealing property
of the BDe score is that it islocally decomposable. That is, Eq. (2) decomposes according to the
different values of each variables. Thus, the difference between theBDe score after and before the
merge of statesi and j is only in the terms whereT appears:

ScoreBDe(Gî j : D)−ScoreBDe(Gi, j : D) =

∑pat

[
log Γ(N+(T=i, j,pat))

Γ(α(T=i, j,pat))
− log Γ(N+(T=i,pat))

Γ(α(T=i,pat))
− log Γ(N+(T= j,pat))

Γ(α(T= j,pat))

]
+

∑C ∑pac

[
log Γ(α(pac,T=i, j))

Γ(N+(pac,T=i, j)) +∑c log Γ(N+(c,pac,T=i, j))
Γ(α(c,pac,T=i, j))

− log Γ(α(pac,T=i))
Γ(N+(pac,T=i)) −∑c log Γ(N+(c,pac,T=i))

Γ(α(c,pac,T=i))

− log Γ(α(pac,T= j))
Γ(N+(pac,T= j)) −∑c log Γ(N+(c,pac,T= j))

Γ(α(c,pac,T= j))

]
,

where the first summation correspond to the family ofT and its parents, and the second summation is
over allC that are children ofT and corresponds to the families of the children ofT and their parents.
N+(x) = N(x)+α(x) and correspond tototal count statistics that include the imaginary prior counts
(see Section 2.1). As all the terms are functions of these simple sufficient statistics, the above
difference can be computed efficiently. Moreover, as in the case of the likelihood computation, the
sufficient statistics needed when merging two states are simply the sum of the statistics needed for
scoring the individual states. Thus, we can easily evaluate all pairwise state merges to determine if
anytwo states ofT are similar.
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Figure 10: Evaluating adaptive cardinality selection for theStock and theYeast data sets with a
Naive Bayes model. The ’X’ marks the performance of runs with adaptivecardinality
selection. The line shows performance of individual runs with a fixed cardinality. The
top panel shows training set performance, and the bottom one test set performance.

To summarize, the resulting procedure is as follows. We start with a binary cardinality for the
hidden variables atγ = 0. At each stage, beforeγ is increased, we determine for each hidden variable
if all its states are utilized: For each pair of states we evaluate the BDe score difference between
the model with the two states and the model with the states merged. If the difference is positive for
all pairs of states then all states are considered utilized and a new state is added. Optimizing the
Lagrangian using IB-EM will utilize this new state automatically when it will be beneficial to do so,
causing the introduction of a new “spare” state, and so on.

In an early work leading to the formulation of the Information Bottleneck framework, (Pereira
et al., 1993) used a similar idea to gauge the effective number of clusters. Briefly, for each cluster
a slightly perturbed cluster (twin state) was incorporated in the model allowing each cluster to split
into two distinct ones. Similar procedures were used in deterministic annealing (Rose, 1998) and
later information bottleneck implementations (Tishby et al., 1999; Slonim et al., 2002). The method
we presented in this section differs in two important aspects. First, we use a model selection score to
determine when it is beneficial to declare that a redundant cluster is actuallybeing used. This allows
us to avoid using an arbitrary distance measure to determine if two clusters diverge. Second, the
above allows us to use a single redundant cluster rather than a twin for each state, which significantly
reduces the model complexity. While this may not be crucial in standard clustering scenario, it is of
great importance for the large models with many hidden variables that we consider in this paper.

9. Experimental Validation: Learning Cardinality

We now want to evaluate the effectiveness of our method for adapting cardinality during the anneal-
ing process. For this, we would like to compare the cardinality and model achieved by the method
to naive selection of the cardinality. To make this feasible, we look at the context of a Naive Bayes
model with a single hidden variable for theStock and theYeast data set introduced in Section 6.
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We trained the models using the IB-EM algorithm where the hidden variable wasassigned a fixed
cardinality, and repeated this for different cardinalities. We then applied our adaptive cardinality
method to the same model. Figure 10 compares the adaptive cardinality selection run (’X’ mark)
vs. the fixed cardinality runs for both data sets. As we can see, the adaptive run learns models that
generalize nearly as well as the best models learned with fixed cardinality. These results indicate
that our method manages to increase cardinality while tracking a high likelihood solution, and that
the decision when to add a new state manages to avoid adding spurious states.

A more complex scenario is where, for theYeast data set, we learn the hierarchy supplied by
the biological expert for 62 of the experiments. In this hierarchy there are 6 hidden variables that
aggregate similar experiments, aHeatnode that aggregates 5 of these hidden variables and a root
node that is the parent of bothHeatand the additionalNitrogen Depletionnode. Figure 11 shows the
structure along with the cardinalities of the hidden variables learned by our method and compares
the performance of our method to model learned with different fixed cardinalities. As can be seen
in (b), the performance of our final model is close to the optimal performance with fixed cardinality.
(c) shows that this is achieved with a similar complexity to the simpler of the superiormodels (at a
fixed cardinality of 10).

10. Learning New Hidden Variables

The ideas presented in Section 7 are motivated by the fact that in real life weare typically not
given the structure of the Bayesian network. The situation is often even more complex. Hidden
variables, as their name implies, are not only unobserved but can also be unknown entities. In this
case, we do not even know which variables to include in our model. Thus, wewant to determine
the number of hidden variables, their cardinality, their relation to the observed variables, and their
inter-dependencies. This situation is clearly much more complex than structurelearning and might
seem hopeless at first. However, as in the case of cardinality adaptation discussed in Section 8, we
can use emergent cues of the continuation process to suggest an effective method.

Recall the behavior of our target Lagrangian as a function ofγ. For small values ofγ, the
emphasis of the Lagrangian is on compressing the instance identity, and the hidden variables are
(almost) independent of the observed attributes. Thus, at this stage, a simple model would be able
to perform just as well as a complex one. In fact, to increase learning robustness, we will want
to favor the simpler model and avoid redundant representational complexity. As we increaseγ,
the hidden variables start capturing properties of the data. In this scenario the need for the more
complex structure becomes relevant as it will allow the learning procedure toimprove performance.

The above intuition suggests that at small values ofγ we start with a simple hierarchy (say, one
with only a single hidden variable). When the continuation reaches larger values ofγ, the Lagrangian
can tolerate more complex structures. Thus, we want to adapt the complexity of the hierarchy as
we progress. To do so, we consider a search operator that enrichesthe structure of hierarchy with
a new hidden variable. (This operator is much in the spirit of the “top-down”strategy explored by
Adachi and Hasegawa (1996) in learning evolutionary trees.)

Suppose that we want to consider the addition of a new hidden variables intothe network struc-
ture. For simplicity, consider the scenario shown in Figure 12, where we start with a Naive Bayes
network with a hidden variableT1 as root and want to add a hidden variableT2 as a parent of a
subsetC of T1’s children. Intuitively, we want to select a subsetC that is not “explained well” by
T1 and where we expect to gain a lot by the introduction ofT2. Formally, we evaluate the change in

108



LEARNING HIDDEN VARIABLE NETWORKS

(a)

5 10 15 20 25 30 35 40 45 505 10 15 20 25 30 35 40 45 50

Cardinality

T
es

t L
L 

/ i
ns

ta
nc

e

-50

-48

-46

-44

Fixed Cardinality
Adaptive Cardinality
Fixed Cardinality
Adaptive Cardinality

5 10 15 20 25 30 35 40 45 505 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

# 
pa

ra
m

et
er

s 
x 

10
00

0

Fixed Cardinality
Adaptive Cardinality
Fixed Cardinality
Adaptive Cardinality

Cardinality

(b) (c)

Figure 11: Cardinality learning for theYeast data set on the structure provided by the biological ex-
pert. (a) shows the structure along with the nodes annotated with the cardinality learned
by our adaptive approach. (b) shows the test set log-likelihood performance of models
learned with different fixed cardinalities (solid line). The horizontal dashed line marks
the performance of our adaptive cardinality method. (c) shows plot the number of pa-
rameters for each of these models (solid line) with the dashed horizontal line marking
the number of parameters of the model learned by our method.

our target Lagrangian as the result of insertingT2 into the network structure

LEM −L ′
EM =

−IIQ(T2;Y)+ γIEQ[logP′(T2 | T1)− logQ(T2)+∑i∈C [logP′(Xi | T2)− logP(Xi | T1)]],

whereP andP′ are the models before and after the change to the network, respectively.The term
logP(Xi |T1) can be readily evaluated from the current model for eachX ∈C and the termsIIQ(T2;Y)
andIEQ[logQ(T2)] can be easily bounded. However, to evaluate logP′(T2 | T1) or ∑i∈C logP′(X | T2)
we need to actually chooseC, addT2 to the current structure and optimizeQ(T2 |Y). This can be
too costly as the number of possible subsetsC can be large even for a relatively small number of
variables. Thus, we want to somehow approximate the above terms efficientlyusing only the current
model. The following bound allows us to do so by bounding the contribution of ahidden variable.

109



ELIDAN AND FRIEDMAN

T1

X1 Xn

T1

Xn

T2

X1 Xk

Figure 12: Example of enrichment with new hidden variablesT2 as parent of a subsetC of the
observed variablesX1 . . .Xn.

Proposition 8 Let P be a Bayesian network model with a hidden variable T1 and denote byC an
observed subset of T1’s children. Let P′ be the result of replacing T1 as a parent ofC by T2, making
T2 a child of T1 and optimizing the parameters of the model using the IB-EM algorithm for anyvalue
of γ. Then

IEQ[logQ(C | T1)] ≥ IEQ

[

∑
i∈C

logP′(Xi | T2)+ logP′(T2 | T1)

]
.

Proof: Using the chain rule and positivity of entropy, we can write

IEQ[logQ(C | T1)] ≡ −IHQ(C | T1)

= −
[
IHQ(C,T2 | T1)− IHQ(T2 | C,T1)

]

≥ −IHQ(C,T2 | T1)

= −
[
IHQ(C | T2,T1)+ IHQ(T2 | T1)

]

= −
[
∑
i∈C

IHQ(Xi | X1 . . .Xi−1,T2,T1)+ IHQ(T2 | T1)
]

≥ −
[
∑
i∈C

IHQ(Xi | T2)+ IHQ(T2 | T1)
]

≡ IEQ

[

∑
i∈C

logP′(Xi | T2)+ logP′(T2 | T1)

]
.

The last inequality result from the fact that entropy conditioned on less variables can only increase.
The final equivalence is a result of the construction of the M-Step of IB-EM, whereQ is used when
in the optimization of the parameters ofP′.

The above proposition provides a bound on the extent to which a hidden variable induces cor-
relations in the marginal distribution. The result is intuitive — the contribution of insertion of a
new hidden variable cannot exceed the entropy of its children given theircurrent hidden parent. If
we use the bound instead of the original term, we get an over-optimistic estimate of the potential
profitability of adding a new hidden variable. However, the scenarios we are interested in are those
in which the information between the hidden variable and its children is high and the entropy of
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Figure 13: Synthetic example demonstrating the information signal for adding new hidden vari-
ables. (a) shows the original structure that generated the samples. (b) shows the structure
used in learning without the hidden variableT2. (c) shows the information as a function
of γ between the hidden variables and the observed variables. As learning progresses,
the total information rises and the distribution of the direct children ofT1 is captured
significantly better (dotted). The information with the original children ofT2 (dashed)
remains small.

the hidden variable is low (or there would be no need for it in the network). In such cases, we can
expect the bound to be tight in both inequalities.

The above bound provides us with an information signal for putative new hidden variables.
In practice, searching for the best subsetC can be impractical even for relatively small networks.
Instead, we use the following greedy approach: first, for each hiddenvariable, we limit our attention
to up toK (we use 20) of its children with the highest entropy individually. We then considerall
three-node subsets of these children whose entropy level passes somethreshold (see details in the
experiments below). Intuitively, such seeds will capture the core of the signal needed to attract other
nodes when structure change is allowed.2

Another complication in using the above signal is a consequence of the annealing process itself.
For small values ofγ we can expect, and indeed we want,Q to smooth out all statistical signals.
This will make most subsets appear equally appealing for adding a hidden variable, sinceT1 will
not be informative about them. In Section 4, we have shown thatIIQ(Y;T) is a natural measure for
the progress of the continuation process. To demonstrate the phenomenonin the structure learning
scenario, Figure 13 shows a simple synthetic experiment where the samples were generated from

2In synthetic experiments for different structures where the network size still made computations feasible, these three
node seeds always included two or three variables of the optimal larger subset.
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the structure shown in (a) and a Naive Bayes model withoutT2 was used when learning. (c) shows
the information between the hidden variableT1 and the observed children (solid), its direct children
in the generating distribution (dotted) and the children ofT2 (dashed). Up to some point in the
annealing process, the information content of the hidden variable is low andthe information with
both subsets of variables is low. When the hidden variable starts to capture the distribution of
the observed variables, the two subsets diverge and whileT1 captures its original direct children
significantly better, the children ofT2 still have high entropy givenT1. Thus, we want to start
considering our information “cue” only when the hidden parent becomes meaningful, that is only
whenIIQ(Y;T1) passes some threshold.

Finally, we note that although the discussion so far assumed that we have a Naive Bayes model
and considered the addition of a single new hidden variable, it is easily generalized for any forms of
P where inP′ we separate a hidden variables inP from its observed children by introducing a new
hidden variable.

To summarize, our approach for learning a new hidden variableT (or several such variables) is
as follows: At each value ofγ, we first evaluateIIQ(Y;T) to determine if it is above the threshold,
signifying that the hidden variable is capturing some of the distribution over therest of the variables.
If this is the case, we greedily search for subsets of children of the hidden variable that have high
entropy. These are subsets that are not predicted well by their hidden parent. For the subset with the
highest entropy, we suggest a putative new hidden variable that is the parent of the variables in the
subset. The purpose of this new variable is to improve the prediction of the subset variables, which
are not sufficiently explained by the current model. We then continue with theparameter estimation
and structure learning procedure as is. If, after structure search, ahidden variable has at most one
child, it is in fact redundant and can be removed from the structure. We iterate the entire procedure
until no more hidden variable are added and the structure learning procedure converges.

11. Full Learning — Experimental Validation

We want to evaluate the effectiveness of our method when learning structure with and without the
introduction of new hidden variables into the model. We examined two real-life data sets: The
Stock data set and theYeast data set (see Section 6). For theYeast data set we look at a subset of 62
experiments related to heat conditions and Nitrogen depletion.

In Figure 14 we consider average test set performance on theStock data set. To create a baseline
for hierarchy performance, we train aNaive hierarchy with a single hidden variable and cardinality
of 3 totaling 122 parameters. We start by evaluating structure learning without the introduction of
new hidden variables. To do this, we generated 25 random hierarchies with 5 binary hidden variables
that are parents of the observed variables and a common root parent totaling 91 parameters. We then
use structural EM (Friedman, 1997) to adapt the structure by using areplace-parentoperator where
at each local step an observed node can replace its hidden parents. Ascan be seen in Figure 14,
standard structure learning applied to the IB-EM framework significantly improves the model’s
performance. In fact, many of the 25 random runs with theSearch operator surpass the performance
of theNaive model using fewer parameters.

Next, we evaluate the ability of the new hidden variable enrichment operator toimprove the
model. We denote byEnrich the IB-EM run with the automatic enrichment operator. We denote by
Enrich+Search the run with this operator augmented with structure search operators in the M-steps.
As can be seen in Figure 14, the performance ofEnrich by itself was not able to compete with the
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Figure 14: Comparison of performance on theStock data set of Naive hierarchy (Naive), 25 hierar-
chies with replace-parent search (Search) , hierarchy learned with enrichment operator
(Enrich) and hierarchy learned with enrichment and replace-parent search (Enrich+).

Naive or theSearch method. This is not surprising as we cannot expect the information signal to
introduce “perfect” hidden variables into the hierarchy. Indeed, whencombining the enrichment
operator with structure adaptation (Enrich+Search), our method was able to exceed all other runs.
The learned hierarchy had only two hidden variables (requiring only 85 parameters). These results
show the enrichment operator effectively added useful hidden variables and that the ability to adapt
the structure of the network is crucial for utilizing these hidden variables to the best extent.

There are two thresholds used by our algorithm for learning new hidden variables. First, as
noted in Section 10, due to the nature of the annealing process we consideradding new hidden
variable only when the informationIIQ(Y;T) of a hidden variableT in the current structure passes
some threshold. In the results presented in this section we use a threshold of20% of the maximum
value the information can reach which is limited by the cardinality ofT. Lowering this threshold
to as far as 10% or raising it to 40% had negligible effect on the results. We hypothesize that this
robustness is caused by the fact that, typically, the cardinality ofT will be much lower thanY. Thus,
whenT undergoes the transition from being redundant to being informative, its information content
rises drastically, even if it captures only a small aspect ofY.

The threshold used to limit the number of candidate subsets, however, is moreinteresting. Re-
call from Section 10 that the greedy procedure only considers subsetswhose entropy passes some
threshold. More precisely, we consider only subsets whose entropy passes some percentage of the
maximum entropy possible for this subset. Thus, using a lower threshold potentially allows more
hidden variables. This is observed empirically in Figure 15(a) for theYeast data set. A possible
concern is that lowering the threshold too much will results in many hidden variables leading to
overfitting. However, as is evident in Figure 15(b), even when the number of hidden variables is 20,
these new variables are effective in that they improve the generalization performance on unseen test
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Figure 15: Learning new hidden variables for theYeast data set. (a) shows the number of variables
learned as a function of the threshold on the percentage of entropy of a subset used in
the greedy procedure. (b) shows the corresponding test set log-likelihood per instance
performance and the performance of the model supplied by the biological expert.

data. In fact, with just a few extra variables, our method successfully surpassed the performance of
the structure supplied by the biological expert. Obviously, at some point, having too many variables
will lead to overfitting. We could not examine this scenario due to the running time required to learn
such large networks.

To qualitatively assess the value of our method, we show in Figure 16 the structure learned for
the Stock data set with binary variables and the entropy threshold set at 95% (structures at 92.5%
and 97.5% were almost identical for this data set). The emergent structure isevident with the “High-
tech giants” and “Internet” group dominating the model. The “Varied” group contains “Canon” and
“Sony” that manufacture varied technology products such as electronics, photographic, computer
peripheral, etc. The “Japanese” relation of “Toyota” to these companieswas interestingly stronger
than the relation to the “Car” group.

Finally, we applied runs that combine both automatic cardinality adaptation and enrichment of
the structure with new hidden variables. Table 2 shows the train and test performance for theStock
data set. Shown are several runs with theEnrich operator and fixed cardinality. For each run, the
number of hidden variables added during the learning process (excludingthe initial root node) is
noted. Also shown is the automatic cardinality method using theBDe score along with the different
cardinalities of the 6 hidden variables introduced into the network structure.The combined method
was able to surpass the best of the fixed cardinality models in terms of test setperformance with
fewer than 70% of the parameters. In addition, the fact that the combined method improves test
performance but has worse training likelihood, demonstrates its ability to avoidoverfitting.

12. Related Work

To define the IB-EM algorithm, we introduced a formal relation between the information bottleneck
(IB) target Lagrangian and the EM functional. This allowed us to formulate an information-theoretic
regularization for our learning problem. Given this objective, we used twocentral ideas to make
learning feasible. First, following all annealing methods, we slowly diminish the level of “pertur-
bation” as a way to reach a solution of the hard objective. Second, we usecontinuation to define a
stable traversal from an easy problem to our goal problem.
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Figure 16: Structure learned for theStock data set using the enrichment operator augmented with
structure search that use the replace-parent operator. All the hiddenvariables (circles)
are binary and the subset entropy threshold was set at 95%. The children of each leaf
are annotated with a plausible interpretation.

A multitude of regularization forms are used in machine learning, typically depending on the
specific form of the target function (see Bishop (1995) and references within). Information-theoretic
regularization has been used for classification with partially labeled data by Szummer and Jaakkola
(2002) and for general scenarios in deterministic annealing (Rose, 1998).

Of the annealing methods, the well knownSimulated annealing(Kirkpatrick et al., 1983) is
least similar to ours. Rather than changing the form of the objective function, Simulated annealing
allows the search procedure to make “downhill” moves with some diminishing probability. This
changes the way the procedure traverses the search space and allowsit to potentially reach pre-
viously unattainable solutions. Several papers (Heckerman et al., 1994;Chickering, 1996; Elidan
et al., 2002) have shown that Simulated annealing is not effective when learning Bayesian networks.

Weight annealing(Elidan et al., 2002), on the other hand, skews the target function directlyby
perturbing the weights of instances in diminishing magnitudes. Thus, like our method it changes
the form ofQ directly but does not use an information-theoretic regularization. Weight annealing
can actually be applied to a wider variety of problems than our method, includingstructure search
with complete data. However, like other annealing methods, it requires a cooling scheme. For the
large problems with hidden variables we explored in this paper, Weight annealing proved inferior
with similar running times, and impractical with the settings of Elidan et al. (2002).

Finally, like our method, deterministic annealing (Rose, 1998) alters the problem by explicitly
introducing an information-theoretic regularization term. Specifically, following the widely recog-
nizedmaximum entropy principle(Jaynes, 1957), deterministic annealing penalizes the objective
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Log-likelihood # of # of
Cardinality Train Test hiddens parameters
2 -19.62 -19.62 5 89
3 -19.32 -19.37 5 146
5 -18.87 -19.04 6 304
10 -18.53 -18.96 5 769
20 -18.43 -18.98 5 2340
BDe (9,6,7,7,7,7) -18.65 -18.94 6 526

Table 2: Effect of cardinality when inserting new hidden variables into the network structure with
theEnrich operator for theStock data set. A 95% entropy threshold was used for the hidden
variable discovery algorithm. The table shows results for several fixed cardinalities as well
as the automatic cardinality method using the BDe score. Shown is the log-likelihood per
instance for training as well as test data, the number of hidden variables and the number
of parameters in the model. For the automatic method, the cardinalities of each hidden
variable is noted.

with a term that is the entropy of the model. A concrete application of deterministic annealing to
graphical models was suggested by Ueda and Nakano (1998). However, when learning graphical
models, the deterministic annealing was not found to be superior to standard EM (e.g., (Smith and
Eisner, 2004)).3 In particular, Whiley and Titterington (2002); Smith and Eisner (2004)) show why
applying deterministic annealing to standard unsupervised learning of Bayesian networks with hid-
den variables is problematic. One possible explanation for why our method works well for these
methods is the difference in motivation of the regularization term. Specifically, our term was moti-
vated by the need for generalization where one want to compress the identityof specific instances.
Another important difference between the two methods is that, like Weight annealing, deterministic
annealing requires the specification of a cooling policy which makes it potentially impractical for
large generative problems. This problem may be avoided using a method similarto the one we used
in this work. We leave this prospect as well as the challenge of better understanding the relation
between the entropy and information regularization terms for future study.

Continuation methods are a well developed field in mathematics (Watson, 2000).While these
methods are used extensively and successfully to solve practical engineering challenges such as
complex polynomial systems, they have not been frequently used in machine learning. Recently,
Corduneanu and Jaakkola (2002) used continuation to determine a beneficial balance between la-
beled and unlabeled data. To our knowledge this is the first work in learninggraphical models to
use continuation to traverse from an easy solution to the desired maximum likelihood problem.

A complementary aspect of our work is the introduction of modification operators for hidden
variables. Our method both for learning the cardinality of a hidden variable,and for introducing
new hidden variables into the network structure, relies on the annealing process and utilizes emer-
gent signals. The problem of evaluating the cardinality of a hidden variablein a graphical model

3Smith and Eisner (2004) also suggest a variant of the deterministic annealing algorithm that appears to work well
but is only applicable in the context of semi-supervised learning or when an initial informed starting point for the EM
algorithm is at hand.
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was explored in several works (e.g., Chang and Fung (1990); Elidan and Friedman (2001)). The
work of Stolcke and Omohundro (1993) for HMMs was the first to use evaluation of pairwise state
merges to determine adapt the cardinality. In Elidan and Friedman (2001), weextend their method
for general Bayesian networks, and Slonim et al. (2002) used a similar approach within the infor-
mation bottleneck framework. All of these methods start with a large number of states, and then
apply bottom-up agglomeration to merge overlaps in the state space and reduceredundancies. By
contrast, our method is able to take an “add-when-needed” approach and state mergers are evaluated
not to collapse states but rather to determine if a new one is needed. Several papers also explored
methods for introducing new hidden variables into the network structure, either for specific classes
of Bayesian networks (e.g., Martin and VanLehn (1995); Spirtes et al. (1993); Zhang (2004)) or
for general models using a structural signature approach (Elidan et al.,2001). Our contribution in
enriching the structure with new hidden variables is twofold. First, we suggested a natural informa-
tion signature as a “cue” for the presence of a hidden variable. Unlike thestructural signature this
signature is flexible and is able to weight the influence of different child nodes. Second, we use the
enrichment approach in conjunction with the continuation approach for bypassing local maxima.
As in cardinality learning, we are able to utilize emergent signals allowing the introduction of new
hidden variables into simpler models rendering them more effective.

13. Discussion and Future Work

In this work we addressed the challenge of learning models with hidden variables in real-life scenar-
ios. We presented a general approach for learning the parameters of hidden variables in Bayesian
networks and introduced model selection operators that allow learning of new hidden variables and
their cardinality. We showed that the method achieves significant improvementon challenging real-
life problems.

The contribution of this work is threefold. First, we made a formal connectionbetween the
objective functionals of the information bottleneck framework (Tishby et al.,1999; Friedman et al.,
2001) and maximum likelihood learning for graphical models. The information bottleneck and
its extensions are originally viewed as methods to understand the structure ofa distribution. We
showed that in some sense the information bottleneck and maximum likelihood estimation are two
sides of the same coin. The information bottleneck focuses on the distribution of variables in each
instance, while maximum likelihood focuses on the projection of this distribution onthe estimated
model. This understanding extends to general Bayesian networks the recent results of Slonim and
Weiss (2002) that relate the original information bottleneck and maximum likelihood estimation in
univariate mixture distributions.

Second, the introduction of the IB-EM principle allowed us to use an approach that starts with
a solution atγ = 0 and progresses toward a solution in the more complex landscape ofγ = 1. This
general scheme is common indeterministic annealingapproaches (Rose, 1998; Ueda and Nakano,
1998). These approaches “flatten” the posterior landscape by raisingthe likelihood to the power of
γ. The main technical difference of our approach is the introduction of a regularization term that
is derived from the structure of the approximation of the probability of the latent variables in each
instance. This was combined with a continuation method for traversing the path from the trivial
solution atγ = 0 to a solution atγ = 1. Unlike standard approaches in deterministic annealing
and information bottleneck, our procedure can automatically detect important regions where the
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solution changes drastically and ensure that they are tracked closely. Inpreliminary experiment the
continuation method was clearly superior to standard annealing strategies.

Third, we introduced model enrichment operators for inserting new hidden variables into the
network structure and adapting their cardinality. These operators were specifically geared toward
utilizing the emergent cues resulting from the annealing procedure. This resulted in models that
generalize better and achieve equivalent or better results with a relativelysimple model.

The methods presented here can be extended in several directions. First, we can improve the
introduction of new hidden variables into the structure by formulating better “signals” that can be
efficiently calculated for larger clusters. Second, we can use alternative variational approximations
as well as adaptive approximation during the learning process. Third, wewant to explore methods
for stopping atγ < 1 as an alternative way for improving generalization performance.
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Appendix A. Fixed Point Equations

We now develop the fixed point equations use for solving the target Lagrangian of our approach.
We start with the case of a single hidden variables and then address the moregeneral scenario of
multiple hidden variables.

A.1 Single Hidden Variable

Proposition 4: Let LEM be defined viaGin andGout as in Proposition 1. Q(T |Y) is a stationary
point of LEM with respect to a fixed choice of P if and only if for all values t and y of T andY,
respectively,

Q(t | y) =
1

Z(y,γ)
Q(t)1−γP(x[y], t])γ,

where Z(y,γ) is a normalizing constant and equals to

Z(y,γ) = ∑
t ′

Q(t ′)1−γP(x[y], t ′])γ. (15)

To prove the proposition we use the following

Lemma 9 (El-Hay and Friedman, 2001) Let Q(X) be a joint distribution over a set of random
variablesX, that decomposes according to Q(X) = ∏i Q(Xi | Ui). Then

∂IEQ[ f (X)]

∂Q(xi | ui)
= Q(ui)IEQ(·|xi ,ui)[ f (X)]+ IEQ

[
∂ f (x)

∂Q(xi ,ui)

]
.
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The following is an immediate results of that fact thatQ(t) = ∑y′ Q(y′)Q(t|y′)

∂Q(T)

∂Q(t0 | y0)
= Q(y0)1{T = t0}. (16)

We use this and an instantiation of the above lemma to prove the following:

Lemma 10

∂IIQ(T;Y)

∂Q(t0 | y0)
= Q(y0) log

Q(t0|y0)

Q(t0)
.

Proof: We definef (T,Y) ≡ log Q(T,Y)
Q(T)Q(Y) = log Q(T|Y)

Q(T) so that using Eq. (16), we can write

∂ f (T,Y)

∂Q(t0 | y0)
=

∂ logQ(T |Y)

∂Q(t0 | y0)
−

∂ logQ(T)

∂Q(t0 | y0)

=
1

Q(t0 | y0)
1{T = t0,Y = y0}−

Q(y0)

Q(t0)
1{T = t0}.

Plugging this into Lemma 9, we get

∂IIQ(T;Y)

∂Q(t0 | y0)
= Q(y0)IEQ(·|t0,y0)

[
log

Q(T |Y)

Q(T)

]
+ IEQ




∂ log Q(T|Y)

Q(T)

∂Q(t0,y0)





= Q(y0) log
Q(t0 | y0)

Q(t0)
+Q(y0)

Q(t0 | y0)

Q(t0 | y0)
−∑

y
Q(y)Q(t0 | y)

Q(y0)

Q(t0)

= Q(y0) log
Q(t0 | y0)

Q(t0)
+Q(y0)

[
1−

1
Q(t0)

∑
y

Q(y)Q(t0 | y)

]

= Q(y0) log
Q(t0 | y0)

Q(t0)
+Q(y0) [1−1]

= Q(y0) log
Q(t0 | y0)

Q(t0)
.

Using Eq. (16) and Lemma 9 withf (T,Y) ≡ logQ(T), the following is immediate.

Lemma 11

∂IEQ[logQ(T)]

∂Q(t0 | y0)
= Q(y0) logQ(t0)+Q(t0)

1
Q(t0)

Q(y0) = Q(y0) [logQ(t0)+1] .

Proof of the proposition: We want to findQ(T | Y) that are stationary points of the Lagrangian
LEM and where the constraints∑t Q(t | y) = 1 hold for anyy. Thus, using Lagrange multipliers, we
want to optimize

L = IIQ(T;Y)− γ(IEQ[logP(X,T)]− IEQ[logQ(T)])+∑
y

λy

(

∑
t ′

Q(t ′ | y)−1

)
.
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SinceP is fixed, using Lemma 9 withf (Y,X,T) ≡ logP(X,T), we can write

∂IEQ[logP(X,T)]

∂Q(t0 | y0)
= Q(y0) logP(x[y0], t0).

Combining this with Lemma 10 and Lemma 11, we get

∂LEM

∂Q(t0 | y0)
= Q(y0) [logQ(t0 | y0)− (1− γ) logQ(t0)+ γ− γ logP(x[y0], t0)]+λy0.

Dividing by Q(y0) and equating to 0, we get after rearranging of terms

Q(t0|y0) = eλy0/Q(y0)+γQ(t0)
1−γP(x[y0], t0)

γ. (17)

This must hold for any valuet0 andy0. Using∑t Q(t | y0) = 1 we get

eλy0/Q(y0)+γ =
1

∑t Q(t)1−γP(x[y0], t)γ .

We get the desired result by plugging this into Eq. (17).

A.2 Multiple Hidden Variables

Proposition 6: LetL
+

EM be defined viaGin andGout as in Eq. (12). Assuming amean fieldapproxi-
mation for Q(T |Y), a (local) maximum ofL

+

EM is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

Q(ti | y) =
1

Z(i,y,γ)
Q(ti)

1−γ expγEP(ti ,y),

where
EP(ti ,y) ≡ IEQ(T|ti ,y)[logP(x[y],T)]

and Z(i,y,γ) is a normalizing constant that equals to

Z(i,y,γ) = ∑
t ′i

Q(t ′i )
1−γ expγEP(t ′i ,y) .

Proof: Using themean fieldassumption, the information and entropy terms in the Lagrangian
decompose as follows

L
+

EM = ∑
i

IIQ(Ti ;Y)− γ

(
IEQ[logP(X,T)]−∑

i

IEQ[logQ(Ti)]

)
.

When computing the derivative with respect to the parameters of a specific variablesTi , the only
change from the case of single hidden variable, is in the derivative ofIEQ[logP(X,T)] given fixed
P. Again using Lemma 9 withf (Y,X,T) ≡ logP(X,T) we get

∂IEQ[logP(X,T)]

∂Q(ti0 | y0)
= IEQ(T|ti0,y0)[logP(x[y0],T)],

from which we get the change from Proposition 4 to Proposition 6 for the case of multiple hidden
variables.
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Appendix B. Computing the Continuation Direction

We now develop the precise computations needed to perform continuation asdescribed in Section 4.
We start with the case of a single hidden variablesT.

B.1 Single Hidden Variable

Consider again Eq. (7), where we now write the normalization termZ(y,γ) explicitly:

Gt,y(Q,γ) = − logQ(t | y)+(1− γ) logQ(t)+ γ logP(x[y], t)

− log∑
t ′

exp(1−γ) logQ(t ′)+γ logP(x[y],t ′)

︸ ︷︷ ︸
Z(y,γ)

. (18)

We want to compute the derivative ofGt,y(Q,γ) with respect to the parameters andγ, and and then
use the orthogonal direction for continuation. The will follow a direction in which the fix point
equations remain unchanged, and the local maximum is tracked. To do so, westart by expressing
logP(x[y], t) as a function of the parametersQ.

The maximum likelihood parameters of logP(X,T) for the conditional distribution of the chil-
drenXi of T in Gout are

θxi |pai ,t =
∑yQ(y)Q(t|y)1{xi [y] = xi ,pai [y] = pai}+α(xi ,pai , t)

∑yQ(y)Q(t|y)1{pai [y] = pai}+α(pai , t)
≡

N (xi ,pai , t)
N (pai , t)

, (19)

where 1{} is the indicator function,α() are the hyper-parameters of the Dirichlet prior distribution
(see Section 2.1) andN are used to denote the total counts (including prior) used for estimation.
Similarly the maximum likelihood parameters of the distribution ofT given its parents are

θt|pat
=

∑yQ(y)Q(t|y)1{pat [y] = pat}+α(pat , t)

∑yQ(y)1{pat [y] = pat}+α(pat)
≡

N (pat , t)
N (pat)

. (20)

We now consider each term inGt,y(Q,γ) and compute its derivative with respect to these parameters
of Q.

COMPUTATION OF
∂ logP(x[y],t)

∂Q(t0|y0)

The derivatives of the parameters expressed in Eq. (19) are

∂θxi |pai ,t

∂Q(t0|y0)

= Q(y0)
N (pai ,t)2

[
1{xi [y0] = xi ,pai [y0] = pai}N (pai , t)−1{pai [y0] = pai}N (xi ,pai , t)

]

= Q(y0)1{pai [y0]=pai}
N (pai ,t)2

(
1{xi [y0] = xi}N (pai , t)−N (xi ,pai , t)

)
(21)

for t = t0 and are zero otherwise. Similarly, the derivatives of the parameters of Eq. (20) are

∂θt|pat

∂Q(t0 | y0)
=

Q(y0)

N (pat)
2 [1{pat [y0] = pat}N (pat)−0] =

Q(y0)

N (pat)
1{pat [y0] = pat} (22)
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for t = t0, and are zero otherwise. The log-probability of a specific instance can be written as

logP(x[y], t) = logθt|pat
[y]+ ∑

i∈Cht

logθxi |pai ,t [y]+ ∑
i6=t,Cht

logθxi |pai
[y], (23)

whereCht denotes the children ofT in Gout andθt|pat
[y] is the parameter corresponding to the values

appearing in instancey. We note that the last summation does not depend on the parametersQ(t | y),
and by plugging Eq. (21) and Eq. (22) into Eq. (23), we get

∂ logP(x[y], t)
∂Q(t0 | y0)

=
1

θt|pat
[y]

∂θt|pat
[y]

∂Q(t0 | y0)
+ ∑

i∈Cht

1
θxi |pai ,t [y]

∂θxi |pai ,t [y]

∂Q(t0 | y0)

= Q(y0)

[
1{pat [y0]=pat [y]}
N (pat)θt|pat [y0]

+∑i∈Cht

1{pai [y0]=pai [y]}
N (pai ,t)2θxi |pai

[y0]

(
1{xi [y] = xi [y0]}N (pai , t)−N (xi ,pai , t)

)]

≡ Q(y0)D(y, t),

(24)

where in the last line we useD(y, t) to denote the expression in the square brackets.

COMPUTATION OF
∂ logZ(y0,γ)

∂Q(t0|y0)

Using Eq. (16) from Appendix A and the above, we can write

∂ (1− γ) logQ(t)+ γ logP(x[y], t)
∂Q(t0 | y0)

= Q(y0)

[
1− γ
Q(t)

+ γD(y, t)

]
. (25)

We can now use Eq. (25) to write the derivative ofZ(y,γ) since it is a summation over similar
expressions

∂ logZ(y0,γ)
∂Q(t0|y0)

= 1
Z(y0,γ) exp(1−γ) logQ(t0)+γ logP(x[y],t0) Q(y0)

[
1−γ
Q(t0)

+ γD(y0, t0)
]

= 1
Z(y0,γ)Q(y0)Q(t0)1−γP(x[y], t0)γ

[
1−γ
Q(t0)

+ γD(y0, t0)
]

= Q(y0)Q(t0 | y0)
[

1−γ
Q(t0)

+ γD(y0, t0)
]
,

(26)

where the last equality follows from Proposition 4.

COMPUTATION OF
∂Gt,y(Q,γ)
∂Q(t0|y0)

We combine Eq. (25) and Eq. (26) to write

∂Gt,y(Q,γ)
∂Q(t0 | y0)

= −1{y = y0}+Q(y0) [1−Q(t0 | y0)]

[
1− γ
Q(t0)

+ γD(y0, t0)

]
. (27)

COMPUTATION OF
∂ logZ(y,γ)

∂γ

The only term that is not immediate is the derivative ofZ(y,γ) with respect toγ
∂ logZ(y,γ)

∂γ
=

1
Z(y,γ) ∑

t ′
exp(1−γ) logQ(t ′)+γ logP(x[y],t ′) [− logQ(t ′)+ logP(x[y], t ′)

]

= ∑
t ′

1
Z(y,γ)

Q(t ′)1−γP(x[y], t ′)γ [− logQ(t ′)+ logP(x[y], t ′)
]

= ∑
t ′

Q(t ′|y)
[
logP(x[y], t ′)− logQ(t ′)

]
,
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from which follows

∂Gt,y(Q,γ)
∂γ

= logP(x[y], t)− logQ(t)−∑
t ′

Q(t ′|y)
[
logP(x[y], t ′)− logQ(t ′)

]
. (28)

COMPUTATION OF THE CONTINUATION DIRECTION

We can now compute all the elements of the derivative matrix of Eq. (9)

Ht,y(Q,γ) =
(

∂Gt,y(Q,γ))
∂Q(t|y)

∂Gt,y(Q,γ)
∂γ

)
.

To compute the orthogonal direction to the derivative, we solve Eq. (10)

H(Q,γ)∆ = 0.

As noted in Section 4, this can be prohibitively expensive and we resort toH(Q,γ) with a diagonal

approximation for elements of∂Gt,y(Q,γ)
∂Q(t|y) computed in Eq. (27). We denote byhy,t the diagonal entry

for Y = y andT = t andhγ
y,t the corresponding derivative with respect toγ. We then have to solve a

set of equations of the form
dt,yhy,t +dγh

γ
y,t = 0,

wheredt,y anddγ are the elements of∆. Settingdγ = 1 (an equivalent solution up to scaling) we get
the unique solution

dt,y = −
hγ

y,t

hy,t
.

Normalizing∆ using the derivative ofIIQ(T;Y) as described in Eq. (11) can now be easily computed
given the Lemma 10 in Appendix A.

B.2 Multiple Hidden Variables

When computing the derivative with respect to the parameters associated witha specific hidden
variableti , the only change inGt,y(Q,γ) is that logP(x[y], t) is replaced byIEQ(T|ti ,y)[logP(x[y],T)].
In this case we simply compute the expectation of Eq. (24) over theT ’s that are in the Markov
blanket ofti . The rest of the details remain the same.
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