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Abstract

We consider the important challenge of recognizing a va-
riety of deformable object classes in images. Of fundamen-
tal importance and particular difficulty in this setting is the
problem of “outlining” an object, rather than simply decid-
ing on its presence or absence. A major obstacle in learning
a model that will allow us to address this task is the need for
hand-segmented training images. In this paper we present a
novel landmark-based, piecewise-linear model of the shape
of an object class. We then formulate a learning approach
that allows us to learn this model with minimal user super-
vision. We circumvent the need for hand-segmentation by
transferring the shape “essence” of an object from draw-
ings to complex images. We show that our method is able to
automatically and effectively learn and localize a variety of
object classes.

1 Introduction

Recognizing objects in images is a surprisingly difficult task
that has challenged the field of computer vision from its
inception. Recent works address this problem using a va-
riety of methods with significantly different goals, which
broadly fall into three categories. The first is simply to rec-
ognize the existence of an object in the image. Such tech-
niques commonly use sophisticated image features that are
often unrelated to the object structure or location in the im-
age [22, 14, 2]. A second, more ambitious goal is to roughly
localize the different parts of the object toward better recog-
nition [13, 12, 19]. Although these models try to account for
shape and localization, evaluation with respect to a local-
ization measure is generally not performed. Finally, some
work [7, 15] has been done on precise object localization,
but this usually focuses on very specific object classes.
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In this paper we address the goal of modeling the shape
of a general object class in 2D, and using such a shape
model to automatically outline objects in the class in real
images. The outlining task is interesting in its own right,
as it is important for providing a detailed description of the
objects in a scene and their inter-relationships. Moreover,
developing a good model of an object’s basic shape appears
to be an important step in utilizing background knowledge
(e.g., the general shape of quadrupeds) for specific recogni-
tion tasks.

We describe a flexible, probabilistic object model that
captures the contour of the object’s deformable shape and
its characteristics. In contrast to early work on modeling ob-
ject shape [3], our model is semi-parametric: it is defined in
terms of landmarks, each associated with local contour in-
formation; the landmarks are connected with line segments,
thereby defining a complete object shape. The probabilistic
model is formulated as a Markov random field (MRF) [18]
over these landmarks, allowing the task of outlining the ob-
ject to be solved using standard MRF inference algorithms.

A key bottleneck in learning a contour model is the need
for training instances of the object outline. One option is to
hand outline the object in training images. This approach
is laborious, and hard to scale to a large number of classes.
We circumvent this problem by training our shape models,
in an unsupervised way, using simple (cartoon) drawings
of objects in the target class. In drawings, the fundamental
contour of the object is clearly visible, avoiding many of the
problems (such as clutter and shading variations) associated
with complex images. Thus, we learn a model of the “fun-
damental” shape of the object from cartoon drawings, and
transfer it to the task of recognizing objects in real images.
We show that our method effectively bootstraps from the
simple drawings, and that learning from drawings is compa-
rable to learning from hand-segmented examples. Overall,
we demonstrate that our general framework is applicable to
very different classes, and that it is able to achieve high per-
formance in outlining them in images.
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Figure 1: Illustration of a landmark based shape model
for the airplane object. Shown are the landmarks outlin-
ing the airplane as well as examples of local shape tem-
plate features and pairwise distance features.

2 Shape Model and Object Outlining

We represent the shape of a class of objects as a probabilis-
tic model M over a set of landmarks L; Figure 1 illustrates
the model for the airplane object. The outline of the ob-
ject is defined by the piecewise-linear contour that connects
adjacent landmark points. In addition to the outline, M in-
cludes different features of individual landmarks, including
location, local edge shape, image appearance as well as fea-
tures of pairs of landmarks, including geometric relation-
ships. All these elements are probabilistically constructed
to represent the intraclass variation of the object’s shape. In
this section, we present the probabilistic model, deferring
the specifics of the features used to Section 3.

To outline an object in an image I with a set of pixels XI ,
we want to register each of the landmarks l ∈ L to a given
pixel location pl ∈ XI . We define the localization instance
LI as a mapping, or correspondence, of landmarks to pixels
LI : L → XI . Our goal is then to define a probability
distribution P (LI | I,M) which evaluates the extent to
which the image characteristics at the landmark locations
fit those predicted by the model.

We define a set of features for each landmark l, based
on the image and the pixel pl to which the landmark is
assigned. Intuitively, these features should quantitatively
evaluate how well the landmark l fits the candidate pixel
location pl (see Section 3). We use f l

i (I, pl) for the ith fea-
ture of landmark l, and note that it is a function of the im-
age I , and the pixel location pl. Pairs of landmarks l, m are
also associated with pairwise features f

l,m
j (I, pl, pm) that

evaluate the quality of their jointly assigned pixel locations
pl, pm. The object model M defines the full set of fea-
ture functions for individual and pairs of landmarks. Actual
values of these features are computed relative to a specific
image I and a landmark correspondence LI .

We define our probability distribution over landmark cor-
respondences using a Markov random field (MRF), whose

variables correspond to landmarks; the domain of landmark
variable l is a set of candidate image pixels pl ∈ X , as well
as an ‘absent’ value (i.e., the landmark does not appear in
the image). Given a model M of an object class and an im-
age I , the likelihood of a given localization assignment LI

is:

P (LI | I,M) ∝
∏

l∈LI

exp

{

∑

i

f l
i (I, pl)

}

(1)

×
∏

l,m∈LI

exp







∑

j

f
l,m
j (I, pl, pm)







.

The probability of the landmark-to-pixel assignment LI ,
and thus that of the outline, is high if the aggregation of the
multiple cues (features) to its existence is strong. Thus, ob-
ject outlining is a registration task — finding the landmark-
to-pixel correspondence that maximizes P (LI |I,M). This
is simply the most likely (MAP) assignment relative to the
distribution defined in the MRF of Eq. (1), which can be
found using a variety of algorithms; we use the simple but
effective max-product algorithm [18].

However, it is computationally infeasible to allow all
pixels in the image as the domain of l: Even for a relatively
small image, with 300× 200 pixels, the pairwise potentials
have size 60, 0002. Thus, for each landmark l, we select a
restricted subset of pixels X l ⊂ X to serve as candidates
for the landmark location. To this end, we first transform
the image into an edge map using the Canny edge detec-
tor [4] and we prune out all pixels p ∈ X which do not lie
on a detected edge point. This reduces the space of candi-
date pixels to a few hundreds or thousands. To further prune
our domain, we choose the best 50 edge pixels according to
our shape template feature f l

1(I, pl) (see Section 3) to serve
as the MRF assignment domain X l for landmark l.

To summarize, our model M contains both local and
pairwise information about the object. Given an image in
which we want to outline an object, we use an MRF to de-
fine a probability distribution over possible assignments LI

of landmarks to pixels. We use a standard MAP inference
algorithm to find the (approximately) most likely assign-
ment, which in turn defines the outline of the object.

3 A “Shape Aware” Object Model

As discussed in the previous section, our model defines a
set of local feature functions f l

i (I, pl) for each landmark l,
and a set of pairwise features f

l,m
i (I, pl, pm) for landmark

pairs. The local landmark features in our model encode in-
formation about the expected image characteristics in the
vicinity of the pixel pl to which the landmark l is assigned.
Importantly, all of the features we consider, be they edge or
appearance based, are “shape aware” and contribute in con-



cert toward a well defined yet probabilistically deformable
object outline.

Shape Template. The first feature we consider is aimed
at capturing the shape directly. We use a template of the
edge points surrounding the landmark l. While a com-
mon approach is to consider all edge points in a ball or
a patch centered at the landmark, we construct our tem-
plate using regularly sampled points along the contour, up
to some “geodesic” distance away from the landmark (mea-
sured along the contour itself). Our shape template is de-
fined by two “arms” emanating from the landmark position,
where each arm is defined by a set O of offset means and
variances ok = (µk, σ2

k), such that each offset mean is rel-
ative the previous point. The set of offset means defines an
“average” shape which we expect to see at the landmark;
Figure 1 illustrates two such average shapes for the nose
and body of the airplane.

In an ideal image of the object, we expect each point
along the average shape to generate an edge pixel in the im-
age. In reality, we have to allow both for local deformation
of the shape around the landmark (accounting, among other
things, for class variability) and for missing edge pixels and
edge detection noise. We therefore select a contour for each
arm as follows: Letting p0

l be the pixel assigned to the land-
mark l, we choose pk

l be the edge pixel (in the Canny edge
map) closest to pk−1

l + µk. Assuming a Gaussian distribu-
tion on the offsets, the divergence (negative log probability)
of the shape template offsets for a landmark l assigned to a
pixel point pl is

f l
1(I, pl) = −

∑

k

logN
(

pk
l ; µk, σ2

k

)

where N (pk
l ; µk, σ2

k) is the Gaussian density parameterized
by the mean and variance µk, σ2

k associated with the land-
mark l and the kth point on the appropriate arm relative to
the landmark (several relevant indices have been omitted for
clarity). The closer the edge pixels are to the expected offset
locations of the shape template, the smaller the divergence
and the higher the corresponding potential value. Note that
the above formulation of shape template divergence allows
the shape to flexibly deform as the expected location of pk

l

follows the “assignment” of pk−1
l to the closest edge point.

Appearance Templates. Our goal is to use appearance
templates that also take into account the shape of the object.
To do so, we evaluate different appearance characteristics
(filter responses) in a square patch centered at each land-
mark. However, rather than using the common approach of
evaluating the patch as a whole (e.g., [13]), we distinguish
between characteristics on the inside and outside of the ob-
ject. More precisely, we use the average shape template of
each landmark l as a mask Ml, which separates the region
around the assigned landmark position pl into an “inside”

region and an “outside” region. This mask can be applied
to other local features, turning standard features into “shape
aware” ones.

To reduce the sensitivity to small geometric distortions
or transformations, we do not consider the values of indi-
vidual pixels; rather, we summarize the appearance charac-
teristics in two distinct histograms, one over the set of the
inside pixels and one over the outside pixels. Concretely,
consider a patch centered around pl and a particular filter
Fn. For each pixel p in the patch, we compute the response
of Fn, and quantize the value into discrete bins. We then
compute a histogram αl

n of these values for the inside of
the object as defined by the mask Ml and similarly com-
pute βl

n for the outside of the object. These histograms are
then used in the computation of the feature value. We gen-
erate these histograms for three types of features. The first
histogram pair (αH , βH ), represents distributions over the
hue value of the pixel in HSV space (the H component),
and is placed into 8 uniformly spaced bins between 0 and
360. The second pair (αL, βL) represents a distribution of
intensity value (luminance) of the pixel binned into 8 uni-
formly spaced intervals. The final pair represents texture;
following the work of Malik et al. [16], we first compute
a response to various Gabor filters [9] at each pixel across
6 orientations, 3 scales, and 3 frequencies. The responses
to these filters are vectorized to produce a 54-dimensional
vector for each pixel. The responses at regularly sampled
pixels across a large set of training images are then clus-
tered using K-means to provide the histogram bin centroids
for the descriptors αT , βT .

We use the appearance filters to construct a
segmentation-like feature that favors different appear-
ance distributions between the inside and outside of the
object. We formalize this intuition using the commonly
used and effective Earth Movers Distance (EMD) [21] and
compute the feature value as a weighted sum:

f l
2(I, pl) =

∑

c∈{H,L,T}

wc EMD(AI
c ||A

O
c )

where AI
c denotes the inside appearance histogram values

of type c and AO
c is used for the outside histograms. Con-

sequently, a large difference between the pixels inside and
outside of the object mask in the vicinity of the landmark
will increase the probability of the landmark assignment.
The weights wc were chosen to emphasize intensity (1) and
texture (1) over hue (0.5).

Location Prior. The final local feature we consider is a
feature inspired by Fei-Fei et al. [11]. As they show, an
effective localization prior is important when a model is
constructed from few instances. In our setting, we simply
use an uninformed localization prior relative to the center
of the image, and construct this prior only from the car-



Figure 2: Schematic representation of our
learning procedure. We begin with a set
of cartoon drawings from which we extract
high resolution outline contours. These con-
tours are then hierarchically corresponded
to each other to select the set of landmarks
that make up the model. Finally, a model
M is constructed from the cartoons and their
correspondences to the learned landmarks

Cartoon Drawing 
Training Instances

Final Shape 
Model

Hierarchical model merging

toon drawings. For instance, in the airplane model shown
in Figure 1, and indeed for all cartoon airplanes as well, the
airplane tail is generally in the upper left quadrant of the
image center. Specifically, we model the X, Y location of
landmark l as a Gaussian with mean (µl,X , µl,Y ) and vari-
ances (σ2

l,X , σ2
l,Y ). With these parameters, we define the

location feature value to be:

f l
0(I, pl) = logN (plX ; µl,X , σ2

l,X)+logN (plY ; µl,Y , σ2
l,Y ).

Pairwise Features. Features for landmark pairs allow for
interactions that occur more globally in the image. An obvi-
ous pairwise property that is closely tied to the object shape
is the geometric relationship between the landmarks. Con-
sider landmarks l and m assigned to pixels pl and pm, re-
spectively. Let dx = plX−pmX denote the horizontal offset
between the two locations measured in pixels. Modeling the
distribution over such an offset using a Gaussian with mean
µlm,∆X and variance σ2

lm,∆X , we compute the correspond-
ing feature value as the log-probability of the offset:

f
l,m
X (I, pl, pm) = logN (dx; µlm,∆X , σ2

lm,∆X)

We use a similar feature to model the the Y offset, denoting
this feature by f

l,m
Y (I, pl, pm).

An important choice with respect to pairwise features is
which pairs to include in the model. This decision has im-
portant ramifications in terms of the complexity of the MRF
we use for registration (see Section 2). In particular, us-
ing all pairs of landmarks creates a fully connected graph
with O(L2) edges, leading to a difficult inference problem.
Therefore, we include in the model only two types of pairs:
neighboring landmarks, which account for the local geom-
etry; and pairs of landmarks that lie diametrically “oppo-
site” to each other (farthest apart along the contour), which
impose enough global constraints to restrict the degrees of
freedom of the overall object shape. The total number of
pairwise potentials is therefore linear in the number of land-
marks. In early experiments, we also tried using all land-
mark pairs; this approach did not improve performance, but
required an order of magnitude longer running time.

4 Learning the Shape Model

In previous sections we described the elements of our ob-
ject shape model M and how this model is registered to an
image. We now turn to the problem of learning a model
Mclass for some particular class. One might consider learn-
ing shape models in an unsupervised way, using training
images where we know only that the object is in the im-
age. However, for the rich shape models that we have here,
this process is highly susceptible to very poor local max-
ima, and is unlikely to work well without significant prior
knowledge.

Conversely, to turn the problem into a fully supervised
learning task, we would have to obtain a set of outlines for
multiple objects within the class, each tagged with a con-
sistent set of landmarks. The task of generating such data
for a large number of object classes is a laborious one. We
circumvent this bottleneck using two ideas. The first is the
use of simple (cartoon) drawings of an object as training
data. In such simple images, we can automatically extract a
high-resolution contour using a Gradient Vector Flow snake
algorithm [24]. However, even given these contours, we
must still generate a consistent set of landmarks for all of
the images, and from it learn the model. In this section, we
discuss this learning procedure, which is shown schemati-
cally in Figure 2.

Hierarchical Contour Model Merging. Let C1 . . . CN

denote the N contours obtained for our training images. We
generate a single unified model from these contours by us-
ing a a hierarchical merging technique reminiscent of model
merging techniques in other domains [23, 5]. At a high
level, this process successively selects pairs of models and
merges them into one. Each model in this construction is
thereby a result of some set of registered contours.

We initialize our iterative procedure by creating mod-
els M

(1)
0 . . .M

(N)
0 , where each M

(i)
0 is constructed from

the single original training instance Ci (Figure 2, left). In
each successive iteration, we begin with K models from
the previous step, and perform pairwise merging on con-
secutive model pairs to produce K − 1 models. Thus, we
combine each pair of models M(i)

k and M
(i+1)
k into a new

model M
(i)
k+1 as illustrated in the pyramid. In order to
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Figure 3: Cartoon training images (left) and sample outlining results on test images (right) along with the overlap
scores of these registrations for several object classes. Shown are two good and one bad example for each class.

perform the merge, we first determine the correspondence
between landmarks in the two models, using our MRF lo-
calization scheme described in Section 2: We use M

(i)
k as

the model, and generate an “ideal image”, I
(i+1)
k , from the

model M(i+1)
k . In this image, the landmarks lie at their

mean locations according to the generating model, and each
point along the contour connecting these landmarks serves
as an edge pixel in the image. The domain for each land-
mark l in M

(i)
k is the set of landmark locations in I

(i+1)
k .

We then register M(i)
k and I

(i+1)
k using our MRF algorithm;

the resulting correspondence determines a correspondence
between landmarks of M(i)

k andM(i+1)
k . We now construct

the merged model M(i)
k+1, associated with all of the training

contours covered by M
(i)
k and M

(i+1)
k . The merged model

has the same set of landmarks as M
(i)
k , each of which is

registered to a landmark in M
(i+1)
k . Using the registration

between the landmarks of M(i)
k ,M

(i+1)
k and their respec-

tive training contours, we obtain a registration between the
landmarks of M(i)

k+1 and all of its associated contours. This
process is continued, as shown in Figure 2, until a single
model, learned from all N training instances, remains.

Landmark Pruning. The output model from this pro-
cedure may have a fairly large number of landmarks, de-
pending on the number of points in the initial contours. The
more landmarks we have, the larger the number of parame-
ters, and the higher the complexity of inference in our MRF.
We therefore trade off model complexity and fit to data, to
reduce both the risk of overfitting and computational cost.

We prune landmarks using a simple but effective heuris-
tic, inspired by the minimum description length (MDL)
framework [20]. We define a probabilistic model over en-

tire contours using a simple Gaussian distribution around
the contour of the ideal image induced by a model M. The
“fit to data” component of the MDL score is then measured
as the log-likelihood of the training contours relative to this
likelihood function, which is simply the squared error be-
tween the training contours and the mean contour of M.
This likelihood is penalized by subtracting a term for model
complexity, measured as a constant c times the number of
landmarks |L|. We then use a simple greedy algorithm to
remove landmarks, so as to maximize this penalized score.
This process automatically determines which landmarks to
retain for the final model M.

Model Construction. Given the set of landmarks L, and
the set of training contours C1, . . . , CN registered to L, we
essentially have a fully observed data set. We can there-
fore construct a probabilistic model Mclass using standard
Bayesian estimation techniques.

First, to capture the pairwise interactions between land-
marks l and m, we simply compute the necessary moments
of the distances between the assignments of these land-
marks, pl and pm, across the training instances, regularized
by a large variance Normal-Wishart prior [10] with an imag-
inary sample size of 1 and a standard deviation equal to a
quarter of the average object size.

We estimate the Gaussian posterior distribution for the
landmark location feature f l

0(I, pl) from the actual loca-
tions of the landmark in the contours, regularized using a
large variance Normal-Wishart prior [10] with an imaginary
sample size of 1 and a standard deviation equal to half the
size of the object.

Estimating the parameters of the shape-template model
is slightly more involved. Briefly, for each landmark l, a
shape template is first constructed independently for each
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Figure 4: (a)–(f) Average overlap score as a function of the number of training instances for several object classes.
Compared are the results for models learned automatically from cartoon drawings (blue,solid) and models learned
from hand segmented images (red,dashed). (g),(h) Recognition ROC curves for the ‘airplane’ and ‘cougar face’ objects
showing sensitivity vs. specificity as the threshold on the likelihood defined in Eq. (1) is varied.

instance by following the outline defined by that instance.
The mean offsets of the individual shape templates are then
averaged and the variance is estimated with a regulariza-
tion of a Normal-Wishart prior [10] with a variance of 25
pixels. The final shape template is pruned so that, on aver-
age across instances, its length is roughly three quarters of
the size (diagonal of bounding box) of the contour model.
Estimating the appearance feature is done simply by com-
puting the appearance histograms for each training instance
and then averaging across instances. The mask is computed
from the above shape template.

5 Experimental Results

We applied our procedure to six diverse object categories
from the Caltech 101 dataset [11]. To generate a training
set of cartoon drawings, we used simple drawings from
‘Google images’ that were then scaled to approximately
the same dimensions as the Caltech dataset instances. Fig-
ure 3(left) shows three of the cartoon drawings used for
training in four of the object categories.

We then create a model Mclass for each object class
as described above in Section 4, and randomly selected a
test set of up to 50 images for each class and registered
our model to the image using the MRF based procedure
desribed in Section 2. Figure 3(right) shows sample out-
lines for several object classes.

To quantitatively evaluate the ability of our method to
localize objects in complex images, we use an overlap met-

ric that measures the extent to which the object is cor-
rectly localized relative to a hand-segmented ‘ground truth’.
Let XL ⊂ XI represent the set of pixels in image I con-
tained within the boundary of the contour instance L, and
XGT ⊂ XI represent the set of pixels lying within the hand-
labeled ground truth. We define the overlap accuracy be-
tween these two sets to be the ratio of the number of pix-
els in the intersection to the number of pixels in the union:
Overlap(XL,XGT ) = |XL∩XGT |

|XL∪XGT | ∈ [0, 1]. Intuitively, two
good “outlines” of an object will share a vast majority of
their interior pixels, and have a high overlap score. To get
a sense for this score, Figure 3 shows the overlap score for
each example outline.

In Figure 4(a)-(f), we compare the overlap performance
of our object models learned from cartoon drawings with
that of models constructed from hand-labeled training in-
stances. Shown is the average test-image overlap as a
function of the number of training instances. As can be
clearly seen, the performance of the model learned using
our automatic method is similar to that of the model learned
from hand-labeled instances, which contains the user’s prior
knowledge. These graphs show that our method is quite ef-
fective at outlining a variety of object classes.

Although recognition is not our primary goal, and our
method was not tuned for recognition performance, it is
nevertheless instructive to study how our method performs
on this task. We registered each object model to 50 ran-
domly selected ‘background’ images, which served as neg-
ative test instances for each class. We used the likelihood of



the correspondence defined in Eq. (1) to evaluate the extent
to which our registration is successful on both positive and
negative test instances. Figure 4(g),(h) show ROC curves
for the ‘airplane’ and ‘cougar face’ models. The break-
even recognition rates are 92%, 90%, 84%, 82%, 82%, and
69% for airplane, buddha, car, rooster, cougar, and bass, re-
spectively. These recognition rates are surprisingly reason-
able when we consider the fact that the model was trained
only only five cartoon instances. For example, in the re-
sults of FeiFei et al. [11], who also trained a generative
model from few instances, using 6 training examples, the
recognition rate for ‘cougar face’ was 85%, and comparable
performance was achieved only for 11 of the 101 classes.
Finally, we note that the recognition rates of the models
learned from hand segmented instances was consistently
worse. However, we do not believe this is indicative of a
significant difference between the cartoon and hand mod-
els, as one cannot predict what would happen if we tune our
model parameters to improve recognition performance.

Finally, it is insightful to consider specific examples of
registration of our model to images. Figure 5(a) shows a
registration example where our model fails. Figure 5(b)
shows the Canny edge map for that image and demonstrates
some of the challenges of the outlining task: in this image,
many of the car edge pixels are simply not detected due to
the similar intensity between the car and the wall behind it.
Clearly, outlining in this case requires a better edge map or
alternative low level cues.

Figure 5(c)–(d) shows registrations to the same ‘car side’
image using different components of our model. In (c) we
use only the shape template feature, the location prior, and
pairwise distances and are not able to successfully outline
the car. In (d) we add our foreground-background appear-
ance feature. This feature, which favors differences in in-
tensity and texture between the inside and outside of the
object, is clearly not compatible with the correspondence
found in (c) and pushes our outline toward the car, achieving
reasonable success. It is also important to note that (c) ex-
emplifies the fact that our location prior is relatively weak:
it typically simply helps to prune solutions that are close to
the edge of the images while still allowing large deviations
from the expected location of the landmarks.

6 Discussion and Related Work

In this work, we introduce a novel method for learning the
shape of object classes using a landmark based model. We
show how our model can be automatically learned from car-
toon drawings and registered to complex images toward the
task of precise outlining of the object. We demonstrate the
effectiveness of our method for several varied model classes
and show that our method achieves similar results to those
of a model learned from hand segmented images.

(a) (c)

(b) (d)

Figure 5: (a) An example where our ‘car’ model fails;
(b) edge map of (a); Registration using (c) only shape
template; (d) adding the appearance feature.

Our contribution in this work is twofold. First, we
present a model aimed at capturing the “fundamental” shape
of the object class. Our model is based on landmarks that
define the outline of the objects along with local landmark
characteristics and more global geometric constrains. Im-
portantly, all the features we use, including those based
on appearance, are “shape aware” and take into account
the outline of the object. Second, we introduce a learning
approach that effectively bootstraps information in simple
cartoon drawings and applies that information to complex
images. This allows us to circumvent the need for time-
consuming and costly human supervision.

The problem of object recognition has been addressed in
many works with different goals. One class is aimed solely
at recognition and often uses a discriminative approach
(e.g., [14, 22]). As such, these methods are typically ig-
norant of the shape and often even the location of the object
in the image. Importantly, the image features used for dis-
crimination are often not in the object itself, but in the back-
ground. Clearly, using the context of an object for recog-
nition is both helpful and legitimate. However, there are
many tasks (e.g., distinguishing objects on a kitchen coun-
tertop, or recognizing different animals in a grassy field)
where the background is similar for the different classes,
and so provides no discrimating power. It is therefore use-
ful to investigate methods that focus more directly on the
object itself. Moreover, in order to achieve state-of-the-art
recognition rates, discriminative methods usually require a
significant number of labeled training instances. In fact, Ng
and Jordan [17] suggest that this is an inherent limitation of
discriminative approaches and that generative methods are
more appropriate when the number of instances is small.

Another line of work tries to model geometric elements
or parts of the object without precisely outlining it in the



image. Recent years have seen several works that address
this task using a part based model that is either purely gen-
erative such as the constellation model [13, 11], or semi-
discriminative such as the work of Quattoni et al. [19],
which uses conditional random fields to model the object.
Many of the above works are able to achieve impressive
recognition performance. However, their ability to localize
the object precisely has not been thoroughly evaluated.

On the surface, the most similar to our work in this class
is that of Berg et al. [2], which uses a landmark based model
that is registered to images. Two important differences be-
tween their approach and ours are worth noting. First, they
use a larger set of images for training (3 times as many) and
store all of them as exemplars instead of creating a unified
probabilistic model. Thus, they never attempt to explicitly
model the shape of an object but rather to match templates
to images. Second and more importantly, they use a larger
number of landmarks with features that cover a large por-
tion of the image. As a result, their work leverages general
image statistics more than object-specific statistics, allow-
ing them to exploit information about the background, sim-
ilarly to the discriminative methods discussed above.

Finally, several works also considered the problem of
precise outlining of objects. Typical examples include the
active shape models of Cootes et al [6], the stick figures
model of Coughlan and Ferreira [7], or the object-based
segmentation of Kumar et al. [15]. These methods are gen-
erally applied to relatively limited scenarios or use simple
models with few degrees of freedom, and it is not clear
whether and how they can be applied to general object
classes. Our work addresses the same challenging task of
precisely outlining objects in images, but defines a general
and flexible “shape aware” model that can be registered to
varied and complex object classes.

Our work can be extended in several directions. Most
obviously, our model currently assumes that the object is in
a fixed pose and scale. We hope to avoid these assumptions
by introducing a search over object pose and scale. We also
hope to incorporate a more effective appearance model by
learning first on cartoon images, followed by an appearance
learning stage using real images. More broadly, inspired by
the exemplar-based approach of Berg et al. [2], we would
like to consider a mixture-model for the shape template at
each landmark, allowing greater flexiblity in shape model-
ing. Even more generally, we note that our notion of object
shape can also be viewed as a natural 2D projection of a 3D
mesh model. We believe that object-class variability can
be very naturally modeled in 3D (e.g., as in Anguelov et
al. [1]), and hope to extend our approch to allow registra-
tion of 2D images to flexible 3D shape models.
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