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ABSTRACT
Genome-wide expression profiles of genetic mutants

provide a wide variety of transcripts measuring the
response of cells to perturbations. Standard analysis of
such data identifies genes that were affected by the per-
turbations and uses clustering to group genes of similar
function. In this paper we discover a finer structure of
interactions between genes, such as causality, mediation,
activation and inhibition by using a Bayesian network
framework. We extend this framework to correctly handle
perturbations, and to identify significant substructures of
interacting genes. We apply this method to expression
data of S. cerevisiae mutations and uncover a variety of
structured metabolic, signaling and regulatory pathways.
Contact: danab@cs.huji.ac.il

INTRODUCTION
Integrated molecular pathways consisting of interacting
proteins, genes, and small molecules underlie the major
functions of living cells. These include signal transduc-
tion and processing, regulation of gene expression and
metabolism. Genome wide expression profiles allow us to
gain insight into these processes. In order to obtain a wide
variety of profiles, reflecting different active pathways,
various perturbations and treatments are employed.
Perturbation by mutation of specific genes serves a dual
purpose, providing a rich variety of different profiles,
while allowing us to compare a wild type profile with
a mutant one and to determine the molecular effect or
function of the mutated gene.

Two recent studies use such an experimental design,
providing different types of analysis. ? (? ) compare
mutant and wild type profiles to identify sets of “down-
stream” genes whose expression is affected by a specific
mutation. (author?) (11) use clustering to group genes
with correlated expression in different mutant strains or
group entire mutant profiles. Valuable biological insight
can be gained by both approaches.

In this paper, we strive to answer questions that deal
with finer structure. For example, is the effect of a mutated

gene on a target gene direct, or is it mediated by other
genes? Which genes mediate the interactions within a
cluster of genes or between clusters? What is the nature
of the interaction between genes (e.g gene A inhibits gene
B)?

To infer such finer relations from perturbed gene expres-
sion profiles

�
we use the framework of (author?) (8). In

this framework, we treat the measured expression level of
each gene as a random variable and regulatory interactions
as probabilistic dependencies between random variables.
Friedman et al. use nonparametric bootstrap to estimate
the confidence of features of Bayesian networks learned
from expression profiles. This allows them to identify pair-
wise relations of high confidence such as: “Genes

�
and

�
closely interact”.

We extend this framework in four ways. First, we adapt
and extend recent results on learning with interventions (1)
to handle genetic mutations. Second we devise new, better
suited, methods for discretizing the data prior to analysis.
Third we define and learn new features: mediator, activator
and inhibitor. Finally, we describe how to use features to
construct substructures of strong statistical significance.

The resulting method comprises the following steps. We
start by discretizing the data. Then, we apply bootstrap
analysis to learn an ensemble of networks which represent
potential models of the interactions between genes. We use
this ensemble to extract features involving relationships
between pairs and triplets of genes with high statistical
confidence. We then identify statistically significant sub-
networks which contain several high-confidence features.
These subnetworks capture a strong statistical signal in the
expression profile which is usually associated with some
cellular process.

As a case study, we apply our framework for the analysis
of the Rosetta Compendium of expression profiles from
Saccharomyces cerevisiae (11).

�
We stress that any attempt to perform this task is limited to learning

relations that are represented in mRNA expression data. For example, post-
translational regulation may often be missed.

c
�
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Still need to add “a few sentences related to the biological
results in the Introduction” Aviv?

BAYESIAN NETWORK ANALYSIS OF
EXPRESSION DATA
Probabilistic Modeling of Gene Expression
Measurements of gene expression involve noise arising
from the measurement technology and experimental pro-
cedures. In addition, the underlying biological processes
are themselves stochastic. Thus, we choose to treat gene
expression as a probabilistic process. We represent the ex-
pression level of each gene as random variable. The joint
distribution over the set of all genes reflects the distribu-
tion of cell “states” and how these effect transcript levels .
Our ultimate goal is to estimate and understand the struc-
ture of this distribution. �

Most standard methods for analyzing gene expression
focus on pairwise relations, such as correlation, between
genes. However, biological interaction is seldom so sim-
ple, and often includes chains of mediators between two
genes. By going beyond pairwise relations and exploring
multi-variable interactions, we can infer more about the
structure of the relationship between genes In particular,
we focus on conditional independence. For example, if

�
and � are co-regulated by � then, while � correlates with�

, it might be that given the value of � , � becomes in-
dependent of

�
. In this case, we say that � separates be-

tween
�

and � . In general, such a separator can be a set
of variables.

Bayesian Networks
A Bayesian network over a set � ��� �	��
����
������

is
a representation of a joint probability distribution over� . This representation consists of a directed acyclic
graph (DAG) � whose vertices correspond to the random
variables

� � 
����
�� �
, and a parameterization which

describes a conditional distribution for each variable given
its immediate parents in � .

The graph � represents conditional independence
properties of the distribution. These are the Markov
Independencies: Each variable

���
is independent of its

non-descendants, given its parents in � . A distribution
that satisfies these independencies can be decomposed
into the product form��������
����
������ � �� � �!� ��������"

Pa #� �$

(1)

where Pa #� is the set of parents of
���

in � . The
parameterization component of the network describes the� We use the following notation in the remainder of the paper. We use capital
letters, such as %'&)(*&,+ , for variable names. Sets of variables are denoted by
boldface capital letters -.&)/0&�1 .

conditional distributions
��������"

Pa #� �
. Thus, the network

represents the unique distribution.
The Markov independencies represented by � often

imply other conditional independencies. We can determine
whether � implies that

�
and � are independent given2

by using d-separation (12). This is a simple graph
theoretic criteria on the structure of the graph � . It turns
out that two DAGs can imply exactly the same set of
independencies. For example, consider graphs

� 3 �
and

� 4 � over two variables
�

and � . Both graphs
imply that

�
and � are not independent. In such a

situation, we say that the two graphs are equivalent.
The notion of equivalence is crucial, since when we

examine observations from a distribution, we cannot
distinguish between equivalent graphs. Thus, we want
to find the common properties of equivalence classes of
DAGs. (author?) (14) show that equivalent graphs have
the same underlying undirected graph but might disagree
on the direction of some of the arcs. Moreover, they
show that an equivalence class of network structures can
be uniquely represented by a partially directed graph
(PDAG), where a directed edge

�53 � denotes that all
members of the equivalence class contain the arc

�63 � ;
an undirected edge

�
— � denotes that some members of

the class contain the arc
�63 � , while others contain the

arc � 37�
.

Learning Bayesian Networks
Given a training set 8 � ��9;:=<?> 
����
 9;:A@B> � of inde-
pendent samples from an unknown distribution

��� � �
,

we want to estimate this distribution by a network � .
The common approach to this problem is to introduce
a statistically motivated scoring function that evaluates
each network with respect to the training data, and to
search for the optimal network according to this score
(9). A popular score based on Bayesian reasoning, scores
candidate graphs � by their posterior probability given
the data (see (10) for a complete description). We define
the score C � �EDF8 �

to be proportional to
��� � " 8 �

.
An important characteristic of this score is that when
the data is complete (no missing values) the score is
decomposable:

S
� �GD�8 � �BH � C local

�����I

Pa #� DJ8 �

(2)

The contribution of each variable
���

to the total score
depends only on the values of

���
and Pa #� in the training

instances.C local
�����I
LK DM8 � �ONQPSR ���

Pa
� � KT��UNQPSR.V �)W ������� : XY> "ZK : XY> 
L[��]\����,[��$�
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The first term is the prior probability assigned to choice
of the set

K
as the parents of

���
. The second term

measures the probability of the data, when we integrate
over the possible parameterizations (

[
) of the conditional

distribution. These local contributions for each variable
can be computed using a closed form equation (see (9)
for details).

MODELING PERTURBATIONS INTO BAYESIAN
NETWORKS
Ideal Interventions
Above we assumed that each training instance was sam-
pled from the underlying distribution. This does not apply
in genetic mutation experiments. For instance, by knock-
ing out gene

�
, we replace the original molecular control

on
�

’s expression (its parents) by an external one. Thus,
any consequent measurement (in which

�
’s value is con-

stantly set to 0) will not teach us anything about
�

’s con-
ditional distribution on its parents. Modeling such inter-
ventions for learning Bayesian networks involves two is-
sues: the score function and the definition of equivalence.

Recall that the score of a DAG � , given a data set8 , decomposes into a product of entities that depend
on the conditional distributions

����� "
Pa #� �

. Suppose that
in a certain sample, we intervene by fixing the value
of

��� : XY> . In this sample, it is clear that we should not
take into account

����� � : XY> "
Pa

� : XY> � , as the value of� �
in the sample does not depend on this distribution.

However, if our intervention only modified the value of���
, all others variables were sampled from their respective

conditional distributions. We call such manipulations ideal
interventions (13) and treat their score as follows: If we let
Int

� X �
denote the set of variables that were intervened in

the X ’th sample, then the modified local score isC local
�����]
LK DJ8 � �ONQPSR ���

Pa
� � KT��UN PSR V �W

� ������ Int �

W
	
������� : XY> "SK : XY> 
L[��]\M���,[*�$�

See (1) for more details on this score.
This score is no longer structure equivalent, i.e., the

score of two equivalent graphs, � and ��
 is no longer
guaranteed to be the same. This should be expected, as
interventions help us determine the direction of causality.
We say that � and � 
 are intervention equivalent given
interventions �� � � � 
����
�� � �

, if they receive the same
score given a data set 8 where Int

� X � �� , for all X . This
notion of equivalence is more restrictive, and thus more
edges in the PDAG will be directed. These include, but are
not limited to, all edges entering or leaving an intervened
variable

�
. We modified the procedure for constructing

a PDAG representation from a DAG (? ) to fit our new

equivalence relation. Due to space restrictions, we omit
the technical details.

Modeling Perturbations
We distinguish between two types of perturbations in gene
expression data. The first type includes gene deletion and
over-expression. Both imply a direct change to the ex-
pression level of the mutated gene. Formally, the random
variable corresponding to this level is deterministically as-
signed a specific value. We model such mutations as ideal
interventions, as described above.

The second class of perturbations includes temperature
sensitive and kinetic mutations (? )) ; and the applica-
tion of external conditions (e.g. environmental stress (? )).
These perturbations do not directly determine an expres-
sion level of a specific gene, and thus cannot be modeled
as ideal interventions. Still, they have an important effect
on the expression level of many genes in our system, and
therefore their occurence in a given sample should be in-
dicated. We add indicator variables to our domain, one
for each treatment type. We constrain such variables to be
roots i.e. no other variables can be their parents in the net-
work.

ZOOMING IN: IDENTIFYING FEATURES
Potential Features
In this section we focus on the following question:
Can we elucidate the nature of interaction between two
genes? We use the perturbed gene expression profiles
to learn a Bayesian network model � and construct its
corresponding PDAG � # (taking into account the patterns
of interventions) Assuming that � correctly captures the
dependencies in the domain, what types of conclusions
can we draw from � ? We now consider several types of
“queries” or “features” that can be identified from � and
� # .

Markov and Edge Relations To find if there is a direct in-
teraction between

�
and � we can query our network

whether
�

and � are Markov neighbors. Markov neigh-
bors are variables that are not separated by any other mea-
sured variable in the domain. They include parent-child re-
lations (one gene regulating another spouse relations (two
genes that co-regulate a third), and sibling children of a
hidden variable (two genes regulated by a third one, not
modeled in the network, e.g. protein activation). When
neither of these situations occurs, the network implies that
the interaction between

�
and � is indirect.

We can query whether the edge
� 3 � appears in

� # . Recall that this implies that
�

and � are Markov
neighbors (parent-child type) and that the edge between
them is directed in all networks in the equivalence class of� . The existence of such a directed edge suggests that

�
3
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is a direct cause of � . �
Separators When

�
and � are indirectly dependent,

we can ask what factors mediate this dependence. In the
simple case, a single variable � , separates

�
and � . For

example, the edges
� 3 � 3 � or the undirected edges�

— � — � appear � # . In the former case
�

affects �
who in turn affects � , while in the latter � might be a
common cause of both

�
and � .

In more complex cases,
�

and � can be more distant
in the graph structure (e.g � is a common grandparent
of both

�
and � ) and there might be more than one

variable that mediates their interaction (e.g
�

is parent
of � �

and ��� , who in turn are both parents of � ). In these
cases we must employ a global approach, searching for
variables

2
, such that � is independent of

�
given

2
in

the network. In such a situation, we say that
2

explains all
the dependencies between the two variables.

We can test such dependencies using d-seperation. More
precisely, to check that two variables

�
and � are

independent given � , we need to check that no path
between

�
and � can “pass” information when we

know the value of
2

. (See (author?) (12) for the precise
definition.) Thus, to test for d-separation we need to
consider every path between

�
and � in the network. This

is computationally impractical for a large domain. We can
solve this problem by recognizing that when two variables
are far from each other in the network, the dependence
between them diminishes significantly. Thus, in practice
we check for d-separation between variables along paths
of limited length.

Activation and Inhibition When
�

is a parent of � , we
can gain understanding of

�
’s effect on � . Contrary to

previous cases, here we are interested in the conditional
distribution

��� � "
Pa � �

. Let
K � Pa ��� � � �

.
Intuitively, if

��� � � < " � 
�� �
increases when

�
transitions from � < to

�
and then to < and

�
is held fixed,

we say that
�

activates � . Since all other direct influences
on � have been kept at the same state, the change in�

is the explanation to the change in � . Similarly, if��� � �	� < " �T
�� �
increases, then

�
inhibits � . We

currently use a very strict criteria that requires the
�

activates/inhibits � for every set of values
�

of
K

. We
are currently exploring less naive approaches that soften
this requirement.

Feature Confidence
Above we assumed that the network � correctly repre-
sents the interactions in the underlying domain. How rea-

� To reach causal conclusions from a Bayesian Network a few assumptions
must be made. See (13; 3) regarding the connection between Bayesian
networks and causality, and (8) for a discussion of these connection in the
context of gene expression.

sonable is this assumption? If we have a sufficiently large
number of samples, we can be (almost) certain that the net-
work we learn is a good model of the data (? ). However,
given only a small number of training instances, there can
be many models that explain the data almost equally well.
Such models can have qualitatively very different struc-
tures. We do not have confidence that one network is an
accurate description of the biological mechanisms.

Therefore, instead of querying a single structure, we can
examine the posterior probability of the feature given the
data. Formally, we consider the distribution of features. A
feature of a network is a property such as “

� 3 � is in
the network” or “

2
d-separates

�
from � in the network”.

We define the feature using an indicator function 
 � � �
that has the value 1 when � satisfies the feature and value�

otherwise. The posterior probability of a feature is��� 
 � � � " 8 � �BH # 
 � � �]��� � " 8 �$�
(3)

This probability reflects our confidence in the feature 
 .
A naive way of calculating equation 3, is by enumerat-

ing all high scoring networks. Unfortunately, the number
of such networks can be exponential in the number of vari-
ables, so exact computation of the posterior probability
is impractical. Instead, we can estimate this posterior by
sampling representative networks, and then estimating the
fraction that contain the feature of interest. We can gen-
erate such networks using non-parametric bootstrap (6)
or using more exact but costly MCMC simulations (? ).
(author?) (8) evalate the bootstrap approach in simulated
data that matches the distributions observed in gene ex-
pression data. They note that the rate of false negatives is
high. Thus, the fact that we do not detect high confidence
for a feature, does not mean it does not exist, but rather
that the data does not strongly support this feature.

RECONSTRUCTING SIGNIFICANT
SUB-NETWORKS
While features provide us with important insight, our
view remains limited to relations between two or three
genes. However, by bringing together multiple relations
our framework can offer a much broader viewpoint. It
provides richer, more structured context when exploring
data. We consider a small subset, � , of the variables. A
sub-network � : �0> is a graph on � whose edges encode
pairwise features between variables.While our a full-scale
network is currently of insufficient quality and statistical
significance, self-contained sub-networks can be reliably
reconstructed from individual features.

These sub-networks are derived from seeds: small con-
nected components of high confidence Markov features.
We believe that seeds indicate biological phenomena cap-
tured by the data. We extend such seeds into connected

4
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sub-graphs with a high concentration of Markov features.
This sub-graph and all features associated with its vari-
ables constitute the resulting sub-network. While an iso-
lated feature of moderate confidence might be a false posi-
tive, it becomes significant in the context of a sub-network
rich with high scoring features. Simulated data strongly
supports this claim: Figure ?? compares the false positive
rate in the entire network with the false positive rate in the
significant sub-networks alone.

We present two approaches for extracting sub-networks
from features. The first, more naive approach simply
captures a defined radius around seeds, while the second
approach automatically searches for an optimal sub-
network based on some scoring scheme.

Naive Approach
We now define a weighted complete graph @ �� � 
���
��G�

over the set of random variables in our
domain. The weight

� ��� 
 � �
of the edge between

�
and � is the confidence of the Markov relation between
them (which is

�
in most cases). We further consider

threshold-induced sub-graphs of @ : for ���5: � 
 <?> let@ : � > � � � 
�� : � > � include all edges of weight at least � .
We used the following heuristic procedure to construct

sub-networks: Choose a seed ��� to be a connected
component in @ : �	�J> s.t.

" �
� "��� � (we used �	� � � �����
and

 � ��� ). Next, expand �
� into a full sub-network� : ��� > by inducing @ : ��� > on the subset ��� of all vertices
within distance

\ � from the seed �
� (we used ��� � � ���
and

\ �T�G< ).
In order to obtain sub-networks that represent a coherent

biological processes, we operated in a semi-manual way.
Loosely speaking, we merged sub-networks whose genes
are known to be related to the same biological process.
While results make biological sense (see below), there are
a number of drawbacks to this approach: first there is no
measure of quality for the resulting networks; and second,
the symmetric expansion of the seed is a crude rule of
thumb. We now address these issues.

Score-based Approach
We assume biologically meaningful sub-networks are
concentrated with features. In order to measure the
statistical significance of a sub-network, we formalize this
notion and develop a scoring scheme for sub-networks.
Denote � � " � "

and � � � � ��� . We consider a null
hypothesis of i.i.d. confidence levels for each edge. Define
this distribution of confidence levels by the cumulative
probability Freq

����� � � �"!"# �$� �&%Z�'�(���
. Consider a

specific subset � of size


, and set ) �*�,+ �	� . The chance
of � inducing a sub-network with edges

% ��
����
-%/.
having

confidence levels better than
���
����
��0.

, respectively is less
than �$1 . �32 �

Freq
��� � �

. Given such a set 4 � � �� �
, we can

thus bound the expected number of such subsets by

� �& 
 4 � �65 � 87 5 ):9 7 � � Freq
��� � �

(4)

For a sub-network � : � 
 > , with edges
%Z��
����
-%/.

,
define 4�
 � � � �&% 
� � �

, and score � : � 
 > using
�TNQPSR � �L" � 
 " 
 4 
 � . It remains to explain how we compute
the distribution Freq

�����
. We estimate this function from

the given Markov relations by Freq
� � ��;=< >�? @BAC<D .

We implemented a local search to find such high
scoring networks. The search starts with a candidate seed
�3E which is a vertex triplet connected by high scoring
( @ : � � > ) edges. At each step we consider adding or
removing a single vertex to � �

, attempting to improve the
score of @ : ��� > induced on � �GF!�

. Optima whose score
exceeds a specified threshold are considered significant.

Experience with using the score presented thus far
was encouraging. However, we found that biologically
meaningful sub-network are characterized not only by
their concentration, but also by their typical structure:
in general, such sub-networks include a few key-genes
that regulate many others. This results in an uneven
distribution of degrees. We can bias our scoring function
to prefer such structures by replacing the � + . � term in
equation ?? with the multinomial coefficient � � .H�IJH�KMLNLNL�H	O � ,
where � \�� �

are the degrees of vertices in the sub-network.
The rationale is that the edges are no longer arbitrary, but
rather the degrees are conserved.

As a sanity check, we tried the procedure on randomized
data. We reshuffled the original data-set, thus eliminating
genuine dependencies between variables. We used this
simulation to set a threshold markedly beyond any of the
highest scoring random artifacts.

DISCRETIZING GENE EXPRESSION DATA
Due to noisy experimental procedures and measurement
techniques, gene expression data must be handled with
care to ensure successful application of analysis methods.
A key pre-processing step is the discretization of expres-
sion levels into functional expression states (e.g. under-
expressed, baseline and over-expressed). In this section
we introduce a procedure to discretize the gene expression
measurements. The procedure uses a model of the gene ex-
pression to guide a k-means clustering algorithm. Our pro-
cedure requires repeated gene expression measurements.

In our model, Each gene can be in a few discrete
functional expression states, which relate to its activity.
Given a gene’s state, we model its expression level as a
Normal distribution. This distribution has a gene specific
variance, with each state centered around a different
mean P The precision of a gene can be empiricallyP We base our model on results from repeated gene expression measure-

5



D. Pe’er et al.

Fig. 1. Comparison between false positive rate in entire networks verses significant sub-networks alone. These rates were calculated by
applying our process to simulated data

estimated from repeated measurements. In order to
identify significant changes in expression levels, we devise
a test on the ratio of

�
’s gene expression between

a condition and a control. In most studies a two-fold
test is used, considering changes two-fold or higher as
significant. We employ an alternative approach, based on
a Bayesian procedure to estimate the posterior probability
over the mean and variance for a given gene (5) and
test the probability that the treated sample came from the
same distribution. For lack of space we omit the technical
details.

We apply our two step discretization method separately
to each gene. First we use the ratio significance test
from the previous paragraph to mark each measurement
as an under/over expressed or baseline state if the is
significantly under/over expressed or neither. This is used
as the starting point for a k-means clustering algorithm,
which decided both the number


of states (bins) and their

specific allocation. K-means clustering is performed over
the expression levels of the gene in order to assign a value� � < 
 � 
 < �

to each measurement according to the bin it
was clustered into. K-means clustering is known to prefer
round Gaussian-like bins, consistent with our model.

RESULTS
The Rosetta Inpharmatics Compendium (11) is a reference
dataset compiled of 300 full-genome expression profiles
obtained from 276 deletion mutants, 11 tetracyclin regu-
latable alleles of essential genes, and 13 chemically treated
S. cerevisiae cultures, each compared to a baseline wild
type or mock-treated culture. This wide range of interven-
tions gives rise to a heterogenous set of expression profiles
corresponding to differrent signaling, metabolic and regu-
latory pathways. We have set to unravel and explore these

ments. Such experiments clearly a Normal distribution for the gene expres-
sion with the precision varying greatly between different genes

pathways using the Bayesian network framework which
we developed for intervention-based expression profiles.

We chose a subset of 565 genes which included the
mutated genes and genes which showed significant change
in at least 4 profiles. Using the 63 control experiments
for parameter estimation we discretized these genes using
our k-means clustering approach. We included a root
variable for the genetic strain of the control sample, as
well as indicator variables for the chemical treatments.
We used our bootstrap learning procedure to learn 100
networks and extracted edge, markov, separation triplet
and activation features. The learning procedure is rather
computationally extensive, each network is learned
independently and requires approximately 3 hours CPU
using a Intel III 700 processor and 500 megabytes of
memory. We have developed a Pathway Explorer for
the study of feature-rich areas. Entire sub-networks
filtered to the desired level of confidence are visualized
as directed graphs, in which extensive local information
is associated with the undirected and directed edges,
including confidence levels (for the Markov and edge
relations), correlation coefficients, and activation and
inhibition relations (when available). Important metadata
(gene and protein information, expression patterns, etc) is
readily available as well. We stress that no prior biological
knowledge was used by our learning procedure when
reconstructing the networks. The full annotated results
can be viewed using Pathway Explorer at our web site:
http://www.cs.huji.ac.il/labs/compbio/Rose.
Here we focus on several examples that highlight the
validity and power of our approach.

Pairwise Relations
Biological analysis of individual Markov pair relations
indicates that many are supported by previous findings,
and represent either a known biochemical or regulatory
interaction, a shared common regulator, or functional link.

6
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Strikingly, the Pearson correlation coefficient between
approximately a third of these “proof-of-principle” gene
pairs was lower than 0.7. Our method is capable of discov-
ering such relations because of the context specific nature
in which it handles the data. There are many biological
processes that occur only under specific conditions.
Correlation “misses” such interactions, which are only
apparent in part of the samples. Scores for features are
presented in the following format: (Confidence, Pearson
correlation) for each such pair. Two such “proof of prin-
ciple” Markov pairs are, Phosphoribosylaminoimidazole
carboxylase (ADE2) and Phosphoribosylamidoimidazole-
succinocarboxamide synthase (ADE1) (0.797, 0.518),
which catalyze the sixth and seventh steps in the de novo
purine biosynthesis pathway, respectively; and SST2, a
(negative) regulator of the mating signaling pathway and
STE6 (0.914, 0.677) the membrane transporter responsible
for the export of the “a” mating factor.

Even pair-wise relations alone succeed in providing new
biological insight. For example, we studied an edge rela-
tion (0.914, 0.162) from ESC4, a protein involved in chro-
matin silencing to KU70, a key component of the DNA
non-homologous double strand break DNA repair mecha-
nism. This is a previously unknown link, yet we supply
evidence from the known literature strongly supporting
it. Other chromatin silencing genes (SIR2, 3, and 4) are
necessary together with KU70 and KU80 for DNA end
joining(? ). ESC4 also contains 6 BRCT domains, that are
known to occur predominantly in proteins involved in cell
cycle checkpoint functions responsive to DNA damage (?
). Together, these facts clearly support both a functional
association between the two proteins and a regulatory di-
rected interaction (from ESC4 to KU70) assigning a new
(putative) regulatory function to ESC4 in double strand
break repair. Note, that a ku70 mutant strain is included
in the compendium data, while ESC4 had not been mu-
tated. This illustrates how our treatment of mutations aids
in inferring causal relations in a counter intuitive direc-
tion. While typical analysis can only find the effect of a
mutation, we find a causal source (in wild-type strains) of
a mutated gene.

Separator Relations
In this section we provide an illustration of the capability
of separator triplets to explain away dependencies, pro-
viding an enhanced insight into the underlying molecular
architecture of pathways. We consider three genes each
appearing in several undirected separator triplet relations.
All three genes are well known mediators of transcrip-
tional responses, and the genes they separate share func-
tional roles and regulation patterns, consistent with the
separator serving as a common regulator.

The first gene, KAR4, is a mating transcriptional
regulator of karyogamy (nuclear fusion) genes, which is

known to pair with the mating transcription factor Ste12p
to activate genes required for nuclear fusion (? ). KAR4
separates several pairs of cell fusion genes (e.g. AGA1
and FUS1). The second gene, SLT2, encodes the MAP
kinase of the cell wall integrity (low osmolarity) pathway,
which post-translationaly activates (by phosphorylation)
the transcription factors Rlm1p and Swi4/6 which in
turn activate low osmolarity response genes (? ). SLT2
separates several pairs of cell membrane and cell wall
proteins (e.g. YSP1) as well as previously uncharacterized
one (e.g. SRL3). In addition, an activation relation was
detected between SLT2 and YSP1 which is consistent with
SLT2’s known regulatory effect. The third gene, SST2, is
a post-translational negative regulator of the G-protein
in the mating signaling pathway (? ). SST2 separates
the mating response genes TEC1 and STE6. Moreover,
a directed inhibition edge was discovered from SST2 to
STE6, consistent with SST2’s known inhibitory role in the
mating pathway.

We conclude that in all three cases, our inference has
reconstructed the regulatory role in the correct molecular
and functional context, revealing both transcriptional and
post-translational regulators. Importantly, many of these
significant three-wise relations were characterized by low
and/or uniform correlation coefficients, indicating that
correlation analysis and clustering would fail to identify
this fine regulatory and functional structure. Our approach
succeeds, through the use of conditional independence.
Furthermore, since previously uncharacterized genes
participated in some of these interactions (e.g. SRL3 in
SLT2, YNL276W in KAR4) we could assign them putative
functions, probably as effectors, in cell wall integrity and
cell fusion, respectively.

Sub-network analysis
The full power of our approach becomes apparent when
exploring sub-networks of high confidence

��� � �����J�
. Of

87 top scoring Markov pairs, 61 were organized � within
the context of 6 well-structured sub-networks, interleaved
with additional lower confidence relations. Each of the
sub-networks represents a coherent molecular response:
mating response, low osmolarity cell wall integrity path-
way, stationary phase response, iron homeostasis, amino
acid metabolism along with mitochondrial function, and
citrate metabolism (two are depicted in figure 1, all avail-
able at our website).

While (11) have identified some of these responses
(amino acid metabolism, iron homeostasis andmating)
by use of clustering, our reconstructed networks provide
a much richer context for both regulatory and functional

� An additional 16 relations could be explained as individual interacting
gene pairs or triplets, and only 10 relations currently remain unassociated
or unexplained.
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analysis. For example, (11) describe a large cluster of
genes associated with amino acid metabolism. In our
network, we can discern at least three finer structures
with high confidence. The first involves the genes ARG1,
ARG3 and ARG5, all part of the urea cycle (and its
close periphery), which are known to be transcriptionally
co-regulated. (? ; ? ). The second, for sulfate metabolism
which further decomposes into two branches: one of sul-
fate transporters (SUL1 and SUL2) and the other of sulfate
assimilation (MET3, MET14, and MET22). The common
separator for these branches is the MET10 gene. The third
and major part of the network interleaves various enzymes
for amino acid metabolism (e.g. HIS4, HIS5, LEU4, ILV2
and ARG4) with mitochondrial proteins, most prominently
transporters and carriers (e.g. BAT1, OAC1, and YHM1).
A regulatory link has been found between the general
amino acid response and mitochondrial function (? ).
Thus, a large group of genes, which by correlation alone
would be simply clustered together, can be organized in
clear functional networks.

We use the mating response sub-network (figure 1)
to illustrate the power of our method to reconstruct
a coherent biological tale and raise novel biological
hypotheses. We discern two distinct branches , one for
cell fusion and the other for outgoing mating signaling.
According to our network, the cell fusion response branch
is mediated by the KAR4 gene (see above), and includes
several known cell membrane fusion genes (FUS1, AGA1,
AGA2, PRM1 and FIG1) (? ; ? ; ? ) as well as two genes
previously unassociated with this process (TOM6 and
YEL059W). The multitude of high confidence relations
strongly suggests a putative role to KAR4 not only
regulation of nuclear fusion but also regulation of cell
membrane fusion.

Another branch is directed from the mating signaling
pathway regulator SST2 (above). Since an SST2 mutant
has been incorporated in the compendium we could
determine edge direction, and identify SST2 as a prime
regulator of several other genes (TEC1, STE6, MFA1)
previously shown to be transcriptionally regulated by the
mating pathway (? ; ? ; ? ). The regulatory link from
SST2 to KSS1 is intriguing as the two share an interaction
with MPT5, a multicopy suppressor of transcript specific
regulators of mRNA degradation in yeast (? ; ? ), but KSS1
was not previously associated with the mating pathway,
but rather with the (related) filamentous invasive growth
response.

Some puzzling discrepancies exist in our network. The
first is the absence of the main transcription factor of
the pathway, STE12. This may be due either to loss of
information by our discretization procedure or to our bias
to reduce the number of false positive interactions. The
second, is the marginal position of the pathway’s MAP
kinase, FUS3. This may be due to positive feedback,

rendering FUS3 both an activator and an activation target.
However, despite the knockout mutation in FUS3 we
have failed to identify directed regulation. We believe
that larger number of repetitions for each mutation will
enhance our framework’s capabilities to discover such
regulatory relations.

DISCUSSION AND FUTURE WORK
In this paper we extend the framework of Friedman et
al (8) for analyzing gene expression measurements with
Bayesian networks. We integrated into this framework a
new discretization procedure and a principled way for
learning with a mixture of observational and interventional
data. We defined and examined new types of features
which can be uncovered using our analysis method. We
presented automated methods of integrating these features
into structures representing biological processes. Finally,
we applied these tools to analyze the Compendium data of
S. cerevisiae mutations (11).

This analysis illustrates several aspects of our frame-
work. First, our score significantly differs from the
correlation coefficient often used by clustering methods (?
). The advantage is two fold. On the one hand we are
able to discover inter-cluster interactions between genes
whose expression profiles have very low correlation. On
the other hand we can uncover fine intra-cluster structure
among related genes. This assists us to understand the
roles of genes within a richer context. Thus, genes can
be assigned putative novel roles. The use of the Pathway
Explorer greatly facilitates such biological exploration.
Both regulatory, metabolic and signaling components
are identified, showing the potential of our approach to
uncover the three major types of molecular networks. We
stress that our approach cannot recover all interactions.
Instead we attempt to provide the biologist with a small
number of highly promising hypotheses.

The primary contribution of this paper is an automated
methodology that can reconstruct biological pathways
from gene expression profiles. Our initial automatic
attempts were quite successful and succeeded in recov-
ering 4 out of 6 partially handcrafted networks. Still
issue of scoring biologically meaningful sub-networks
opens the door further research. A possible avenue is to
use prior knowledge to both improve the quality of the
feature and guide the search for meaningful sub-networks.
Currently our learning and inference framework is based
on expression data alone, without incorporating any prior
biological knowledge. While the rich biological interac-
tions uncovered shows proof of our method’s capability,
our aim is to develop tools that aid the biologist in finding
novel hypotheses. Therefore, it is important to introduce
principled methods for incorporating prior biological
knowledge into our methodology.
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Inferring Subnetworks
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Fig. 2. Two sub-networks that visualize features discovered. (a) Iron homeostasis (b) Mating response. The width of the arc corresponds to
the confidence of the feature. The edges are directed only when there is high confidence in its orientation. Nodes circled with a dashed line
correspond to genes which have been mutated in some of the samples. Arcs marked by a

�
sign are activators, size corresponds to confidence

of feature. Due to space limitations, the iron homeostasis pathway, which displays many edge triplets, is not discussed here.

Another important issue we address is that of recovering
causal structure and differentiating between direct and
indirect effects. The list of separator relationships from
the resulting analysis shows a strong bias (at least on
the Compendium data) toward mediators who are common
parents. We were less successful in identifying mediators
between a mutation and its indirect targets. This is
partially due to the specific nature of the dataset, where
only a single profile is available for each mutation.
Devising better methods to find such mediators remains
an important research problem.
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