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Abstract
The empirical success of the belief propagation approximate inference algorithm
has inspired numerous theoretical and algorithmic advances. Yet, for continuous
non-Gaussian domains performing belief propagation remains a challenging task:
recent innovations such as nonparametric or kernel belief propagation, while use-
ful, come with a substantial computational cost and offer little theoretical guaran-
tees, even for tree structured models. In this work we present Nonparanormal BP
for performing efficient inference on distributions parameterized by a Gaussian
copulas network and any univariate marginals. For tree structured networks, our
approach is guaranteed to be exact for this powerful class of non-Gaussian mod-
els. Importantly, the method is as efficient as standard Gaussian BP, and its con-
vergence properties do not depend on the complexity of the univariate marginals,
even when a nonparametric representation is used.

1 Introduction

Probabilistic graphical models [Pearl, 1988] are widely use to model and reason about phenomena
in a variety of domains such as medical diagnosis, communication, machine vision and bioinformat-
ics. The usefulness of such models in complex domains, where exact computations are infeasible,
relies on our ability to perform efficient and reasonably accurate inference of marginal and condi-
tional probabilities. Perhaps the most popular approximate inference algoritm for graphical models
is belief propagation (BP) [Pearl, 1988]. Guaranteed to be exact for trees, it is the surprising per-
formance of the method when applied to general graphs (e.g., [McEliece et al., 1998, Murphy and
Weiss, 1999]) that has inspired numerous works ranging from attempts to shed theoretical light
on propagation-based algorithms (e.g., [Weiss and Freeman, 2001, Heskes, 2004, Mooij and Kap-
pen, 2005]) to a wide range of algorithmic variants and generalizations (e.g., [Yedidia et al., 2001,
Wiegerinck and Heskes, 2003, Globerson and Jaakkola, 2007]).

In most works, the variables are either discrete or the distribution is assumed to be Gaussian [Weiss
and Freeman, 2001]. However, many continuous real-world phenomenon are far from Gaussian,
and can have a complex multi-modal structure. This has inspired several innovative and practically
useful methods specifically aimed at the continuous non-Gaussian case such as expectation propa-
gation [Minka, 2001], particle BP [Ihler and McAllester, 2009], nonparametric BP [Sudderth et al.,
2010b], and kernel BP [Song et al., 2011]. Since these works are aimed at general unconstrained
distributions, they all come at a substantial computational price. Further, little can be said a-priori
about their expected performance even in tree structured models. Naturally, we would like an infer-
ence algorithm that is as general as possible while being as computationally convenient as simple
Gaussian BP [Weiss and Freeman, 2001].

In this work we present Nonparanormal BP (NPNBP), an inference method that strikes a balance
between these competing desiderata. In terms of generality, we focus on the flexible class of Copula
Bayesian Networks (CBNs) [Elidan, 2010] that are defined via local Gaussian copula functions and
any univariate densities (possible nonparametric). Utilizing the power of the copula framework
[Nelsen, 2007], these models can capture complex multi-modal and heavy-tailed phenomena.
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Figure 1: Samples from the
bivariate Gaussian copula with
correlation θ = 0.25.
(left) with unit variance Gaus-
sian and Gamma marginals;
(right) with a mixture of Gaus-
sian and exponential marginals.

Algorithmically, our approach enjoys the benefits of Gaussian BP (GaBP). First, it is guaranteed to
converge and return exact results on tree structured models, regardless of the form of the univariate
densities. Second, it is computationally comparable to performing GaBP on a graph with the same
structure. Third, its convergence properties on general graphs are similar to that of GaBP and, quite
remarkably, do not depend on the complexity of the univariate marginals.

2 Background

In this section we provide a brief background on copulas in general, the Gaussian copula in particu-
lar, and the Copula Bayesian Network model of Elidan [2010].

2.1 The Gaussian Copula

A copula function [Sklar, 1959] links marginal distributions to form a multivariate one. Formally:

Definition 2.1: Let U1, . . . , Un be real random variables marginally uniformly distributed on [0, 1].
A copula function C : [0, 1]n → [0, 1] is a joint distribution

Cθ(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un),

where θ are the parameters of the copula function.

Now consider an arbitrary set X = {X1, . . . Xn} of real-valued random variables (typically not
marginally uniformly distributed). Sklar’s seminal theorem states that for any joint distribution
FX (x), there exists a copula function C such that FX (x) = C(FX1(x1), . . . , FXn(xn)). When the
univariate marginals are continuous, C is uniquely defined.

The constructive converse, which is of central interest from a modeling perspective, is also true.
Since Ui ≡ Fi is itself a random variable that is always uniformly distributed in [0, 1], any copula
function taking any marginal distributions {Ui} as its arguments, defines a valid joint distribution
with marginals {Ui}. Thus, copulas are “distribution generating” functions that allow us to separate
the choice of the univariate marginals and that of the dependence structure, encoded in the copula
function C. Importantly, this flexibility often results in a construction that is beneficial in practice.

Definition 2.2: The Gaussian copula distribution is defined by:

CΣ(u1, . . . , un) = ΦΣ

(
Φ

−1

(u1), . . . ,Φ
−1

(un))
)
, (1)

where Φ
−1

is the inverse standard normal distribution, and ΦΣ is a zero mean normal distribution
with correlation matrix Σ.

Example 2.3: The standard Gaussian distribution is mathematically convenient but limited due
to its unimodal form and tail behavior. However, the Gaussian copula can give rise to complex
varied distribution and offers great flexibility. As an example, Figure 1 shows two bivariate distribu-
tions that are constructed using the Gaussian copula and two different sets of univariate marginals.
Generally, any univariate marginal, both parametric and nonparametric can be used.

Let ϕΣ (x) denote the multivariate normal density with mean zero and covariance Σ, and let ϕ(x)
denote the univariate standard normal density. Using the derivative chain rule and the derivative
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inverse function theorem, the Gaussian copula density c(u1, . . . , un) = ∂nCΣ(u1,...,un)
∂U1,...∂Un

is

c(u1, . . . , un) = ϕΣ

(
Φ

−1

(u1), . . . ,Φ
−1

(un)
)∏

i

∂Φ
−1

(ui)

∂Ui
=
ϕΣ

(
Φ

−1

(u1), . . . ,Φ
−1

(un)
)

∏
i ϕ(Φ−1(ui))

.

For a distribution defined by a Gaussian copula FX (x1, . . . , xn) = CΣ(F1(x1), . . . , Fn(xn)), using
∂Ui/∂Xi = fi, we have

fX (x1, . . . , xn) =
∂nCΣ(F1(x1), . . . , Fn(xn))

∂X1, . . . , ∂Xn
=
ϕΣ (x̃1, . . . , x̃n)∏

i ϕ(x̃i)

∏
i

fi(xi), (2)

where x̃i ≡ Φ
−1

(ui) ≡ Φ
−1

(Fi(xi)). We will use this compact notation in the rest of the paper.

2.2 Copula Bayesian Networks

Let G be a directed acyclic graph (DAG) whose nodes correspond to the random variables X =
{X1, . . . , Xn}, and let Pai = {Pai1, . . . ,Paiki} be the parents of Xi in G. As for standard BNs, G
encodes the independence statements I(G) = {(Xi ⊥ NonDescendantsi | Pai)}, where ⊥ denotes
the independence relationship, and NonDescendantsi are nodes that are not descendants of Xi in G.

Definition 2.4: A Copula Bayesian Network (CBN) is a triplet C = (G,ΘC ,Θf ) that defines fX (x).
G encodes the independencies assumed to hold in fX (x). ΘC is a set of local copula functions
Ci(ui, upai1

, . . . , upaiki
) that are associated with the nodes of G that have at least one parent. In

addition, Θf is the set of parameters representing the marginal densities fi(xi) (and distributions
ui ≡ Fi(xi)). The joint density fX (x) then takes the form

fX (x) =

n∏
i=1

ci(ui, upai1
, . . . , upaiki

)

∂KCi(1,upai1
,...,upaiki

)

∂Upai1
...∂Upaiki

fi(xi) ≡
n∏
i=1

Rci(ui, upai1
, . . . , upaiki

)fi(xi) (3)

When Xi has no parents in G, Rci (·) ≡ 1.

Note thatRci(·)fi(xi) is always a valid conditional density f(xi | pai), and can be easily computed.
In particular, when the copula density c(·) in the numerator has an explicit form, so does Rci(·).

Elidan [2010] showed that a CBN defines a valid joint density. When the model is tree-structured,∏
iRci(ui, upai1

, . . . , upaiki
) defines a valid copula so that the univariate marginals of the con-

structed density are fi(xi). More generally, the marginals may be skewed. though in practice only
slightly so. In this case the CBN model can be viewed as striking a balance between the fixed
marginals and the unconstrained maximum likelihood objectives. Practically, the model leads to
substantial generalization advantages (see Elidan [2010] for more details).

3 Nonparanormal Belief Propagation

As exemplified in Figure 1, the Gaussian copula can give rise to complex multi-modal joint distri-
butions. When local Gaussian copulas are combined in a high-dimensional Gaussian Copula BN
(GCBN), expressiveness is even greater. Yet, as we show in this section, tractable inference in this
highly non-Gaussian model is possible, regardless of the form of the univariate marginals.

3.1 Inference for a Single Gaussian Copula

We start by showing how inference can be carried out in closed form for a single Gaussian cop-
ula. While all that is involved is a simple change of variables, the details are instructive. Let
fX (x1, . . . , xn) be a density parameterized by a Gaussian copula. We start with the task of comput-
ing the multivariate marginal over a subset of variables Y ⊂ X. For convenience and without loss
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of generality, we assume that Y = {X1, . . . , Xk} with k < n. From Eq. (2), we have

fX1,...,XK
(x1, . . . , xk) =

∫
Rn−k

fX (x1, . . . , xn)dxk+1 . . . dxn

=

k∏
i=1

fi(xi)

ϕ(x̃i)

∫ [
ϕΣ

(
Φ

−1

(F1(x1)), . . . ,Φ
−1

(Fn(xn))
) n∏
i=k+1

fi(xi)

ϕ(Φ−1(Fi(xi)))

]
dxk+1 . . . dxn.

Changing the integral variables to Ui and using fi = ∂Ui

∂Xi
so that fi(xi)dxi = dui, we have

fX1,...,XK
(x1, . . . , xk) =

k∏
i=1

fi(xi)

ϕ(x̃i)

∫
[0,1]n−k

[
ϕΣ

(
Φ−1(u1), . . . ,Φ−1(un)

)∏n
i=k+1 ϕ(Φ−1(ui))

]
duk+1 . . . dun.

Changing variables once again to x̃i = Φ
−1

(ui), and using ∂X̃i/∂Ui = ϕ(x̃i)
−1

, we have

fX1,...,XK
(x1, . . . , xk) =

k∏
i=1

fi(xi)

ϕ(x̃i)

∫
Rn−k

ϕΣ (x̃1, . . . , x̃n) dx̃k+1 . . . dx̃n.

The integral on the right hand side is now a standard marginalization of a multivariate Gaussian
(over x̃i’s) and can be carried out in closed form.

Computation of densities conditioned on evidence Z = z can also be easily carried out. Letting
W = X \ {Z ∪Y} denote non query or evidence variables, and plugging in the above, we have:

fY|Z(y | z) =

∫
f(x)dw∫∫
f(x)dwdy

=
∏
i∈Y

fi(xi)

ϕ(x̃i)

∫
ϕΣ (x̃1, . . . , x̃n) dw̃∫∫
ϕΣ (x̃1, . . . , x̃n) dw̃dỹ

.

The conditional density is now easy to compute since a ratio of normal distributions is also normal.
The final answer, of course, does involve fi(xi). This is not only unavoidable but in fact desirable
since we would like to retain the complexity of the desired posterior.

3.2 Tractability of Inference in a Gaussian CBNs

We are now ready to consider inference in a Gaussian CBN (GCBN). In this case, the joint density
of Eq. (3) takes, after cancellation of terms, the following form:

fX (x1, . . . , xn) =
∏
i

fi(xi)

ϕ(x̃i)

∏
i

ϕΣi(x̃i, x̃pai1
, . . . , x̃paiki

)

ϕΣ−
i

(x̃pai1
, . . . , x̃paiki

)
,

where Σ−i is used to denote the i’th local covariance matrix excluding the i’th row and column.
When Xi has no parents, the ratio reduces to ϕ(x̃i). When the graph is tree structured, this density
is also a copula and its marginals are fi(xi). In this case, the same change of variables as above
results in

fX̃ (x̃1, . . . , x̃n) =
∏
i

ϕΣi
(x̃i, x̃pai1

, . . . , x̃paiki
)

ϕΣ−
i

(x̃pai1
, . . . , x̃paiki

)
.

Since a ratio of Gaussians is also a Gaussian, the entire density is Gaussian in x̃i space, and compu-
tation of any marginal fỸ(ỹ) is easy. The required marginal in xi space is then recovered using

fY(y) = fỸ(ỹ)
∏
i∈Y

fi(xi)

ϕ(x̃i)
(4)

which essentially summarizes the detailed derivation of the previous section.

When we consider a non-tree structured CBN model, as noted in Section 2.2, the marginals may not
equal fi(xi), and the above simplification is not applicable. However, for the Gaussian case, it is
always possible to estimate the local copulas in a topological order so that the univariate marginals
are equal to fi(xi) (the model in this case is equivalent to the distribution-free continuous Bayesian
belief net model [Kurowicka and Cooke, 2005]). It follows that, for any structure,

Corollary 3.1: The complexity of inference in a Gaussian CBN model is the same as that of inference
in a multivariate Gaussian model of the same structure.
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Algorithm 1: Nonparanormal Belief Propagation (NPNBP) for general CBNs.
Input: {fk(xk)} for all i, Σi for all nodes with parents. Output: belief bS(xS) for each cluster S.

CG ← a valid cluster graph over the following potentials for all nodes i in the graph
• ϕΣi

(x̃i, x̃pai1
, . . . , x̃paiki

)

• 1/ϕΣ−
i

(x̃pai1
, . . . , x̃paiki

)

foreach cluster S in CG // use black-box GaBP in x̃i space
bG(x̃S)← GaBP belief over cluster S.

foreach cluster S in CG // change to xi space

bS(xS) = bG(x̃S)
∏
i∈S

fi(xi)
ϕ(x̃i)

While mathematically this conclusion is quite straightforward, the implications are significant. A
GCBN model is the only general purpose non-Gaussian continuous graphical model for which exact
inference is tractable. At the same time, as is demonstrated in our experimental evaluation, the
model is able to capture complex distributions well both qualitatively and quantitatively.

A final note is worthwhile regarding the (possibly conditional) marginal density. As can be expected,
the result of Eq. (4) includes fi(xi) terms for all variables that have not been marginalized out. As
noted, this is indeed desirable as we would like to preserve the complexity of the density in the
marginal computation. The marginal term, however, is now in low dimension so that quantities of
interest (e.g., expectation) can be readily computed using naive grid-based evaluation or, if needed,
using more sophisticated sampling schemes (see, for example, [Robert and Cassella, 2005]).

3.3 Belief Propagation for Gaussian CBNs

Given the above observations, performing inference in a Gaussian CBN (GCBN) appears to be a
solved problem. However, inference in large-scale models can be problematic even in the Gaussian
case. First, the large joint covariance matrix may be ill conditioned and inverting it may not be
possible. Second, matrix inversion can be slow when dealing with domains of sufficient dimension.

A possible alternative is to consider the popular belief propagation algorithm [Pearl, 1988]. For a
tree structured model represented as a product of singleton Ψi and pairwise Ψij factors, the method
relies on the recursive computation of “messages”

mi→j(xj)← α

∫
[Ψij(xi, xj)Ψi(xi)

∏
k∈N(i)\jmk→i(xi)]dxi,

where α is a normalization factor and N(i) are the indices of the neighbor nodes of Xi.

In the case of a GCBN model, performing belief propagation may seem difficult since Ψi(xi) ≡
fi(xi) can have a complex form. However, the change of variables used in the previous section
applies here as well. That is, one can perform inference in x̃i space using standard Gaussian BP
(GaBP) [Weiss and Freeman, 2001], and then perform the needed change of variables. In fact, this
is true regardless of the structure of the graph so that loopy GaBP can also be used to perform ap-
proximate computations for a general GCBN model in x̃i space. The approach is summarized in
Algorithm 1, where we assume access to a black-box GaBP procedure and a cluster graph construc-
tion algorithm. In our experiments we simply use a Bethe approximation construction (see [Koller
and Friedman, 2009] for details on BP, GaBP and the cluster graph construction).

Generally, little can be said about the convergence of loopy BP or its variants, particularly for non-
Gaussian domains. Appealingly, the form of our NPNBP algorithm implies that its convergence can
be phrased in terms of standard Gaussian BP convergence. In particular:

• Observation 1: NPNBP converges whenever GaBP converges for the model defined by
∏
iRci .

• Observation 2: Convergence of NPNBP depends only on the covariance matrices Σi that pa-
rameterize the local copula and does not depend on the univariate form.

It follows that convergence conditions identified for GaBP [Rusmevichientong and Roy, 2000, Weiss
and Freeman, 2001, Malioutov et al., 2006] carry over to NPNBP for CBN models.
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Figure 2: Exact vs. Nonparametric BP marginals for the GCBN model learned from the wine quality
dataset. Shown are the marginal densities for the first four variables.

4 Experimental Evaluation

We now consider the merit of using our NPNBP algorithm for performing inference in a a Gaussian
CBN (GCBN) model. We learned a tree structured GCBN using a standard Chow-Liu approach
[Chow and Liu, 1968], and a model with up to two parents for each variable using standard greedy
structure search. In both cases we use the Bayesian Information Criterion (BIC) [Schwarz, 1978]
to guide the structure learning algorithm. For the univariate densities, we use a standard Gaussian
kernel density estimator (see, for example, [Bowman and Azzalini, 1997]). Using an identical pro-
cedure, we learn a linear Gaussian BN baseline where Xi ∼ N(αpai, σi) so that each variable Xi

is normally distributed around a linear combination of its parents Pai (see [Koller and Friedman,
2009] for details on this standard approach to structure learning).

For the GCBN model, we also compare to Nonparametric BP (NBP) [Sudderth et al., 2010a] using
D. Bickson’s code [Bickson, 2008] and A. Ihlers KDE Matlab package (http://www.ics.uci.edu/ ih-
ler/code/kde.html), which relies on a mixture of Gaussians for message representation. In this case,
since our univariate densities are constructed using Gaussian kernels, there is no approximation
in the NBP representation and all approximations are due to message computations. To carry out
message products, we tried all 7 sampling-based methods available in the KDE package. In the ex-
periments below we use only the multiresolution sequential Gibbs sampling method since all other
approaches resulted in numerical overflows even for small domains.

4.1 Qualitative Assessment

We start with a small domain where the qualitative nature of the inferred marginals is easily explored,
and consider performance and running time in more substantial domains in the next section. We
use the wine quality data set from the UCI repository which includes 1599 measurements of 11
physiochemical properties and a quality variable of red ”Vinho Verde” [Cortez et al., 2009].

We first examine a tree structured GCBN model where our NPNBP method allows us to perform
exact marginal computations. Figure 2 compares the first four marginals to the ones computed by the
NBP method. As can be clearly seen, although the NBP marginals are not nonsensical, they are far
from accurate (results for the other marginals in the domain are similar). Quantitatively, each NBP
marginal is 0.5 to 1.5 bits/instance less accurate than the exact ones. Thus, the accuracy of NPNBP
in this case is approximately twice that of NBP per variable, amounting to a substantial per sample
advantage. We also note that NBP was approximately an order of magnitude slower than NPNBP in
this domain. In the larger domains considered in the next section, NBP proved impractical.

Figure 3 demonstrates the quality of the bivariate marginals inferred by our NPNBP method relative
to the ones of a linear Gaussian BN model where inference can also be carried out efficiently. The
middle panel shows a Gaussian distribution constructed only over the two variables and is thus an
upper bound on the quality that we can expect from a linear Gaussian BN. Clearly, the Gaussian
representation is not sufficiently flexible to reasonably capture the distribution of the true samples
(left panel). In contrast, the bivariate marginals computed by our algorithm (right panel) demonstrate
the power of working with a copula-based construction and an effective inference procedure: in both
cases the inferred marginals capture the non-Gaussian distributions quite accurately. Results were
qualitatively similar for all other variable pairs (except for the few cases that are approximately
Gaussian in the original feature space and for which all models are equally beneficial).
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Density vs. Alcohol

Free vs. Total Sulfur

(a) true samples (b) optimal Gaussian (c) CBN marginal

Figure 3: The bivariate density for two pairs of variables in a tree structured GCBN model learned
from the wine quality dataset. (a) empirical samples; (b) maximum likelihood Gaussian density; (c)
exact GCBN marginal computed using our NPNBP algorithm.

In Figure 4 we repeat the comparison for another pair of variables in a non-tree GCBN (as before,
results were qualitatively similar for all pairs of variables). In this setting, the bivariate marginal
computed by our algorithm (d) is approximate and we also compare to the exact marginal (c). As
in the case of the tree-structured model, the GCBN model captures the true density quite accurately,
even for this multi-modal example. NPNBP dampens some of this accuracy and results in marginal
densities that have the correct overall structure but with a reduced variance. This is not surprising
since it is well known that GaBP leads to reduced variances [Weiss and Freeman, 2001]. Never-
theless, the approximate result of NPNBP is clearly better than the exact Gaussian model, which
assigns very low probability to regions of high density (along the main vertical axis of the density).

Finally, Figure 5(left) shows the NPNBP vs. the exact expectations. As can be seen, the inferred
values are quite accurate and it is plausible that the differences are due to numerical round-offs.
Thus, it is possible that, similarly to the case of standard GaBP [Weiss and Freeman, 2001], the
inferred expectations are theoretically exact. The proof for the GaBP case, however, does not carry
over to the CBN setting and shedding theoretical light on this issue remains a future challenge.

4.2 Quantitative Assessment

We now consider several substantially larger domains with 100 to almost 2000 variables. For each
domain we learn a tree structured GCBN, and justify the need for the expressive copula-based model
by reporting its average generalization advantage in terms of log-loss/instance over a standard linear
Gaussian model. We justify the use of NPNBP for performing inference by comparing the running
time of NPNBP to exact computations carried out using matrix inversion. For all datasets, we
performed 10-fold cross-validation and report average results. We use the following datasets:

• Crime (UCI repository). 100 variables relating to crime ranging from household size to fraction
of children born outside of a marriage, for 1994 communities across the U.S.

• SP500. Daily changes of value of the 500 stocks comprising the Standard and Poor’s index (S&P
500) over a period of one year.

• Gene. A compendium of gene expression experiments used in [Marion et al., 2004]. We chose
genes that have only 1, 2, and 3 missing values and only use full observations. This resulted in
datasets with 765, 1400, and 1945 variables (genes), and 1088, 956, and 876 samples, respectively.

For the 100 variable Crime domain, average test advantage of the GCBN model over the linear
Gaussian one was 0.39 bits/instance per variable (as in [Elidan, 2010]). For the 765 variable Gene
expression domain the advantage was around 0.1 bits/instance/variable (results were similar for the
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Sugar level vs. Density

(a) true samples (b) optimal Gaussian (c) exact CBN marginal (d) inferred marginal

Figure 4: The bivariate density for a pair of variables in a non-tree GCBN model learned from the
wine quality dataset. (a) empirical samples; (b) maximum likelihood Gaussian density; (c) exact
CBN marginal; (d) marginal density computed by our NPNBP algorithm.

Figure 5: (left) exact vs.
NPNBP expected values.
(right) speedup relative to
matrix inversion for a tree
structured GCBN model.
765,1400,1945 correspond
to the three different datasets
extracted from the gene
expression compendium.

other gene expression datasets). In both cases, the differences are dramatic and each instance is
many orders of magnitude more likely given a GCBN model. For the SP500 domain, evaluation
of the linear Gaussian model resulted in numerical overflows (due to the scarcity of the training
data), and the advantage of he GCBN cannot be quantified. These generalization advantages make
it obvious that we would like to perform efficient inference in a GCBN model.

As discussed, a GCBN model is itself tractable in that inference can be carried out by first con-
structing the inverse covariance matrix over all variables and then inverting it so as to facilitate
marginalization. Thus, using our NPNBP algorithm can only be justified practically. Figure 5(right)
shows the speedup of NPNBP relative to inference based on matrix inversion for the different do-
mains. Although NPNBP is somewhat slower for the small domains (in which inference is carried
out in less than a second), the speedup of NPNBP reaches an order of magnitude for the larger gene
expression domain. Appealingly, the advantage of NPNBP grows with the domain size due to the
growth in complexity of matrix inversion. Finally, we note that we used a Matlab implementation
where matrix inversion is highly optimized so that the gains reported are quite conservative.

5 Summary

We presented Nonparanormal Belief Propagation (NPNBP), a propagation-based algorithm for per-
forming highly efficient inference in a powerful class of graphical models that are based on the
Gaussian copula. To our knowledge, ours is the first inference method for an expressive continuous
non-Gaussian representation that, like ordinary GaBP, is both highly efficient and provably correct
for tree structured models. Appealingly, the efficiency and convergence properties of our method do
not depend on the choice of univariate marginals, even when a nonparametric representation is used.

The Gaussian copula is a powerful model widely used to capture complex phenomenon in fields
ranging from mainstream economics (e.g., Embrechts et al. [2003]) to flood analysis [Zhang and
Singh, 2007]. Recent probabilistic graphical models that build on the Gaussian copula open the
door for new high-dimensional non-Gaussian applications [Kirshner, 2007, Liu et al., 2010, Elidan,
2010, Wilson and Ghahramani, 2010]. Our method offers the inference tools to make this practical.
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